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Prologue

In organizing this lecture note, I am indebted by the following:

• S. RASCHKA AND V. MIRJALILI, Python Machine Learning, 3rd Ed., 2019
[62].

• (Lecture note) http://fa.bianp.net/teaching/2018/eecs227at/, Dr. Fabian Pe-
dregosa, UC Berkeley

• (Lecture note) Introduction To Machine Learning, Prof. David Sontag,
MIT & NYU

• (Lecture note) Mathematical Foundations of Machine Learning, Dr. Justin
Romberg, Geoigia Tech

This lecture note will grow up as time marches; various core algorithms,
useful techniques, and interesting examples would be soon incorporated.

Seongjai Kim
December 2, 2023
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CHAPTER 1
Introduction

What are we “learning” in Machine Learning (ML)?

This is a hard question to which we can only give a somewhat fuzzy answer.
But at a high enough level of abstraction, there are two answers:

• Algorithms, which solve some kinds of inference problems
• Models for datasets.

These answers are so abstract that they are probably completely unsatis-
fying. But let’s (start to) clear things up, by looking at some particular
examples of “inference" and “modeling" problems.

Contents of Chapter 1
1.1. Why and What in Machine Learning (ML)? . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2. Three Different Types of ML . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3. A Machine Learning Modelcode: Scikit-Learn Comparisons and Ensembling . . . . . 12
Exercises for Chapter 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1



2 Chapter 1. Introduction

1.1. Why and What in Machine Learning (ML)?

1.1.1. Inference problems

Definition 1.1. Statistical inference is the process of using data
analysis to deduce properties of an underlying probability distribution.
Inferential statistical analysis infers properties of a population, for ex-
ample by testing hypotheses and deriving estimates.

Loosely speaking, inference problems take in data, then output
some kind of decision or estimate. The output of a statistical infer-
ence is a statistical proposition; here are some common forms of statistical
proposition.

• a point estimate
• an interval estimate
• a credible interval
• rejection of a hypothesis
• classification or clustering of the data points into discrete groups

Example 1.2. Inference algorithms can answer the following.

(a) Does this image have a tree in it?

(b) What words are in this picture?

(c) If I give you a recording of somebody speaking, can you produce text of
what they are saying?
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Remark 1.3. What does a machine learning algorithm do?
Machine learning algorithms are not algorithms for performing in-
ference. Rather, they are algorithms for building inference algo-
rithms from examples. An inference algorithm takes a piece of data
and outputs a decision (or a probability distribution over the decision
space).

1.1.2. Modeling

A second type of problem associated with machine learning (ML) might
be roughly described as:

Given a dataset, how can I succinctly describe it (in a quantita-
tive, mathematical manner)?

One example is regression analysis. Most models can be broken into two
categories:

• Geometric models. The general problem is that we have example
data points

x1, x2, · · · , xN ∈ RD

and we want to find some kind of geometric structure that (ap-
proximately) describes them.

Here is an example: given a set of vectors, what (low dimensional) sub-
space comes closest to containing them?

• Probabilistic models. The basic task here is to find a probability
distribution that describes the dataset {xn}.
The classical name for this problem is density estimation – given
samples of a random variable, estimate its probability density function
(pdf). This gets extremely tricky in high dimensions (large values of
D) or when there are dependencies between the data points. Key to
solving these problems is choosing the right way to describe your
probability model.
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Note: In both cases above, having a concise model can go a tremen-
dous way towards analyzing the data.

• As a rule, if you have a simple and accurate model, this
is tremendously helping in solving inference problems, be-
cause there are fewer parameters to consider and/or esti-
mate.

• The categories can either overlap with or complement each
other. It is often the case that the same model can be interpreted
as a geometric model or a probabilistic model.

1.1.3. Machine learning examples

• Classification: from data to discrete classes
– Spam filtering
– Object detection (e.g., face)
– Weather prediction (e.g., rain, snow, sun)

• Regression: predicting a numeric value
– Stock market
– Weather prediction (e.g., Temperature)

• Ranking: comparing items
– Web search (keywords)
– Given an image, find similar images

• Collaborative Filtering (e.g., Recommendation systems)
• Clustering: discovering structure in data

– Clustering points or images
– Clustering web search results

• Embedding: visualizing data
– Embedding images, words

• Structured prediction: from data to discrete classes
– Speech/image recognition
– Natural language processing
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1.2. Three Different Types of ML

Example 1.4. Three different types of ML:

• Supervised learning: classification, regression
• Unsupervised learning: clustering
• Reinforcement learning: chess engine

Figure 1.1: Three different types of ML (by methods)
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1.2.1. Supervised learning

Assumption. Given a data set {(xi, yi)}, ∃ a relation f : X → Y .

Supervised learning:{
Given : Training set {(xi, yi) | i = 1, · · · , N}
Find : f̂ : X → Y , a good approximation to f

(1.1)

Figure 1.2: Supervised learning and prediction.

Figure 1.3: Classification and regression.
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Example 1.5. Regression

• Dataset: Consider a simple dataset: 10 points generated from a sin func-
tion, with noise

• Wanted: Find a regression model

f : X = R→ Y = R (1.2)

• Question: How should we pick the hypothesis space, the set of possible
functions f?

– Often, there exist infinitely many hypotheses
– Let’s select f from PM , polynomials of degree ≤M .
– Which one is best?
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• Error: misfit

– We measure the error using a loss function L(y, ŷ).
– For regression, a common choice is squared loss: for each (xi, yi),

L(yi, f(xi)) = ((yi − f(xi))
2.

– The empirical loss of the function f applied to the training data is
then:

EMS
def
==

1

N

N∑
i=1

L(yi, f(xi)) =
1

N

N∑
i=1

(yi − f(xi))
2, (1.3)

which is the mean square error.

Figure 1.4: Learning curve.
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Key Idea 1.6. Training and test performance. Assume that each
training and test example–label pair (x, y) is drawn independently at
random from the same (but unknown) population of examples and labels.
Represent this population as a probability distribution p(x, y), so that:

(xi, yi) ∼ p(x, y).

• Then, given a loss function L:

– Empirical (training) loss =
1

N

N∑
i=1

L(yi, f(xi)).

(Also called the empirical risk, R̂(f,DN).)
– Expected (test) loss = E(x,y)∼p{L(y, f(x))}.

(Also called the risk R(f).)

• Ideally, learning chooses the hypothesis that minimizes the
risk.

– But this is impossible to compute!
– The empirical risk is a good (unbiased) estimate of the risk

(by linearity of expectation).

• The principle of empirical risk minimization reads

f ∗(DN) = arg min
f∈F

R̂(f,DN). (1.4)
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Remark 1.7. Key Issues in Machine Learning

• How do we choose a hypothesis space?

– Often we use prior knowledge to guide this choice
– The ability to answer to the next two questions also affects the

choice

• How can we gauge the accuracy of a hypothesis on unseen test-
ing data?

– The previous example showed that choosing the hypothesis which
simply minimizes training set error (i.e., empirical risk mini-
mization) is not optimal.

– This question is a main topic in learning theory.

• How do we find the best hypothesis?

– This is an algorithmic question, at the intersection of mathemat-
ics, computer science, and optimization research.

Proposition 1.8. Occam’s Razor Principle (a.k.a. Law of parsimony):

“One should not increase, beyond what is necessary,
the number of entities required to explain anything.”

• William of Occam: A monk living in the 14-th century, England
• When many solutions are available for a given problem, we should

select the simplest one.
• But what do we mean by simple?
• We will use prior knowledge of the problem to solve to define what

is a simple solution (Example of a prior: smoothness).
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1.2.2. Unsupervised learning

Note:

• In supervised learning, we know the right answer beforehand when
we train our model, and in reinforcement learning, we define a mea-
sure of reward for particular actions by the agent.

• In unsupervised learning, however, we are dealing with unlabeled
data or data of unknown structure. Using unsupervised learn-
ing techniques, we are able to explore the structure of our data
to extract meaningful information without the guidance of a
known outcome variable or reward function.

• Clustering is an exploratory data analysis technique that allows
us to organize a pile of information into meaningful subgroups
(clusters) without having any prior knowledge of their group mem-
berships.

Figure 1.5: Clustering.
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1.3. A Machine Learning Modelcode: Scikit-Learn
Comparisons and Ensembling

In machine learning, you can write a code easily and effectively using the
following modelcode. It is also useful for algorithm comparisons and
ensembling. You may download
https://skim.math.msstate.edu/LectureNotes/data/Machine-Learning-Modelcode.PY.tar.

Machine_Learning_Model.py
1 import numpy as np; import pandas as pd; import time
2 import seaborn as sbn; import matplotlib.pyplot as plt
3 from sklearn.model_selection import train_test_split
4 from sklearn import datasets
5 np.set_printoptions(suppress=True)
6

7 #=====================================================================
8 # Upload a Dataset: print(dir(datasets))
9 # load_iris, load_wine, load_breast_cancer, ...

10 #=====================================================================
11 data_read = datasets.load_iris(); #print(data_read.keys())
12

13 X = data_read.data
14 y = data_read.target
15 dataname = data_read.filename
16 targets = data_read.target_names
17 features = data_read.feature_names
18

19 #---------------------------------------------------------------------
20 # SETTING
21 #---------------------------------------------------------------------
22 N,d = X.shape; nclass=len(set(y));
23 print('DATA: N, d, nclass =',N,d,nclass)
24 rtrain = 0.7e0; run = 50; CompEnsm = 2;
25

26 def multi_run(clf,X,y,rtrain,run):
27 t0 = time.time(); acc = np.zeros([run,1])
28 for it in range(run):
29 Xtrain, Xtest, ytrain, ytest = train_test_split(
30 X, y, train_size=rtrain, random_state=it, stratify = y)
31 clf.fit(Xtrain, ytrain);
32 acc[it] = clf.score(Xtest, ytest)
33 etime = time.time()-t0
34 return np.mean(acc)*100, np.std(acc)*100, etime # accmean,acc_std,etime
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35

36 #=====================================================================
37 # My Classifier
38 #=====================================================================
39 from myclf import * # My Classifier = MyCLF()
40 if 'MyCLF' in locals():
41 accmean, acc_std, etime = multi_run(MyCLF(mode=1),X,y,rtrain,run)
42

43 print('%s: MyCLF() : Acc.(mean,std) = (%.2f,%.2f)%%; E-time= %.5f'
44 %(dataname,accmean,acc_std,etime/run))
45

46 #=====================================================================
47 # Scikit-learn Classifiers, for Comparisions && Ensembling
48 #=====================================================================
49 if CompEnsm >= 1:
50 exec(open("sklearn_classifiers.py").read())

myclf.py
1 import numpy as np
2 from sklearn.base import BaseEstimator, ClassifierMixin
3 from sklearn.tree import DecisionTreeClassifier
4

5 class MyCLF(BaseEstimator, ClassifierMixin): #a child class
6 def __init__(self, mode=0, learning_rate=0.01):
7 self.mode = mode
8 self.learning_rate = learning_rate
9 self.clf = DecisionTreeClassifier(max_depth=5)

10 if self.mode==1: print('MyCLF() = %s' %(self.clf))
11

12 def fit(self, X, y):
13 self.clf.fit(X, y)
14

15 def predict(self, X):
16 return self.clf.predict(X)
17

18 def score(self, X, y):
19 return self.clf.score(X, y)

Note: Replace DecisionTreeClassifier() with your own classier.

• The classifier must be implemented as a child class if if it is used
in ensembling.
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sklearn_classifiers.py
1 #=====================================================================
2 # Required: X, y, multi_run [dataname, rtrain, run, CompEnsm]
3 #=====================================================================
4 from sklearn.preprocessing import StandardScaler
5 from sklearn.datasets import make_moons, make_circles, make_classification
6 from sklearn.neural_network import MLPClassifier
7 from sklearn.neighbors import KNeighborsClassifier
8 from sklearn.linear_model import LogisticRegression
9 from sklearn.svm import SVC

10 from sklearn.gaussian_process import GaussianProcessClassifier
11 from sklearn.gaussian_process.kernels import RBF
12 from sklearn.tree import DecisionTreeClassifier
13 from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier
14 from sklearn.naive_bayes import GaussianNB
15 from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis
16 from sklearn.ensemble import VotingClassifier
17

18 #-----------------------------------------------
19 classifiers = [
20 LogisticRegression(max_iter = 1000),
21 KNeighborsClassifier(5),
22 SVC(kernel="linear", C=0.5),
23 SVC(gamma=2, C=1),
24 RandomForestClassifier(max_depth=5, n_estimators=50, max_features=1),
25 MLPClassifier(hidden_layer_sizes=[100], activation='logistic',
26 alpha=0.5, max_iter=1000),
27 AdaBoostClassifier(),
28 GaussianNB(),
29 QuadraticDiscriminantAnalysis(),
30 GaussianProcessClassifier(),
31 ]
32 names = [
33 "Logistic-Regr",
34 "KNeighbors-5 ",
35 "SVC-Linear ",
36 "SVC-RBF ",
37 "Random-Forest",
38 "MLPClassifier",
39 "AdaBoost ",
40 "Naive-Bayes ",
41 "QDA ",
42 "Gaussian-Proc",
43 ]
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44 #-----------------------------------------------
45 if dataname is None: dataname = 'No-dataname';
46 if run is None: run = 50;
47 if rtrain is None: rtrain = 0.7e0;
48 if CompEnsm is None: CompEnsm = 2;
49

50 #=====================================================================
51 print('====== Comparision: Scikit-learn Classifiers =================')
52 #=====================================================================
53 import os;
54 acc_max=0; Acc_CLF = np.zeros([len(classifiers),1]);
55

56 for k, (name, clf) in enumerate(zip(names, classifiers)):
57 accmean, acc_std, etime = multi_run(clf,X,y,rtrain,run)
58

59 Acc_CLF[k] = accmean
60 if accmean>acc_max: acc_max,algname = accmean,name
61 print('%s: %s: Acc.(mean,std) = (%.2f,%.2f)%%; E-time= %.5f'
62 %(os.path.basename(dataname),name,accmean,acc_std,etime/run))
63 print('--------------------------------------------------------------')
64 print('sklearn classifiers Acc: (mean,max) = (%.2f,%.2f)%%; Best = %s'
65 %(np.mean(Acc_CLF),acc_max,algname))
66

67 if CompEnsm <2: quit()
68 #=====================================================================
69 print('====== Ensembling: SKlearn Classifiers =======================')
70 #=====================================================================
71 names = [x.rstrip() for x in names]
72 popped_clf = []
73 popped_clf.append(names.pop(9)); classifiers.pop(9); #Gaussian Proc
74 popped_clf.append(names.pop(7)); classifiers.pop(7); #Naive Bayes
75 popped_clf.append(names.pop(6)); classifiers.pop(6); #AdaBoost
76 popped_clf.append(names.pop(4)); classifiers.pop(4); #Random Forest
77 popped_clf.append(names.pop(0)); classifiers.pop(0); #Logistic Regr
78 #print('popped_clf=',popped_clf[::-1])
79

80 CLFs = [(name, clf) for name, clf in zip(names, classifiers)]
81 #if 'MyCLF' in locals(): CLFs += [('MyCLF',MyCLF())]
82 EnCLF = VotingClassifier(estimators=CLFs, voting='hard')
83 accmean, acc_std, etime = multi_run(EnCLF,X,y,rtrain,run)
84

85 print('EnCLF =',[lis[0] for lis in CLFs])
86 print('%s: Ensemble CLFs: Acc.(mean,std) = (%.2f,%.2f)%%; E-time= %.5f'
87 %(os.path.basename(dataname),accmean,acc_std,etime/run))
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Output
1 DATA: N, d, nclass = 150 4 3
2 MyCLF() = DecisionTreeClassifier(max_depth=5)
3 iris.csv: MyCLF() : Acc.(mean,std) = (94.53,3.12)%; E-time= 0.00074
4 ====== Comparision: Scikit-learn Classifiers =================
5 iris.csv: Logistic-Regr: Acc.(mean,std) = (96.13,2.62)%; E-time= 0.01035
6 iris.csv: KNeighbors-5 : Acc.(mean,std) = (96.49,1.99)%; E-time= 0.00176
7 iris.csv: SVC-Linear : Acc.(mean,std) = (97.60,2.26)%; E-time= 0.00085
8 iris.csv: SVC-RBF : Acc.(mean,std) = (96.62,2.10)%; E-time= 0.00101
9 iris.csv: Random-Forest: Acc.(mean,std) = (94.84,3.16)%; E-time= 0.03647

10 iris.csv: MLPClassifier: Acc.(mean,std) = (98.58,1.32)%; E-time= 0.20549
11 iris.csv: AdaBoost : Acc.(mean,std) = (94.40,2.64)%; E-time= 0.04119
12 iris.csv: Naive-Bayes : Acc.(mean,std) = (95.11,3.20)%; E-time= 0.00090
13 iris.csv: QDA : Acc.(mean,std) = (97.64,2.06)%; E-time= 0.00085
14 iris.csv: Gaussian-Proc: Acc.(mean,std) = (95.64,2.63)%; E-time= 0.16151
15 --------------------------------------------------------------
16 sklearn classifiers Acc: (mean,max) = (96.31,98.58)%; Best = MLPClassifier
17 ====== Ensembling: SKlearn Classifiers =======================
18 EnCLF = ['KNeighbors-5', 'SVC-Linear', 'SVC-RBF', 'MLPClassifier', 'QDA']
19 iris.csv: Ensemble CLFs: Acc.(mean,std) = (97.60,1.98)%; E-time= 0.22272

Ensembling:
You may stack the best and its siblings of other options.
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Exercises for Chapter 1

1.1. The modelcode in Section 1.3 will run without requiring any other implementation of
yours.

(a) Download the code or save it by copy-and-paste.
(b) Install all imported packages to run the code.
(c) Modification:

• Select another dataset in Machine_Learning_Model.py, line 11.
You may use print(dir(datasets)) to find datasets available.

• Set different options for some of the classifiers in sklearn_classifiers.py,
lines 20–30.

(d) Report the output.

Installation: If you are on Ubuntu, you may begin with
Install-Python-packages

1 sudo apt update
2 sudo apt install python3 -y
3 sudo apt install python3-pip -y
4 rehash
5 sudo pip3 install numpy scipy matplotlib sympy -y
6 sudo pip3 install sklearn seaborn pandas -y
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2.1. Why Python?

Note: A good programming language must be easy to learn and use
and flexible and reliable.

Advantages of Python
Python has the following characteristics.

• Easy to learn and use
• Flexible and reliable
• Extensively used in Data Science
• Handy for Web Development purposes
• Having Vast Libraries support
• Among the fastest-growing programming languages in the tech

industry

Disadvantage of Python
Python is an interpreted and dynamically-typed language. The line-by-
line execution of code, built with a high flexibility, most likely leads to
slow execution. Python scripts are way slow!

Remark 2.1. Speed up Python Programs

• Use numpy and scipy for all mathematical operations.
• Always use built-in functions wherever possible.

• Cython: It is designed as a C-extension for Python, which is
developed for users not familiar with C. A good choice!

• You may create and import your own C/C++/Fortran-modules into
Python. If you extend Python with pieces of compiled modules,
then the resulting code is easily 100× faster than Python scripts.
The Best Choice!
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How to call C/C++/Fortran from Python
Functions in C/C++/Fortran can be compiled using the shell script.

Compile-f90-c-cpp
1 #!/usr/bin/bash
2

3 LIB_F90='lib_f90'
4 LIB_GCC='lib_gcc'
5 LIB_GPP='lib_gpp'
6

7 ### Compiling: f90
8 f2py3 -c --f90flags='-O3' -m $LIB_F90 *.f90
9

10 ### Compiling: C (PIC: position-independent code)
11 gcc -fPIC -O3 -shared -o $LIB_GCC.so *.c
12

13 ### Compiling: C++
14 g++ -fPIC -O3 -shared -o $LIB_GPP.so *.cpp

The shared objects (*.so) can be imported to the Python wrap-up.
Python Wrap-up

1 #!/usr/bin/python3
2

3 import numpy as np
4 import ctypes, time
5 from lib_py3 import *
6 from lib_f90 import *
7 lib_gcc = ctypes.CDLL("./lib_gcc.so")
8 lib_gpp = ctypes.CDLL("./lib_gpp.so")
9

10 ### For C/C++ ----------------------------------------------
11 # e.g., lib_gcc.CFUNCTION(double array,double array,int,int)
12 # returns a double value.
13 #-----------------------------------------------------------
14 IN_ddii = [np.ctypeslib.ndpointer(dtype=np.double),
15 np.ctypeslib.ndpointer(dtype=np.double),
16 ctypes.c_int, ctypes.c_int] #input type
17 OUT_d = ctypes.c_double #output type
18

19 lib_gcc.CFUNCTION.argtypes = IN_ddii
20 lib_gcc.CFUNCTION.restype = OUT_d
21

22 result = lib_gcc.CFUNCTION(x,y,n,m)
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• The library numpy is designed for a Matlab-like implementation.
• Python can be used as a convenient desktop calculator.

– First, set a startup environment
– Use Python as a desktop calculator

∼/.python_startup.py
1 #.bashrc: export PYTHONSTARTUP=~/.python_startup.py
2 #.cshrc: setenv PYTHONSTARTUP ~/.python_startup.py
3 #---------------------------------------------------
4 print("\t^[[1;33m~/.python_startup.py")
5

6 import numpy as np; import sympy as sym
7 import numpy.linalg as la; import matplotlib.pyplot as plt
8 print("\tnp=numpy; la=numpy.linalg; plt=matplotlib.pyplot; sym=sympy")
9

10 from numpy import zeros,ones
11 print("\tzeros,ones, from numpy")
12

13 import random
14 from sympy import *
15 x,y,z,t = symbols('x,y,z,t');
16 print("\tfrom sympy import *; x,y,z,t = symbols('x,y,z,t')")
17

18 print("\t^[[1;37mTo see details: dir() or dir(np)^[[m")

Figure 2.1: Python startup.
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2.2. Python Essentials in 30 Minutes

Key Features of Python

• Python is a simple, readable, open source programming language
which is easy to learn.

• It is an interpreted language, not a compiled language.
• In Python, variables are untyped; i.e., there is no need to define the

data type of a variable while declaring it.
• Python supports object-oriented programming models.
• It is platform-independent and easily extensible and embeddable.
• It has a huge standard library with lots of modules and packages.
• Python is a high level language as it is easy to use because of simple

syntax, powerful because of its rich libraries and extremely versatile.

Programming Features

• Python has no support pointers.
• Python codes are stored with .py extension.
• Indentation: Python uses indentation to define a block of code.

– A code block (body of a function, loop, etc.) starts with indenta-
tion and ends with the first unindented line.

– The amount of indentation is up to the user, but it must be consis-
tent throughout that block.

• Comments:

– The hash (#) symbol is used to start writing a comment.
– Multi-line comments: Python uses triple quotes, either ”’ or """.
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Python Essentials

• Sequence datatypes: list, tuple, string

– [list]: defined using square brackets (and commas)
>>> li = ["abc", 14, 4.34, 23]

– (tuple): defined using parentheses (and commas)
>>> tu = (23, (4,5), ’a’, 4.1, -7)

– "string": defined using quotes (", ’, or """)
>>> st = ’Hello World’
>>> st = "Hello World"
>>> st = """This is a multi-line string
. . . that uses triple quotes."""

• Retrieving elements
>>> li[0]
’abc’
>>> tu[1],tu[2],tu[-2]
((4, 5), ’a’, 4.1)
>>> st[25:36]
’ng\nthat use’

• Slicing
>>> tu[1:4] # be aware
((4, 5), ’a’, 4.1)

• The + and ∗ operators
>>> [1, 2, 3]+[4, 5, 6,7]
[1, 2, 3, 4, 5, 6, 7]
>>> "Hello" + " " + ’World’
Hello World
>>> (1,2,3)*3
(1, 2, 3, 1, 2, 3, 1, 2, 3)
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• Reference semantics
>>> a = [1, 2, 3]
>>> b = a
>>> a.append(4)
>>> b
[1, 2, 3, 4]
Be aware with copying lists and numpy arrays!

• numpy, range, and iteration
>>> range(8)
[0, 1, 2, 3, 4, 5, 6, 7]
>>> import numpy as np
>>> for k in range(np.size(li)):
. . . li[k]
. . . <Enter>
’abc’
14
4.34
23

• numpy array and deepcopy
>>> from copy import deepcopy
>>> A = np.array([1,2,3])
>>> B = A
>>> C = deepcopy(A)
>>> A *= 4
>>> B
array([ 4, 8, 12])
>>> C
array([1, 2, 3])
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Frequently used Python Rules
frequently_used_rules.py

1 ## Multi-line statement
2 a = 1 + 2 + 3 + 4 + 5 +\
3 6 + 7 + 8 + 9 + 10
4 b = (1 + 2 + 3 + 4 + 5 +
5 6 + 7 + 8 + 9 + 10) #inside (), [], or {}
6 print(a,b)
7 # Output: 55 55
8

9 ## Multiple statements in a single line using ";"
10 a = 1; b = 2; c = 3
11

12 ## Docstrings in Python
13 def double(num):
14 """Function to double the value"""
15 return 2*num
16 print(double.__doc__)
17 # Output: Function to double the value
18

19 ## Assigning multiple values to multiple variables
20 a, b, c = 1, 2, "Hello"
21 ## Swap
22 b, c = c, b
23 print(a,b,c)
24 # Output: 1 Hello 2
25

26 ## Data types in Python
27 a = 5; b = 2.1
28 print("type of (a,b)", type(a), type(b))
29 # Output: type of (a,b) <class 'int'> <class 'float'>
30

31 ## Python Set: 'set' object is not subscriptable
32 a = {5,2,3,1,4}; b = {1,2,2,3,3,3}
33 print("a=",a,"b=",b)
34 # Output: a= {1, 2, 3, 4, 5} b= {1, 2, 3}
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35

36 ## Python Dictionary
37 d = {'key1':'value1', 'Seth':22, 'Alex':21}
38 print(d['key1'],d['Alex'],d['Seth'])
39 # Output: value1 21 22
40

41 ## Output Formatting
42 x = 5.1; y = 10
43 print('x = %d and y = %d' %(x,y))
44 print('x = %f and y = %d' %(x,y))
45 print('x = {} and y = {}'.format(x,y))
46 print('x = {1} and y = {0}'.format(x,y))
47 # Output: x = 5 and y = 10
48 # x = 5.100000 and y = 10
49 # x = 5.1 and y = 10
50 # x = 10 and y = 5.1
51

52 print("x=",x,"y=",y, sep="#",end="&\n")
53 # Output: x=#5.1#y=#10&
54

55 ## Python Interactive Input
56 C = input('Enter any: ')
57 print(C)
58 # Output: Enter any: Starkville
59 # Starkville
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Looping and Functions
Example 2.2. Compose a Python function which returns cubes of natural
numbers.
Solution.

get_cubes.py
1 def get_cubes(num):
2 cubes = []
3 for i in range(1,num+1):
4 value = i**3
5 cubes.append(value)
6 return cubes
7

8 if __name__ == '__main__':
9 num = input('Enter a natural number: ')

10 cubes = get_cubes(int(num))
11 print(cubes)

Remark 2.3. get_cubes.py

• Lines 8-11 are added for the function to be called directly. That is,
[Sun Nov.05] python get_cubes.py
Enter a natural number: 6
[1, 8, 27, 64, 125, 216]

• When get_cubes is called from another function, the last four lines
will not be executed.

call_get_cubes.py
1 from get_cubes import *
2

3 cubes = get_cubes(8)
4 print(cubes)

Execusion
1 [Sun Nov.05] python call_get_cubes.py
2 [1, 8, 27, 64, 125, 216, 343, 512]
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2.3. Zeros of a Polynomial in Python

In this section, we will implement a Python code for zeros of a polynomial
and compare it with a Matlab code.

Recall: Let’s begin with recalling how to find zeros of a polynomial.

• When the Newton’s method is applied for finding an approximate zero
of P (x), the iteration reads

xn = xn−1 −
P (xn−1)

P ′(xn−1)
. (2.1)

Thus both P (x) and P ′(x) must be evaluated in each iteration.
• The derivative P ′(x) can be evaluated by using the Horner’s

method with the same efficiency. Indeed, differentiating

P (x) = (x− x0)Q(x) + P (x0)

reads
P ′(x) = Q(x) + (x− x0)Q

′(x). (2.2)

Thus
P ′(x0) = Q(x0). (2.3)

That is, the evaluation of Q at x0 becomes the desired quantity P ′(x0).
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Example 2.4. Let P (x) = x4− 4x3 + 7x2− 5x− 2. Use the Newton’s method
and the Horner’s method to implement a code and find an approximate zero
of P near 3.
Solution. First, let’s try to use built-in functions.

zeros_of_poly_built_in.py
1 import numpy as np
2

3 coeff = [1, -4, 7, -5, -2]
4 P = np.poly1d(coeff)
5 Pder = np.polyder(P)
6

7 print(P)
8 print(Pder)
9 print(np.roots(P))

10 print(P(3), Pder(3))

Output
1 4 3 2
2 1 x - 4 x + 7 x - 5 x - 2
3 3 2
4 4 x - 12 x + 14 x - 5
5 [ 2. +0.j 1.1378411+1.52731225j 1.1378411-1.52731225j -0.2756822+0.j ]
6 19 37

Observation 2.5. We will see:
Python programming is as easy and simple as Matlab programming.

• In particular, numpy is developed for Matlab-like implementa-
tion, with enhanced convenience.

• Numpy is used extensively in most of scientific Python packages:
SciPy, Pandas, Matplotlib, scikit-learn, · · ·
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Now, we implement a code in Python for Newton-Horner method to find
an approximate zero of P near 3.

Zeros-Polynomials-Newton-Horner.py
1 def horner(A,x0):
2 """ input: A = [a_n,...,a_1,a_0]
3 output: p,d = P(x0),DP(x0) = horner(A,x0) """
4 n = len(A)
5 p = A[0]; d = 0
6

7 for i in range(1,n):
8 d = p + x0*d
9 p = A[i] +x0*p

10 return p,d
11

12 def newton_horner(A,x0,tol,itmax):
13 """ input: A = [a_n,...,a_1,a_0]
14 output: x: P(x)=0 """
15 x=x0
16 for it in range(1,itmax+1):
17 p,d = horner(A,x)
18 h = -p/d;
19 x = x + h;
20 if(abs(h)<tol): break
21 return x,it
22

23 if __name__ == '__main__':
24 coeff = [1, -4, 7, -5, -2]; x0 = 3
25 tol = 10**(-12); itmax = 1000
26 x,it =newton_horner(coeff,x0,tol,itmax)
27 print("newton_horner: x0=%g; x=%g, in %d iterations" %(x0,x,it))

Execution
1 [Sat Jul.23] python Zeros-Polynomials-Newton-Horner.py
2 newton_horner: x0=3; x=2, in 7 iterations
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Note: The above Python code must be compared with the Matlab code.

horner.m
1 function [p,d] = horner(A,x0)
2 % input: A = [a_0,a_1,...,a_n]
3 % output: p=P(x0), d=P'(x0)
4

5 n = size(A(:),1);
6 p = A(n); d=0;
7

8 for i = n-1:-1:1
9 d = p + x0*d;

10 p = A(i) +x0*p;
11 end

newton_horner.m
1 function [x,it] = newton_horner(A,x0,tol,itmax)
2 % input: A = [a_0,a_1,...,a_n]; x0: initial for P(x)=0
3 % outpue: x: P(x)=0
4

5 x = x0;
6 for it=1:itmax
7 [p,d] = horner(A,x);
8 h = -p/d;
9 x = x + h;

10 if(abs(h)<tol), break; end
11 end

Call_newton_horner.m
1 a = [-2 -5 7 -4 1];
2 x0=3;
3 tol = 10^-12; itmax=1000;
4 [x,it] = newton_horner(a,x0,tol,itmax);
5 fprintf(" newton_horner: x0=%g; x=%g, in %d iterations\n",x0,x,it)
6 Result: newton_horner: x0=3; x=2, in 7 iterations
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2.4. Python Classes

Remark 2.6. Object-Oriented Programming (OOP)
Classes are a key concept in the object-oriented programming.
Classes provide a means of bundling data and functionality to-
gether.

• A class is a user-defined template or prototype from which real-
world objects are created.

• The major merit of using classes is on the sharing mechanism
between functions/methods and objects.

– Initialization and the sharing boundaries must be declared
clearly and conveniently.

• A class tells us

– what data an object should have,
– what are the initial/default values of the data, and
– what methods are associated with the object to take actions on

the objects using their data.

• An object is an instance of a class, and creating an object from a
class is called instantiation.

In the following, we would build a simple class, as Dr. Xu did in [82, Ap-
pendix B.5]; you will learn how to initiate, refine, and use classes.
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Initiation of a Class
Polynomial_01.py

1 class Polynomial():
2 """A class of polynomials"""
3

4 def __init__(self,coefficient):
5 """Initialize coefficient attribute of a polynomial."""
6 self.coeff = coefficient
7

8 def degree(self):
9 """Find the degree of a polynomial"""

10 return len(self.coeff)-1
11

12 if __name__ == '__main__':
13 p2 = Polynomial([1,2,3])
14 print(p2.coeff) # a variable; output: [1, 2, 3]
15 print(p2.degree()) # a method; output: 2

• Lines 1-2: define a class called Polynomial with a docstring.
– The parentheses in the class definition are empty because we cre-

ate this class from scratch.

• Lines 4-10: define two functions, __init__() and degree(). A function
in a class is called a method.

– The __init__() method is a special method for initialization;
it is called the __init__() constructor.

– The self Parameter and Its Sharing
* The self parameter is required and must come first before the

other parameters in each method.
* The variable self.coeff (prefixed with self) is available to

every method and is accessible by any objects created from
the class. (Variables prefixed with self are called attributes.)

* We do not need to provide arguments for self.

• Line 13: The line p2 = Polynomial([1,2,3]) creates an object p2 (a
polynomial x2 + 2x+ 3), by passing the coefficient list [1,2,3].

– When Python reads this line, it calls the method __init__() in the
class Polynomial and creates the object named p2 that represents
this particular polynomial x2 + 2x+ 3.
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Refinement of the Polynomial class
Polynomial_02.py

1 class Polynomial():
2 """A class of polynomials"""
3

4 count = 0 #Polynomial.count
5

6 def __init__(self):
7 """Initialize coefficient attribute of a polynomial."""
8 self.coeff = [1]
9 Polynomial.count += 1

10

11 def __del__(self):
12 """Delete a polynomial object"""
13 Polynomial.count -= 1
14

15 def degree(self):
16 """Find the degree of a polynomial"""
17 return len(self.coeff)-1
18

19 def evaluate(self,x):
20 """Evaluate a polynomial."""
21 n = self.degree(); eval = []
22 for xi in x:
23 p = self.coeff[0] #Horner's method
24 for k in range(1,n+1): p = self.coeff[k]+ xi*p
25 eval.append(p)
26 return eval
27

28 if __name__ == '__main__':
29 poly1 = Polynomial()
30 print('poly1, default coefficients:', poly1.coeff)
31 poly1.coeff = [1,2,-3]
32 print('poly1, coefficients after reset:', poly1.coeff)
33 print('poly1, degree:', poly1.degree())
34

35 poly2 = Polynomial(); poly2.coeff = [1,2,3,4,-5]
36 print('poly2, coefficients after reset:', poly2.coeff)
37 print('poly2, degree:', poly2.degree())
38

39 print('number of created polynomials:', Polynomial.count)
40 del poly1
41 print('number of polynomials after a deletion:', Polynomial.count)
42 print('poly2.evaluate([-1,0,1,2]):',poly2.evaluate([-1,0,1,2]))
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• Line 4: (Global Variable) The variable count is a class attribute of
Polynomial.

– It belongs to the class but not a particular object.
– All objects of the class share this same variable

(Polynomial.count).

• Line 8: (Initialization) Initializes the class attribute self.coeff.

– Every object or class attribute in a class needs an initial value.
– One can set a default value for an object attribute in the
__init__() constructor; and we do not have to include a param-
eter for that attribute. See Lines 29 and 35.

• Lines 11-13: (Deletion of Objects) Define the __del__() method in
the class for the deletion of objects. See Line 40.

– del is a built-in function which deletes variables and objects.

• Lines 19-28: (Add Methods) Define another method called evaluate,
which uses the Horner’s method. See Example 2.4, p.30.

Output
1 poly1, default coefficients: [1]
2 poly1, coefficients after reset: [1, 2, -3]
3 poly1, degree: 2
4 poly2, coefficients after reset: [1, 2, 3, 4, -5]
5 poly2, degree: 4
6 number of created polynomials: 2
7 number of polynomials after a deletion: 1
8 poly2.evaluate([-1,0,1,2]): [-7, -5, 5, 47]
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Inheritance
Note: If we want to write a class that is just a specialized version of
another class, we do not need to write the class from scratch.

• We call the specialized class a child class and the other general
class a parent class.

• The child class can inherit all the attributes and methods form the
parent class.

– It can also define its own special attributes and methods or even
overrides methods of the parent class.

Classes can import functions implemented earlier, to define methods.

Classes.py
1 from util_Poly import *
2

3 class Polynomial():
4 """A class of polynomials"""
5

6 def __init__(self,coefficient):
7 """Initialize coefficient attribute of a polynomial."""
8 self.coeff = coefficient
9

10 def degree(self):
11 """Find the degree of a polynomial"""
12 return len(self.coeff)-1
13

14 class Quadratic(Polynomial):
15 """A class of quadratic polynomial"""
16

17 def __init__(self,coefficient):
18 """Initialize the coefficient attributes ."""
19 super().__init__(coefficient)
20 self.power_decrease = 1
21

22 def roots(self):
23 return roots_Quad(self.coeff,self.power_decrease)
24

25 def degree(self):
26 return 2
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• Line 1: Imports functions implemented earlier.
• Line 14: We must include the name of the parent class in the paren-

theses of the definition of the child class (to indicate the parent-child
relation for inheritance).

• Line 19: The super() function is to give an child object all the at-
tributes defined in the parent class.

• Line 20: An additional child class attribute self.power_decrease is
initialized.

• Lines 22-23: define a new method called roots, reusing a function
implemented earlier.

• Lines 25-26: The method degree() overrides the parent’s method.

util_Poly.py
1 def roots_Quad(coeff,power_decrease):
2 a,b,c = coeff
3 if power_decrease != 1:
4 a,c = c,a
5 discriminant = b**2-4*a*c
6 r1 = (-b+discriminant**0.5)/(2*a)
7 r2 = (-b-discriminant**0.5)/(2*a)
8 return [r1,r2]

call_Quadratic.py
1 from Classes import *
2

3 quad1 = Quadratic([2,-3,1])
4 print('quad1, roots:',quad1.roots())
5 quad1.power_decrease = 0
6 print('roots when power_decrease = 0:',quad1.roots())

Output
1 quad1, roots: [1.0, 0.5]
2 roots when power_decrease = 0: [2.0, 1.0]
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Final Remarks on Python Implementation

• A proper modularization must precede implementation, as for
other programming languages.

• Classes are used quite frequently.

– You do not have to use classes for small projects.

• Try to use classes smartly.
Quite often, they add unnecessary complications and
their methods are hardly applicable directly for other projects.

– You may implement stand-alone functions to import.
– This strategy enhances reusability of functions.

For example, the function roots_Quad defined in util_Poly.py
(page 38) can be used directly for other projects.

– Afterwards, you will get your own utility functions; using
them, you can complete various programming tasks effectively.
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Exercises for Chapter 2

You should use Python for the following problems.

2.1. Use nested for loops to assign entries of a 5× 5 matrix A such that A[i, j] = ij.

2.2. The variable d is initially equal to 1. Use a while loop to keep dividing d by 2 until
d < 10−6.

(a) Determine how many divisions are made.
(b) Verify your result by algebraic derivation.

Note: A while loop has not been considered in the lecture. However, you can figure it out
easily by yourself.

2.3. Write a function that takes as input a list of values and returns the largest value. Do
this without using the Python max() function; you should combine a for loop and an
if statement.

(a) Produce a random list of size 10-20 to verify your function.

2.4. Let P4(x) = 2x4 − 5x3 − 11x2 + 20x+ 10. Solve the following.

(a) Plot P4 over the interval [−3, 4].
(b) Find all zeros of P4, modifying Zeros-Polynomials-Newton-Horner.py, p.30.
(c) Add markers for the zeros to the plot.
(d) Find all roots of P ′4(x) = 0.
(e) Add markers for the zeros of P ′4 to the plot.

Hint : For plotting, you may import: “import matplotlib.pyplot as plt” then use
plt.plot(). You will see the Python plotting is quite similar to Matlab plotting.



CHAPTER 3
Simple Machine Learning Algorithms
for Classification

In this chapter, we will make use of one of the first algorithmically described
machine learning algorithms for classification, the perceptron and adap-
tive linear neurons (adaline). We will start by implementing a perceptron
step by step in Python and training it to classify different flower species in
the Iris dataset.
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3.1. Binary Classifiers – Artificial Neurons

Definition 3.1. A binary classifier is a function which can decide
whether or not an input vector belongs to some specific class (e.g.,
spam/ham).

• Binary classification often refers to those classification tasks that
have two class labels. (two-class classification)

• It is a type of linear classifier, i.e. a classification algorithm that
makes its predictions based on a linear predictor function
combining a set of weights with the feature vector.

• Linear classifiers are artificial neurons.

Remark 3.2. Neurons are interconnected nerve cells that are involved
in the processing and transmitting of chemical and electrical signals.
Such a nerve cell can be described as a simple logic gate with binary
outputs;

• multiple signals arrive at the dendrites,
• they are integrated into the cell body,
• and if the accumulated signal exceeds a certain threshold, an output

signal is generated that will be passed on by the axon.

Figure 3.1: A schematic description of a neuron.
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Linear classifiers
As artificial neurons, they have the following characteristics:

• Inputs are feature values: x

• Each feature has a weight: w

• Weighted sum (integration) is the activation

activationw(x) =
∑
j

wj xj = w · x (3.1)

• Decision/output: If the activation is{
Positive ⇒ class 1
Negative ⇒ class 2

Unknowns, in ML:{
Training : w
Prediction : activationw(x)

Examples:

• Perceptron
• Adaline (ADAptive LInear NEuron)
• Support Vector Machine (SVM)⇒ nonlinear decision boundaries, too
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3.2. The Perceptron Algorithm

The perceptron is a binary classifier of supervised learning.

• 1957: Perceptron algorithm is invented by Frank Rosenblatt, Cornell
Aeronautical Laboratory

– Built on work of Hebbs (1949)
– Improved by Widrow-Hoff (1960): Adaline

• 1960: Perceptron Mark 1 Computer – hardware implementation

• 1970’s: Learning methods for two-layer neural networks

3.2.1. The perceptron: A formal definition

Definition 3.3. We can pose the perceptron as a binary classifier,
in which we refer to our two classes as 1 (positive class) and −1 (negative
class) for simplicity.

• Input values: x = (x1, x2, · · · , xm)T

• Weight vector: w = (w1, w2, · · · , wm)T

• Net input: z = w1x1 + w2x2 + · · ·+ wmxm

• Activation function: φ(z), defined by

φ(z) =

{
1 if z ≥ θ,
−1 otherwise, (3.2)

where θ is a threshold.

For simplicity, we can bring the threshold θ in (3.2) to the left side of the
equation; define a weight-zero as w0 = −θ and reformulate as

φ(z) =

{
1 if z ≥ 0,
−1 otherwise, z = wT x = w0 + w1x1 + · · ·+ wmxm. (3.3)

In the ML literature, the variable w0 is called the bias.
The equationw0+w1x1+ · · ·+wmxm = 0 represents a hyperplane
in Rm, while w0 decides the intercept.
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3.2.2. The perceptron learning rule

The whole idea behind the Rosenblatt’s thresholded perceptron model
is to use a reductionist approach to mimic how a single neuron in the brain
works: it either fires or it doesn’t.

Algorithm 3.4. Rosenblatt’s Initial Perceptron Rule

1. Initialize the weights to 0 or small random numbers.
2. For each training sample x(i),

(a) Compute the output value ŷ(i) (:= φ(wTx(i))).
(b) Update the weights.

The update of the weight vector w can be more formally written as:

w = w + ∆w, ∆w = η (y(i) − ŷ(i)) x(i),

w0 = w0 + ∆w0, ∆w0 = η (y(i) − ŷ(i)),
(3.4)

where η is the learning rate, 0 < η < 1, y(i) is the true class label of the
i-th training sample, and ŷ(i) denotes the predicted class label.

Remark 3.5. A simple thought experiment for the perceptron
learning rule:

• Let the perceptron predict the class label correctly. Then y(i)−ŷ(i) = 0
so that the weights remain unchanged.

• Let the perceptron make a wrong prediction. Then

∆wj = η (y(i) − ŷ(i))x
(i)
j = ±2 η x

(i)
j

so that the weight wj is pushed towards the direction of the positive
or negative target class, respectively.
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Note: It is important to note that convergence of the perceptron
is only guaranteed if the two classes are linearly separable and the
learning rate is sufficiently small. If the two classes can’t be sep-
arated by a linear decision boundary, we can set a maximum number
of passes over the training dataset (epochs) and/or a threshold for the
number of tolerated misclassifications.

Definition 3.6. (Linearly separable dataset). A dataset {(x(i), y(i))}
is linearly separable if there exist ŵ and γ such that

y(i) ŵTx(i) ≥ γ > 0, ∀ i, (3.5)

where γ is called the margin.

Figure 3.2: Linearly separable dataset.

Definition 3.7. (More formal/traditional definition). Let X and
Y be two sets of points in an m-dimensional Euclidean space. Then
X and Y are linearly separable if there exist m + 1 real numbers

w1, w2, · · · , wm, k such that every point x ∈ X satisfies
m∑
j=1

wjxj > k and

every point y ∈ Y satisfies
m∑
j=1

wjyj < k.
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Theorem 3.8. Assume the data set D = {(x(i), y(i))} is linearly separa-
ble with margin γ, i.e.,

∃ ŵ, ‖ŵ‖ = 1, y(i) ŵTx(i) ≥ γ > 0, ∀ i. (3.6)

Suppose that ‖x(i)‖ ≤ R, ∀ i, for some R > 0. Then, the maximum num-
ber of mistakes made by the perceptron algorithm is bounded by R2/γ2.

Proof. Assume the perceptron algorithm makes yet a mistake for (x(`), y(`)).
Then

‖w(`+1)‖2 = ‖w(`) + η (y(`) − ŷ(`))x(`)‖2

= ‖w(`)‖2 + ‖η (y(`) − ŷ(`))x(`)‖2 + 2η (y(`) − ŷ(`))w(`)Tx(`)

≤ ‖w(`)‖2 + ‖η (y(`) − ŷ(`))x(`)‖2 ≤ ‖w(`)‖2 + (2η R)2,

(3.7)

where we have used
(y(`) − ŷ(`))w(`)Tx(`) ≤ 0. (3.8)

(See Exercise 1.) The inequality (3.7) implies

‖w(`)‖2 ≤ ` · (2η R)2. (3.9)

(Here we have used ‖w(0)‖ = 0.) On the other hand,

ŵTw(`+1) = ŵTw(`) + η (y(`) − ŷ(`))ŵTx(`) ≥ ŵTw(`) + 2η γ,

which implies
ŵTw(`) ≥ ` · (2η γ) (3.10)

and therefore
‖w(`)‖2 ≥ `2 · (2η γ)2. (3.11)

It follows from (3.9) and (3.11) that ` ≤ R2/γ2.

Properties of the perceptron algorithm: For a linearly separable
training dataset,

• Convergence: The perceptron will converge.
• Separability: Some weights get the training set perfectly correct.
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Perceptron for Iris Dataset
perceptron.py

1 import numpy as np
2

3 class Perceptron():
4 def __init__(self, xdim, epoch=10, learning_rate=0.01):
5 self.epoch = epoch
6 self.learning_rate = learning_rate
7 self.weights = np.zeros(xdim + 1)
8

9 def activate(self, x):
10 net_input = np.dot(x,self.weights[1:])+self.weights[0]
11 return 1 if (net_input > 0) else 0
12

13 def fit(self, Xtrain, ytrain):
14 for k in range(self.epoch):
15 for x, y in zip(Xtrain, ytrain):
16 yhat = self.activate(x)
17 self.weights[1:] += self.learning_rate*(y-yhat)*x
18 self.weights[0] += self.learning_rate*(y-yhat)
19

20 def predict(self, Xtest):
21 yhat=[]
22 #for x in Xtest: yhat.append(self.activate(x))
23 [yhat.append(self.activate(x)) for x in Xtest]
24 return yhat
25

26 def score(self, Xtest, ytest):
27 count=0;
28 for x, y in zip(Xtest, ytest):
29 if self.activate(x)==y: count+=1
30 return count/len(ytest)
31

32 #-----------------------------------------------------
33 def fit_and_fig(self, Xtrain, ytrain):
34 wgts_all = []
35 for k in range(self.epoch):
36 for x, y in zip(Xtrain, ytrain):
37 yhat = self.activate(x)
38 self.weights[1:] += self.learning_rate*(y-yhat)*x
39 self.weights[0] += self.learning_rate*(y-yhat)
40 if k==0: wgts_all.append(list(self.weights))
41 return np.array(wgts_all)
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Iris_perceptron.py
1 import numpy as np; import matplotlib.pyplot as plt
2 from sklearn.model_selection import train_test_split
3 from sklearn import datasets; #print(dir(datasets))
4 np.set_printoptions(suppress=True)
5 from perceptron import Perceptron
6

7 #-----------------------------------------------------------
8 data_read = datasets.load_iris(); #print(data_read.keys())
9 X = data_read.data;

10 y = data_read.target
11 targets = data_read.target_names; features = data_read.feature_names
12

13 N,d = X.shape; nclass=len(set(y));
14 print('N,d,nclass=',N,d,nclass)
15

16 #---- Take 2 classes in 2D ---------------------------------
17 X2 = X[y<=1]; y2 = y[y<=1];
18 X2 = X2[:,[0,2]]
19

20 #---- Train and Test ---------------------------------------
21 Xtrain, Xtest, ytrain, ytest = train_test_split(X2, y2,
22 random_state=None, train_size=0.7e0)
23 clf = Perceptron(X2.shape[1],epoch=2)
24 #clf.fit(Xtrain, ytrain);
25 wgts_all = clf.fit_and_fig(Xtrain, ytrain);
26 accuracy = clf.score(Xtest, ytest); print('accuracy =', accuracy)
27 #yhat = clf.predict(Xtest);

Figure 3.3: A part of Iris data (left) and the convergence of Perceptron iteration (right).
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3.2.3. Problems with the perceptron algorithm

Inseparable Datasets

• If the data is inseparable (due to noise, for example), there is no
guarantee for convergence or accuracy.

• Averaged perceptron is an algorithmic modification that helps with
the issue.

– Average the weight vectors, across all or a last part of iterations

Note: Frequently the training data is linearly separable! Why?
• For example, when the number of data points is much smaller than

the number of features.

– Perceptron can significantly overfit the data.
– An averaged perceptron may help with this issue, too.

Definition 3.9. Hold-out Method: Hold-out is when you split up your
dataset into a ‘train’ and ‘test’ set. The training set is what the model is
trained on, and the test set is used to see how well that model performs
on unseen data.
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Optimal Separator?

Quesiton. Which of these linear separators is optimal?

Figure 3.4

Example 3.10. Support Vector Machine (Cortes & Vapnik, 1995) chooses
the linear separator with the largest margin.

Figure 3.5

We will consider the SVM in Section 5.3.



52 Chapter 3. Simple Machine Learning Algorithms for Classification

How Multi-class Classification?

Figure 3.6: Classification for three classes.

One-versus-all (one-versus-all) classification

Figure 3.7: Three weights: w−, w+, and
w◦.

Learning: learn 3 classifiers

• − vs {◦,+} ⇒ weights w−

• + vs {◦,−} ⇒ weights w+

• ◦ vs {+,−} ⇒ weights w◦

Prediction: for a new data sample
x,

ŷ = arg max
i∈{−,+,◦}

φ(wT
i x).

OVA (OVR) is readily applicable for classification of general n classes, n ≥
2.
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3.3. Adaline: ADAptive LInear NEuron

3.3.1. The Adaline Algorithm

• (Widrow & Hoff, 1960)
• Weights are updated based on linear activation: e.g.,

φ(wTx) = wTx.

That is, φ is the identity function.
• Adaline algorithm is particularly interesting because it illustrates the

key concept of defining and minimizing continuous cost functions,
which will lay the groundwork for understanding more ad-
vanced machine learning algorithms for classification, such as lo-
gistic regression and support vector machines, as well as regression
models.

• Continuous cost functions allow the ML optimization to incorporate
advanced mathematical techniques such as calculus.

Figure 3.8: Perceptron vs. Adaline
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Algorithm 3.11. Adaline Learning:
Given a dataset {(x(i), y(i)) | i = 1, 2, · · · , N}, learn
the weights w and bias b = w0:

• Activation function: φ(z) = z (i.e., identity activation)
• Cost function: the SSE

J (w, b) =
1

2

N∑
i=1

(
y(i) − φ(z(i))

)2

, (3.12)

where z(i) = wTx(i) + b and φ = I, the identity.

The dominant algorithm for the minimization of the cost function is the the
Gradient Descent Method.

Algorithm 3.12. The Gradient Descent Method uses −∇J for the
search direction (update direction):

w = w + ∆w = w − η∇wJ (w, b),
b = b+ ∆b = b− η∇bJ (w, b),

(3.13)

where η > 0 is the step length (learning rate).

Computation of∇J for Adaline :
The partial derivatives of the cost function J w.r.to wj and b read

∂J (w, b)

∂wj
= −

∑
i

(
y(i) − φ(z(i))

)
x

(i)
j ,

∂J (w, b)

∂b
= −

∑
i

(
y(i) − φ(z(i))

)
.

(3.14)

Thus, with φ = I,

∆w = −η∇wJ (w, b) = η
∑
i

(
y(i) − φ(z(i))

)
x(i),

∆b = −η∇bJ (w, b) = η
∑
i

(
y(i) − φ(z(i))

)
.

(3.15)

You will modify perceptron.py for Adaline; an implementation issue is
considered in Exercise 3.4, p.59.
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Convergence and Optimization Issues

• Depending on choices of certain algorithmic parameters, the gradi-
ent descent method may fail to converge to the the global minimizer.

• Data characteristics often determines both successability and speed
of convergence; data preprocessing operations may improve conver-
gence.

• For large-scale data, the gradient descent method is computationally
expensive; a popular alternative is the stochastic gradient descent
method.

Hyperparameters

Definition 3.13. In ML, a hyperparameter is a parameter whose
value is set before the learning process begins. Thus it is an algorithmic
parameter. Examples are

• The learning rate (η)
• The number of maximum epochs/iterations (n_iter)

Figure 3.9: Well-chosen learning rate vs. a large learning rate

Hyperparameters must be selected to optimize the learning process:

• to converge fast to the global minimizer,
• avoiding overfit.
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3.3.2. Feature Scaling and Stochastic Gradient Descent

Definition 3.14. Feature Scaling Preprocessing:
The gradient descent is one of the many algorithms that benefit from
feature scaling. Here, we will consider a feature scaling method called
standardization, which gives each feature of the data the property of a
standard normal distribution.

• For example, to standardize the j-th feature, we simply need to sub-
tract the sample mean µj from every training sample and divide it by
its standard deviation σj:

x̃
(i)
j =

x
(i)
j − µj
σj

. (3.16)

Then,
{x̃(i)

j | i = 1, 2, · · · , n} ∼ N (0, 1). (3.17)

Figure 3.10: Standardization, which is one of data normalization techniques.

The gradient descent method has a tendency to converge faster
with the standardized data.
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Stochastic gradient descent method

Note: Earlier, we learned how to minimize a cost function with negative
gradients that are calculated from the whole training set; this is why
this approach is sometimes also referred to as batch gradient descent.

• Now imagine we have a very large dataset with millions of data points.
• Then, running with the gradient descent method can be computation-

ally quite expensive, because we need to reevaluate the whole training
dataset each time we take one step towards the global minimum.

• A popular alternative to the batch gradient descent algorithm is the
stochastic gradient descent (SGD).

Algorithm 3.15. The SGD method updates the weights incrementally
for each training sample:

Given a training set D = {(x(i), y(i)) | i = 1, 2, · · · , n}
1. For i = 1, 2, · · · , n

w = w + η
(
y(i) − φ(wTx(i))

)
x(i);

2. If not convergent, shuffle D and goto 1;

(3.18)

• The SGD method updates the weights based on a single training ex-
ample.

• The SGD method typically reaches convergence much faster be-
cause of the more frequent weight updates.

• Since each search direction is calculated based on a single training
example, the error surface is smoother (not noisier) than in the gra-
dient descent method; the SGD method can escape shallow local
minima more readily.

• To obtain accurate results via the SGD method, it is important to
present it with data in a random order, which may prevent cy-
cles with epochs.

• In the SGD method, the learning rate η is often set adaptively, de-
creasing over iteration k. For example, ηk = c1/(k + c2).
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♦Mini-batch learning
Definition 3.16. A compromise between the batch gradient descent and
the SGD is the so-called mini-batch learning. Mini-batch learning can
be understood as applying batch gradient descent to smaller subsets of
the training data – for example, 32 samples at a time.

The advantage over batch gradient descent is that convergence is reached
faster via mini-batches because of the more frequent weight updates.
Furthermore, mini-batch learning allows us to replace the for-loop over the
training samples in stochastic gradient descent by vectorized operations
(vectorization), which can further improve the computational efficiency of
our learning algorithm.
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Exercises for Chapter 3

3.1. Verify (3.8).
Hint : We assumed that the parameter w(`) gave a mistake on x(`). For example, let
w(`)Tx(`) ≥ 0. Then we must have (y(`) − ŷ(`)) < 0. Why?

3.2. Experiment all the examples on pp. 38–51, Python Machine Learning, 3rd Ed.. Through
the examples, you will learn
(a) Gradient descent rule for Adaline,
(b) Feature scaling techniques, and
(c) Stochastic gradient descent rule for Adaline.

To get the Iris dataset, you have to use some lines on as earlier pages from 31.

3.3. Perturb the dataset (X) by a random Gaussian noise Gσ of an observable σ (so as for
Gσ(X) not to be linearly separable) and do the examples in Exercise 3.2 again.

3.4. Modify perceptron.py, p. 48, to get a code for Adaline.

• For a given training dataset, Adaline converges to a unique weights, while Percep-
tron does not.

• Note that the correction terms are accumulated from all data points in each itera-
tion. As a consequence, the learning rate η may be chosen smaller as the number
of points increases.
Implementation: In order to overcome the problem, you may scale the correction
terms by the number of data points.

– Redefine the cost function (3.12):

J (w, b) =
1

2N

N∑
i=1

(
y(i) − φ(z(i))

)2
. (3.19)

where z(i) = wTx(i) + b and φ = I, the identity.
– Then the correction terms in (3.15) become correspondingly

∆w = η
1

N

∑
i

(
y(i) − φ(z(i))

)
x(i),

∆b = η
1

N

∑
i

(
y(i) − φ(z(i))

)
.

(3.20)
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CHAPTER 4
Gradient-based Methods for
Optimization

Optimization is the branch of research-and-development that aims to solve
the problem of finding the elements which maximize or minimize a given
real-valued function, while respecting constraints. Many problems in engi-
neering and machine learning can be cast as optimization problems, which
explains the growing importance of the field. An optimization problem is
the problem of finding the best solution from all feasible solutions.
In this chapter, we will discuss details about

• Gradient descent method,
• Newton’s method, and
• Their variants.
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4.1. Gradient Descent Method

The first method that we will de-
scribe is one of the oldest meth-
ods in optimization: gradient de-
scent method, a.k.a steepest de-
scent method. The method was
suggested by Augustin-Louis Cauchy
in 1847 [47]. He was a French math-
ematician and physicist who made
pioneering contributions to mathe-
matical analysis. Motivated by the
need to solve “large" quadratic prob-
lems (6 variables) that arise in As-
tronomy, he invented the method of
gradient descent. Today, this method
is used to comfortably solve problems
with thousands of variables.

Figure 4.1: Augustin-Louis Cauchy

Problem 4.1. (Optimization Problem). Let Ω ⊂ Rd, d ≥ 1. Given a
real-valued function f : Ω→ R, the general problem of finding the value
that minimizes f is formulated as follows.

min
x∈Ω

f(x). (4.1)

In this context, f is the objective function (sometimes referred to as
loss function or cost function). Ω ⊂ Rd is the domain of the function
(also known as the constraint set).
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Example 4.2. (Rosenbrock function). For example, the Rosenbrock
function in the two-dimensional (2D) space is defined as1

f(x, y) = (1− x)2 + 100 (y − x2)2. (4.2)

Figure 4.2: Plots of the Rosenbrock function f(x, y) = (1− x)2 + 100 (y − x2)2.

Note: The Rosenbrock function is commonly used when evaluating the
performance of an optimization algorithm; because

• its minimizer x = np.array([1.,1.]) is found in curved valley, and
so minimizing the function is non-trivial, and

• the Rosenbrock function is included in the scipy.optimize pack-
age (as rosen), as well as its gradient (rosen_der) and its Hessian
(rosen_hess).

1The Rosenbrock function in 3D is given as f(x, y, z) = [(1− x)2 + 100 (y − x2)2] + [(1− y)2 + 100 (z − y2)2],
which has exactly one minimum at (1, 1, 1). Similarly, one can define the Rosenbrock function in gen-
eral N -dimensional spaces, for N ≥ 4, by adding one more component for each enlarged dimension.

That is, f(x) =

N−1∑
i=1

[
(1− xi)2 + 100(xi+1 − x2i )2

]
, where x = [x1, x2, · · · , xN ] ∈ RN . See Wikipedia

(https://en.wikipedia.org/wiki/Rosenbrock_function) for details.
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Remark 4.3. (Gradient). The gradient ∇f is a vector (a direction to
move) that is

• pointing in the direction of greatest increase of the function, and
• zero (∇f = 0) at local maxima or local minima.

The goal of the gradient descent method is to address directly the process
of minimizing the function f , using the fact that −∇f(x) is the direction of
steepest descent of f at x. Given an initial point x0, we move it to the
direction of −∇f(x0) so as to get a smaller function value. That is,

x1 = x0 − γ∇f(x0)⇒ f(x1) < f(x0).

We repeat this process till reaching at a desirable minimum. Thus the
method is formulated as follows.

Algorithm 4.4. (Gradient descent method). Given an initial point
x0, find iterates xn+1 recursively using

xn+1 = xn − γ∇f(xn), (4.3)

for some γ > 0. The parameter γ is called the step length or the learn-
ing rate.

To understand the basics of gradient descent (GD) method thoroughly, we
start with the algorithm for solving

• unconstrained minimization problems

• defined in the one-dimensional (1D) space.
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4.1.1. The gradient descent method in 1D

Problem 4.5. Consider the minimization problem in 1D:

min
x

f(x), x ∈ S, (4.4)

where S is a closed interval in R. Then its gradient descent method reads

xn+1 = xn − γ f ′(xn). (4.5)

Picking the step length γ : Assume that the step length was chosen to
be independent of n, although one can play with other choices as well. The
question is how to select γ in order to make the best gain of the method. To
turn the right-hand side of (4.5) into a more manageable form, we invoke
Taylor’s Theorem:2

f(x+ t) = f(x) + t f ′(x) +

ˆ x+t

x

(x+ t− s) f ′′(s) ds. (4.6)

Assuming that |f ′′(s)| ≤ L, we have

f(x+ t) ≤ f(x) + t f ′(x) +
t2

2
L.

Now, letting x = xn and t = −γ f ′(xn) reads

f(xn+1) = f(xn − γ f ′(xn))
≤ f(xn)− γ f ′(xn) f ′(xn) +

1

2
L [γ f ′(xn)]

2

= f(xn)− [f ′(xn)]
2
(
γ − L

2
γ2
)
.

(4.7)

The gain (learning) from the method occurs when

γ − L

2
γ2 > 0 ⇒ 0 < γ <

2

L
, (4.8)

and it will be best when γ − L
2γ

2 is maximal. This happens at the point

γ =
1

L
. (4.9)

2 Taylor’s Theorem with integral remainder: Suppose f ∈ Cn+1[a, b] and x0 ∈ [a, b]. Then, for every

x ∈ [a, b], f(x) =

n∑
k=0

f (k)(x0)

k!
(x− x0)k +Rn(x), Rn(x) =

1

n!

ˆ x

x0

(x− s)n f (n+1)(s) ds.
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Thus an effective gradient descent method (4.5) can be written as

xn+1 = xn − γ f ′(xn) = xn −
1

L
f ′(xn) = xn −

1

max |f ′′(x)|
f ′(xn). (4.10)

Furthermore, it follows from (4.7) and (4.9) that

f(xn+1) ≤ f(xn)−
1

2L
[f ′(xn)]

2. (4.11)

Remark 4.6. (Convergence of gradient descent method).
Thus it is obvious that the method defines a sequence of points {xn} along
which {f(xn)} decreases.

• If f is bounded from below and the level sets of f are bounded,
{f(xn)} converges; so does {xn}. That is, there is a point x̂ such
that

lim
n→∞

xn = x̂. (4.12)

• Now, we can rewrite (4.11) as

[f ′(xn)]
2 ≤ 2L [f(xn)− f(xn+1)]. (4.13)

Since f(xn)− f(xn+1)→ 0, also f ′(xn)→ 0.
• When f ′ is continuous, using (4.12) reads

f ′(x̂) = lim
n→∞

f ′(xn) = 0, (4.14)

which implies that the limit x̂ is a critical point.
• The method thus generally finds a critical point but that could still

be a local minimum or a saddle point. Which it is cannot be decided
at this level of analysis.
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4.1.2. The full gradient descent algorithm

We can implement the full gradient descent algorithm as follows. The algo-
rithm has only one free parameter: γ.

Algorithm 4.7. (The Gradient Descent Algorithm).

input: initial guess x0, step size γ > 0;
for n = 0, 1, 2, · · · do

xn+1 = xn − γ∇f(xn);
end for
return xn+1;

(4.15)

Remark 4.8. In theory, the step length γ can be found as in (4.9):

γ =
1

L
, where L = max

x
‖∇2f(x)‖. (4.16)

Here || · || denotes an induced matrix norm and ∇2f(x) is the Hessian
of f defined by

∇2f =



∂2f

∂x1
2

∂2f

∂x1∂x2
· · · ∂2f

∂x1∂xd
∂2f

∂x2∂x1

∂2f

∂x2
2
· · · ∂2f

∂x2∂xd
... ... . . . ...
∂2f

∂xd∂x1

∂2f

∂xd∂x2
· · · ∂2f

∂xd2


∈ Rd×d. (4.17)

• However, in practice, the computation of the Hessian (and L) can be
expensive.

Remark 4.9. Gradient Descent vs. Newton’s Method
The gradient descent method can be viewed as a simplification of the
Newton’s method (Section 4.2 below), replacing the inverse of Hessian,
(∇2f)−1, with a constant γ.
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Convergence of Gradient Descent: Constant γ
Here we examine convergence of gradient descent on three examples: a
well-conditioned quadratic, an poorly-conditioned quadratic, and a non-
convex function, as shown by Dr. Fabian Pedregosa, UC Berkeley.

γ = 0.2

Figure 4.3: On a well-conditioned quadratic function, the gradient descent converges in a
few iterations to the optimum

γ = 0.02

Figure 4.4: On a poorly-conditioned quadratic function, the gradient descent converges and
takes many more iterations to converge than on the above well-conditioned problem. This
is partially because gradient descent requires a much smaller step size on this problem
to converge.

γ = 0.02

Figure 4.5: Gradient descent also converges on a poorly-conditioned non-convex problem.
Convergence is slow in this case.
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The Choice of Step Size: Backtracking Line Search

Note: The convergence of the gradient descent method can be extremely
sensitive to the choice of step size. It often requires to choose the
step size adaptively: the step size would better be chosen small in re-
gions of large variability of the gradient, while in regions with small
variability we would like to take it large.

Strategy 4.10. Backtracking line search procedures allow to select
a step size depending on the current iterate and the gradient. In this
procedure, we select an initial (optimistic) step size γn and evaluate the
following inequality (known as sufficient decrease condition):

f(xn − γn∇f(xn)) ≤ f(xn)−
γn
2
‖∇f(xn)‖2. (4.18)

If this inequality is verified, the current step size is kept. If not, the step
size is divided by 2 (or any number larger than 1) repeatedly until (4.18)
is verified. To get a better understanding, refer to (4.11) on p. 66, with
(4.9).

The gradient descent algorithm with backtracking line search then becomes

Algorithm 4.11. (The Gradient Descent Algorithm, with Back-
tracking Line Search).

input: initial guess x0, step size γ0 > 0;
for n = 0, 1, 2, · · · do

initial step size estimate γn;
while (TRUE) do

if f(xn − γn∇f(xn)) ≤ f(xn)− γn
2 ‖∇f(xn)‖2

break;
else γn = γn/2;

end while
xn+1 = xn − γn∇f(xn);

end for
return xn+1;

(4.19)
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Convergence of Gradient Descent: Backtracking line search
The following examples show the convergence of gradient descent with the
aforementioned backtracking line search strategy for the step size.

Figure 4.6: On a well-conditioned quadratic function, the gradient descent converges in a
few iterations to the optimum. Adding the backtracking line search strategy for the step
size does not change much in this case.

Figure 4.7: In this example we can clearly see the effect of the backtracking line search
strategy: once the algorithm in a region of low curvature, it can take larger step sizes. The
final result is a much improved convergence compared with the fixed step-size equivalent.

Figure 4.8: The backtracking line search also improves convergence on non-convex prob-
lems.

See Exercise 1 on p. 92.
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4.1.3. Surrogate minimization: A unifying principle

Now, we aim to solve an optimization problem as in (4.1):

min
x∈Ω

f(x). (4.20)

Key Idea 4.12. Start at an initial estimate x0 and successively mini-
mize an approximating function Qn(x) [43]:

xn+1 = arg min
x∈Ω
Qn(x). (4.21)

We will call Qn a surrogate function. It is also known as a merit
function. A good surrogate function should be:

• Easy to optimize.
• Flexible enough to approximate a wide range of functions.

Gradient descent method: Approximates the objective function near xn
with a quadratic surrogate of the form

Qn(x) = cn +Gn · (x− xn) +
1

2γ
(x− xn)

T (x− xn), (4.22)

which coincides with f in its value and first derivative, i.e.,

Qn(xn) = f(xn) ⇒ cn = f(xn),
∇Qn(xn) = ∇f(xn) ⇒ Gn = ∇f(xn).

(4.23)

The gradient descent method thus updates its iterates minimizing the fol-
lowing surrogate function:

Qn(x) = f(xn) +∇f(xn) · (x− xn) +
1

2γ
‖x− xn‖2. (4.24)

Differentiating the function and equating to zero reads

xn+1 = arg min
x
Qn(x) = xn − γ∇f(xn). (4.25)
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Multiple Local Minima Problem

Remark 4.13. Optimizing Optimization Algorithms
Although you can choose the step size smartly, there is no guarantee for
your algorithm to converge to the desired solution (the global minimum),
particularly when the objective is not convex.
Here, we consider the so-called Gaussian homotopy continuation
method [53], which may overcome the local minima problem for cer-
tain classes of optimization problems.

• The method begins by trying to find a convex approximation of an op-
timization problem, using a technique called Gaussian smoothing.

• Gaussian smoothing converts the cost function into a related function,
each of whose values is a weighted average of all the surrounding
values.

• This has the effect of smoothing out any abrupt dips or ascents in the
cost function’s graph, as shown in Figure 4.9.

• The weights assigned the surrounding values are determined by a
Gaussian function, or normal distribution.

Figure 4.9: Smooth sailing, through a Gaussian smoothing.

However, there will be many ways to incorporate Gaussian smoothing; a
realization of the method will be challenging, particularly for ML optimiza-
tion. See P.3 (p. 401).
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4.2. Newton’s Method

4.2.1. Derivation

Scheme 4.14. The Newton’s method is an iterative method to solve
the unconstrained optimization problem in (4.1), p. 62, when f is twice
differentiable. In Newton’s method, we approximate the objective with a
quadratic surrogate of the form

Qn(x) = cn +Gn · (x− xn) +
1

2γ
(x− xn)

T Hn (x− xn). (4.26)

Compared with gradient descent, the quadratic term is not fixed to be
the identity but instead incorporates an invertible matrix Hn.

• A reasonable condition to impose on this surrogate function is that at
xn it coincides with f at least in its value and first derivatives, as
in (4.23).

• An extra condition the method imposes is that

Hn = ∇2f(xn), (4.27)

where ∇2f is the Hessian of f defined as in (4.17).
• Thus the Newton’s method updates its iterates minimizing the fol-

lowing surrogate function:

Qn(x) = f(xn) +∇f(xn) · (x− xn) +
1

2γ
(x− xn)

T∇2f(xn) (x− xn).

(4.28)
• We can find the optimum of the function differentiating and equat-

ing to zero. This way we find (assuming the Hessian is invertible)

xn+1 = arg min
x
Qn(x) = xn − γ

[
∇2f(xn)

]−1 ∇f(xn). (4.29)

Note: When γ = 1, Qn(x) in (4.28) is the second-order approximation of
the objective function near xn.
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Remark 4.15. Where applicable, Newton’s method converges much
faster towards a local maximum or minimum than the gradient descent.

• In fact, every local minimum has a neighborhood such that, if we start
within this neighborhood, Newton’s method with step size γ = 1 con-
verges quadratically assuming the Hessian is invertible and Lips-
chitz continuous.

Remark 4.16. The Newton’s method can be seen as to find the critical
points of f , i.e., x̂ such that ∇f(x̂) = 0. Let

xn+1 = xn + ∆x. (4.30)

Then

∇f(xn+1) = ∇f(xn + ∆x) = ∇f(xn) +∇2f(xn) ∆x +O(|∆x|2).

Truncating high-order terms of ∆x and equating the result to zero reads

∆x = −
(
∇2f(xn)

)−1∇f(xn). (4.31)

Implementation of Newton’s Method
Only the difference from the gradient descent algorithm is to compute the
Hessian matrix ∇2f(xn) to be applied to the gradient.

Algorithm 4.17. (Newton’s method).

input: initial guess x0, step size γ > 0;
for n = 0, 1, 2, · · · do

xn+1 = xn − γ
[
∇2f(xn)

]−1∇f(xn);
end for
return xn+1;

(4.32)
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For the three example functions in Section 4.1.2, the Newton’s method per-
forms better as shown in the following.

γ = 1

Figure 4.10: In this case the approximation is exact and it converges in a single iteration.

γ = 1

Figure 4.11: Although badly-conditioned, the cost function is quadratic; it converges in a
single iteration.

γ = 1

Figure 4.12: When the Hessian is close to singular, there might be some numerical insta-
bilities. However, it is better than the result of the gradient descent method in Figure 4.5.
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4.2.2. Hessian and principal curvatures

Claim 4.18. The Hessian (or Hessian matrix) describes the local
curvature of a function. The eigenvalues and eigenvectors of the Hes-
sian have geometric meaning:

• The first principal eigenvector (corresponding to the largest eigen-
value in modulus) is the direction of greatest curvature.

• The last principal eigenvector (corresponding to the smallest eigen-
value in modulus) is the direction of least curvature.

• The corresponding eigenvalues are the respective amounts of these
curvatures.

The eigenvectors of the Hessian are called principal directions, which
are always orthogonal to each other. The eigenvalues of the Hessian
are called principal curvatures and are invariant under rotation and
always real-valued.

Observation 4.19. Let a Hessian matrix H ∈ Rd×d be positive definite
and its eigenvalue-eigenvector pairs be given as {(λj,uj)}, j = 1, 2, · · · , d.

• Then, given a vector v ∈ Rd, it can be expressed as

v =
d∑
j=1

ξjuj,

and therefore

H−1 v =
d∑
j=1

ξj
1

λj
uj, (4.33)

where components of v in leading principal directions of H have
been diminished with larger factors.

• Thus the angle measured from H−1 v to the least principal direc-
tion of H becomes smaller than the angle measured from v.

• It is also true when v is the gradient vector (in fact, the negation of
the gradient vector).
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Note: The above observation can be rephrased mathematically as fol-
lows. Let ud be the least principal direction of H. Then

angle(ud, H
−1v) < angle(ud, v), ∀v, (4.34)

where
angle(a,b) = arccos

( a · b
‖a‖ ‖b‖

)
.

This implies that by setting v = −∇f(xn), the adjusted vector H−1v is
a rotation (and scaling) of the steepest descent vector towards the least
curvature direction.

Figure 4.13: The effect of the Hessian inverse H−1.

Claim 4.20. The net effect of H−1 is to rotate and scale the gradi-
ent vector to face towards the minimizer by a certain degree, which may
make the Newton’s method converge much faster than the gradient de-
scent method.

Example 4.21. One can easily check that at each point (x, y) on the ellip-
soid

z = f(x, y) =
(x− h)2

a2
+

(y − k)2

b2
, (4.35)

the vector −
[
∇2f(x, y)

]−1 ∇f(x, y) is always facing towards the minimizer
(h, k). See Exercise 2.
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4.3. Quasi-Newton Methods

Note: The central issue with Newton’s method is that we need to be able
to compute the inverse Hessian matrix.

• For ML applications, the dimensionality of the problem can be of
the order of thousands or millions; computing the Hessian or its
inverse is often impractical.

• Because of these reasons, Newton’s method is rarely used in prac-
tice to optimize functions corresponding to large problems.

• Luckily, Newton’s method can still work even if the Hessian is re-
placed by a good approximation.

The BFGS Algorithm (1970)

Note: One of the most popular quasi-Newton methods is the BFGS
algorithm, which is named after Charles George Broyden [9], Roger
Fletcher [21], Donald Goldfarb [24], and David Shanno [72].

Key Idea 4.22. As a byproduct of the optimization, we observe many
gradients. Can we use these gradients to iteratively construct an ap-
proximation of the Hessian?

Derivation of BFGS algorithm

• At each iteration of the method, we consider the surrogate function:

Qn(x) = cn +Gn · (x− xn) +
1

2
(x− xn)

T Hn (x− xn), (4.36)

where in this case Hn is an approximation to the Hessian matrix,
which is updated iteratively at each stage.

• A reasonable thing to ask to this surrogate is that its gradient coin-
cides with ∇f at the last two iterates xn+1 and xn:

∇Qn+1(xn+1) = ∇f(xn+1),
∇Qn+1(xn) = ∇f(xn).

(4.37)
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• From the definition of Qn+1:

Qn+1(x) = cn+1 +Gn+1 · (x− xn+1) +
1

2
(x− xn+1)

T Hn+1 (x− xn+1),

we have

∇Qn+1(xn+1)−∇Qn+1(xn) = Gn+1 −∇Qn+1(xn) = −Hn+1(xn − xn+1).

Thus we reach at the following condition on Hn+1:

Hn+1(xn+1 − xn) = ∇f(xn+1)−∇f(xn), (4.38)

which is the secant equation.

• Let
sn = xn+1 − xn and yn = ∇f(xn+1)−∇f(xn).

Then Hn+1sn = yn, which requires to satisfy the curvature condition

yn · sn > 0, (4.39)

with whichHn+1 becomes positive definite. (Pre-multiply sTn to the secant
equation to prove it.)

• In order to maintain the symmetry and positive definiteness ofHn+1,
the update formula can be chosen as3

Hn+1 = Hn + αuuT + βvvT . (4.40)

• Imposing the secant condition Hn+1sn = yn and with (4.40), we get the
update equation of Hn+1:

Hn+1 = Hn +
yny

T
n

yn · sn
− (Hnsn)(Hnsn)

T

sn ·Hnsn
. (4.41)

• LetBn = H−1
n , the inverse ofHn. Then, applying the Sherman-Morrison

formula, we can update Bn+1 = H−1
n+1 as follows.

Bn+1 =
(
I − sny

T
n

yn · sn

)
Bn

(
I − yns

T
n

yn · sn

)
+
sns

T
n

yn · sn
. (4.42)

See Exercise 4.4.
3Rank-one matrices: Let A be an m × n matrix. Then rank(A) = 1 if and only if there exist column

vectors v ∈ Rm and w ∈ Rn such that A = vwT .
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Now, we are ready to summarize the BFGS algorithm.

Algorithm 4.23. (The BFGS algorithm). The n-th step:
1. Obtain the search direction: pn = Bn(−∇f(xn)).
2. Perform line-search to find an acceptable stepsize γn.
3. Set sn = γn pn and update xn+1 = xn + sn.
4. Get yn = ∇f(xn+1)−∇f(xn).
5. Update B = H−1:

Bn+1 =
(
I − sny

T
n

yn · sn

)
Bn

(
I − yns

T
n

yn · sn

)
+
sns

T
n

yn · sn
.

Remark 4.24. The BFGS Algorithm

• The algorithm begins with B0, an estimation of H−1
0 . It is often better

when B0 = H−1
0 .

• The resulting algorithm is a method which combines the low-cost of
gradient descent with the favorable convergence properties of
Newton’s method.
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Examples, with the BFGS algorithm

Figure 4.14: BFGS, on the well-conditioned quadratic objective function.

Figure 4.15: On the poorly-conditioned quadratic problem, the BFGS algorithm
quickly builds a good estimator of the Hessian and is able to converge very fast towards
the optimum. Note that this, just like the Newton method (and unlike gradient descent),
BFGS does not seem to be affected (much) by a bad conditioning of the problem.

Figure 4.16: Even on the ill-conditioned nonconvex problem, the BFGS algorithm also
converges extremely fast, with a convergence that is more similar to Newton’s method than
to gradient descent.
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4.4. The Stochastic Gradient Method

The stochastic gradient method (SGM), introduced by Robbins-Monro
in 1951 [63], is

• one of the most widely-used methods for large-scale optimization, and

• one of the main methods behind the current AI revolution.

Note: The SGM was considered earlier in Section 3.3.1, as a variant
of the gradient descent method for Adaline classification. Here we will
discuss it in details for more general optimization problems.

• The stochastic gradient method (a.k.a. stochastic gradient descent
or SGD) can be used to solve optimization problems in which the ob-
jective function is of the form

f(x) = E[fi(x)],

where the expectation is taken with respect to i.
• The most common case is when i can take a finite number of values,

in which the problem becomes

min
x∈Rp

f(x), f(x) =
1

m

m∑
i=1

fi(x). (4.43)

• The SGM can be motivated as an approximation to gradient descent
in which at each iteration we approximate the gradient as

∇f(xn) ≈ ∇fi(xn). (4.44)
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We can write the full stochastic gradient algorithm as follows. The algo-
rithm has only one free parameter: γ.

Algorithm 4.25. (Stochastic Gradient Descent).

input: initial guess x0, step size sequence γn > 0;
for n = 0, 1, 2, · · · do

Choose i ∈ {1, 2, · · · ,m} uniformly at random;
xn+1 = xn − γn∇fi(xn);

end for
return xn+1;

(4.45)

The SGD can be much more efficient than gradient descent in the
case in which the objective consists of a large sum, because at each
iteration we only need to evaluate a partial gradient and not the full gradi-
ent.

Example 4.26. A least-squares problem can be written in the form accept-
able by SGD since

1

m
‖Ax− b‖2 =

1

m

m∑
i=1

(Aix− bi)
2, (4.46)

where Ai is the i-th row of A.
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Step Size for the SGD

• The choice of step size is one of the most delicate aspects of the SGD.
For the SGD, the backtracking line search is not an option since
it would involve to evaluate the objective function at each iteration,
which destroys the computational advantage of this method.

• Two popular step size strategies exist for the SGD: constant step
size and decreasing step size.
(a) Constant step size: In the constant step size strategy,

γn = γ

for some pre-determined constant γ.
The method converges very fast to neighborhood of a local mini-
mum and then bounces around. The radius of this neighborhood
will depend on the step size γ [44, 51].

(b) Decreasing step size: One can guarantee convergence to a local
minimizer choosing a step size sequence that satisfies

∞∑
n=1

γn =∞ and
∞∑
n=1

γ2
n <∞. (4.47)

The most popular sequence to verify this is

γn =
C

n
, (4.48)

for some constant C. This is often referred to as a decreasing
step-size sequence, although in fact the sequence does not need
to be monotonically decreasing.
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Examples, with SGD

γ = 0.2

Figure 4.17: For the well-conditioned convex problem, stochastic gradient with constant
step size converges quickly to a neighborhood of the optimum, but then bounces around.

Figure 4.18: Stochastic Gradient with decreasing step sizes is quite robust to the choice
of step size. On one hand there is really no good way to set the step size (e.g., no equivalent
of line search for Gradient Descent) but on the other hand it converges for a wide range of
step sizes.
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Convergence of the SGD

Quesiton. Why does the SGD converge, despite its update being a very
rough estimate of the gradient?

To answer this question, we must first understand the unbiasedness prop-
erty of its update.

Proposition 4.27. (Unbiasedness of the SGD update). Let En de-
note the expectation with respect to the choice of random sample (i) at
iteration n. Then since the index i is chosen uniformly at random, we
have

En[∇fin(xn)] =
m∑
i=1

∇fi(xn)P (in = i)

=
1

m

m∑
i=1

∇fi(xn) = ∇f(xn)

(4.49)

This is the crucial property that makes SGD work. For a full proof, see
e.g. [7].
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4.5. The Levenberg–Marquardt Algorithm, for
Nonlinear Least-Squares Problems

The Levenberg-Marquardt algorithm (LMA), a.k.a. the damped
least-squares (DLS) method, is used for the solution of nonlinear
least-squares problems which arise especially in curve fitting.

• In fitting a function ŷ(x; p) of an independent variable x and a pa-
rameter vector p ∈ Rn to a set ofm data points (xi, yi), it is customary
and convenient to minimize the sum of the weighted squares of
the errors (or weighted residuals) between the measured data yi
and the curve-fit function ŷ(xi; p).

f(p) =
m∑
i=1

[yi − ŷ(xi; p)

ηi

]2

= (y − ŷ(p))TW (y − ŷ(p))

(4.50)

where ηi is the measurement error for yi and the weighting matrix
W is defined as

W = diag{1/η2
i } ∈ Rm×m.

• However, more formally, W can be set to the inverse of the mea-
surement error covariance matrix; more generally, the weights can
be set to pursue other curve-fitting goals.

Definition 4.28. The measurement error (also called the observa-
tional error) is the difference between a measured quantity and its true
value. It includes random error and systematic error (caused by a
mis-calibrated instrument that affects all measurements).

Note: The goodness-of-fit measure in (4.50) is called the chi-squared
error criterion because the sum of squares of normally-distributed
variables is distributed as the χ-squared distribution.
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If the function ŷ(x; p) is nonlinear in the model parameters p, then the
minimization of the χ-squared function f with respect to the parame-
ters must be carried out iteratively:

p := p + ∆p. (4.51)

The goal of each iteration is to find the parameter update ∆p that re-
duces f . We will begin with the gradient descent method and the Gauss-
Newton method.

4.5.1. The gradient descent method

Recall: The gradient descent method is a general minimization method
which updates parameter values in the “steepest downhill” direction:
the direction opposite to the gradient of the objective function.

• The gradient descent method converges well for problems with sim-
ple objective functions.

• For problems with thousands of parameters, gradient descent meth-
ods are sometimes the only workable choice.

The gradient of the objective function with respect to the parameters is

∂

∂p
f = 2(y − ŷ(p))TW

∂

∂p
(y − ŷ(p))

= −2(y − ŷ(p))TW
[∂ŷ(p)

∂p

]
= −2(y − ŷ(p))TW J ,

(4.52)

where J = ∂ŷ(p)
∂p ∈ Rm×n is the Jacobian matrix. The parameter update

∆p that moves the parameters in the direction of steepest descent is given
by

∆pgd = γ JTW (y − ŷ(p)), (4.53)

where γ > 0 is the step length.
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4.5.2. The Gauss-Newton method

The Gauss-Newton method is a method for minimizing a sum-of-
squares objective function.

• It assumes that the objective function is approximately quadratic
near the minimizer [6], and utilizes an approximate Hessian.

• For moderately-sized problems, the Gauss-Newton method typically
converges much faster than gradient-descent methods [52].

Algorithm Derivation

• The function evaluated with perturbed model parameters may be locally
approximated through a first-order Taylor series expansion.

ŷ(p + ∆p) ≈ ŷ(p) +
[∂ŷ(p)

∂p

]
∆p = ŷ(p) + J∆p. (4.54)

• Substituting the approximation into (4.50), p. 87, we have

f(p + ∆p) ≈ yTW y − 2yTW ŷ(p) + ŷ(p)TW ŷ(p)

−2(y − ŷ(p))TW J∆p + (J∆p)TW J∆p.
(4.55)

Note: The above approximation for f(p + ∆p) is quadratic in the pa-
rameter perturbation ∆p.

• The parameter update ∆p can be found from ∂f/∂∆p = 0:

∂

∂∆p
f(p + ∆p) ≈ −2(y − ŷ(p))TW J + 2(J∆p)TWJ = 0, (4.56)

and therefore the resulting normal equation for the Gauss-Newton up-
date reads

[JTWJ ] ∆pgn = JTW (y − ŷ(p)). (4.57)

Note: The matrix JTW J ∈ Rn×n is an approximate Hessian of the
objective function. Here, we require m ≥ n; otherwise, the approximate
Hessian must be singular.
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4.5.3. The Levenberg-Marquardt algorithm

The Levenberg-Marquardt algorithm adaptively varies the parameter
updates between the gradient descent and the Gauss-Newton methods:

[JTWJ + λI] ∆plm = JTW (y − ŷ(p)), (4.58)

where λ ≥ 0 is the damping parameter. Small values of λ result in a
Gauss-Newton update and large values of it result in a gradient descent
update.

Remark 4.29. Implementation of the Levenberg-Marquardt Al-
gorithm.

• The damping parameter λ is often initialized to be large so that
first updates are small steps in the steepest-descent direction.

• As the solution improves, λ is decreased; the Levenberg-
Marquardt method approaches the Gauss-Newton method, and the
solution typically accelerates to the local minimum [49, 52].

• If any iteration happens to result in a bad approximation, e.g.,

f(p + ∆plm) > f(p),

then λ is increased.

Acceptance of the Step
There have been many variations of the Levenberg-Marquardt method, par-
ticularly for acceptance criteria.
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Example 4.30. Acceptance Criterion. Recall (4.50) and (4.54):

f(p) =
(
y − ŷ(p)

)T
W
(
y − ŷ(p)

)
, (4.50)

ŷ(p + ∆plm) ≈ ŷ(p) + J∆plm. (4.54)

Then the Sum of Squared Error (SSE), f(p+∆plm), can be approximated
by

f(p + ∆plm) =
(
y − ŷ(p + ∆plm)

)T
W
(
y − ŷ(p + ∆plm)

)
≈
(
y − [ŷ(p) + J∆plm]

)T
W
(
y − [ŷ(p) + J∆plm]

)
.

(4.59)

• At the k-th step, we first compute

ρk(∆plm) =
f(p)− f(p + ∆plm)

f(p)−
(
y − ŷ − J∆plm

)T
W
(
y − ŷ − J∆plm

)
=

f(p)− f(p + ∆plm)

∆pTlm (λk∆plm + JTW (y − ŷ(p))
. [⇐ (4.58)]

(4.60)

• Then the step is accepted when ρk(∆plm) > ε0, for a threshold ε0 > 0.

An example implementation reads

Initialize p0, λ0, and ε0; (e.g. λ0 = 0.01 & ε0 = 0.1)
Compute ∆plm from (4.58);
Evaluate ρk from (4.60);
If ρk > ε0:

pk+1 = pk + ∆plm; λk+1 = λk ·max[1/3, 1− (2ρk)
3)]; νk = 2;

otherwise: λk+1 = λk νk; νk+1 = 2νk;

(4.61)
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Exercises for Chapter 4

4.1. (Gradient descent method). Implement the gradient descent algorithm (4.15) and
the gradient descent algorithm with backtracking line search (4.19).

(a) Compare their performances with the Rosenbrock function in 2D (4.2).
(b) Find an effective strategy for initial step size estimate for (4.19).

4.2. (Net effect of the inverse Hessian matrix). Verify the claim in Example 4.21.

4.3. (Newton’s method). Implement a line search version of the Newton’s method (4.32)
with the Rosenbrock function in 2D.

(a) Recall the results in Exercise 1. With the backtracking line search, is the New-
ton’s method better than the gradient descent method?

(b) Now, we will approximate the Hessian matrix by its diagonal. That is,

Dn =


∂2f

∂x2
0

0
∂2f

∂y2

(xn) ≈ ∇2f(xn)
def
==


∂2f

∂x2
∂2f

∂x∂y

∂2f

∂y∂x

∂2f

∂y2

(xn). (4.62)

How does the Newton’s method perform when the Hessian matrix is replaced by
Dn?

4.4. (BFGS update). Consider Hn+1 and Bn+1 in (4.41) and (4.42), respectively:

Hn+1 = Hn +
yny

T
n

yn · sn
− (Hnsn)(Hnsn)T

sn ·Hnsn
,

Bn+1 =
(
I − sny

T
n

yn · sn

)
Bn

(
I − yns

T
n

yn · sn

)
+
sns

T
n

yn · sn
.

(a) Verify the the secant condition Hn+1sn = yn.
(b) Verify Hn+1Bn+1 = I, assuming that HnBn = I.

Continued on the next page =⇒
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4.5. (Curve fitting; Optional for undergraduates). Consider a set of data consisting
of four points

1 2 3 4
xi 0.0 1.0 2.0 3.0
yi 1.1 2.6 7.2 21.1

Fit the data with a fitting function of the form

ŷ(x,p) = a ebx, where p = [a, b], (4.63)

by minimizing the sum of the square-errors:

(a) Implement the three algorithms introduced in Section 4.5: the gradient descent
method, the Gauss-Newton method, and the Levenberg-Marquardt method.

(b) Ignore the weight vector W , i.e., set W = I.
(c) For each method, set p0 = [a0, b0] = [1.0, 0.8].
(d) Discuss how to choose γ for the gradient descent and λ for the Levenberg-Marquardt.

Hint : The Jacobian for this example must be in R4×2; more precisely,

J =
∂

∂p
ŷ(x,p) =


1 0
eb a eb

e2b 2a e2b

e3b 3a e3b

 ,
because we have ŷ(x,p) = [a, a eb, a e2b, a e3b]T from (4.63) and {xi}.
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CHAPTER 5
Popular Machine Learning Classifiers

In this chapter, we will study a selection of popular and powerful machine
learning algorithms, which are commonly used in academia as well as in
the industry. While learning about the differences between several super-
vised learning algorithms for classification, we will also develop an intuitive
appreciation of their individual strengths and weaknesses.
The topics that we will learn about throughout this chapter are as follows:

• Introduction to the concepts of popular classification algorithms such
as logistic regression, support vector machine (SVM), decision
trees, and k-nearest neighbors.

• Questions to ask when selecting a machine learning algorithm
• Discussions about the strengths and weaknesses of classifiers with lin-

ear and nonlinear decision boundaries

Contents of Chapter 5
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Choosing a classification algorithm

Choosing an appropriate classification algorithm for a particular prob-
lem task requires practice:

• Each algorithm has its own quirks/characteristics and is based
on certain assumptions.

• No Free Lunch theorem: No single classifier works best across all
possible scenarios.

• In practice, it is recommended that you compare the perfor-
mance of at least a handful of different learning algorithms
to select the best model for the particular problem.

Eventually, the performance of a classifier, computational power as well
as predictive power, depends heavily on the underlying data that are
available for learning. The five main steps that are involved in training
a machine learning algorithm can be summarized as follows:

1. Selection of features.
2. Choosing a performance metric.
3. Choosing a classifier and optimization algorithm.
4. Evaluating the performance of the model.
5. Tuning the algorithm.
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5.1. Logistic Sigmoid Function

A logistic sigmoid function (or logistic curve) is a common “S" shape
curve with equation:

f(x) =
L

1 + e−k(x−x0)
, (5.1)

where L denotes the curve’s maximum value, x0 is the sigmoid’s midpoint,
and k is the logistic growth rate or steepness of the curve.
In statistics, the logistic model is a widely used statistical model that
uses a logistic function to model a binary dependent variable; many more
complex extensions exist.

5.1.1. The standard logistic sigmoid function

Setting L = 1, k = 1, and x0 = 0 gives the standard logistic sigmoid
function:

s(x) =
1

1 + e−x
. (5.2)

Figure 5.1: Standard logistic sigmoid function s(x) = 1/(1 + e−x).
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Remark 5.1. (The standard logistic sigmoid function):

s(x) =
1

1 + e−x
=

ex

1 + ex

• The standard logistic function is the solution of the simple first-
order non-linear ordinary differential equation

d

dx
y = y(1− y), y(0) =

1

2
. (5.3)

It can be verified easily as

s′(x) =
ex(1 + ex)− ex · ex

(1 + ex)2
=

ex

(1 + ex)2
= s(x)(1− s(x)). (5.4)

• s′ is even: s′(−x) = s′(x).
• Rotational symmetry about (0, 1/2):

s(x) + s(−x) =
1

1 + e−x
+

1

1 + ex
=

2 + ex + e−x

2 + ex + e−x
≡ 1. (5.5)

•
ˆ
s(x) dx =

ˆ
ex

1 + ex
dx = ln(1 + ex), which is known as the softplus

function in artificial neural networks. It is a smooth approxi-
mation of the the rectifier (an activation function) defined as

f(x) = x+ = max(x, 0). (5.6)

Figure 5.2: The rectifier and it smooth approximation, softplus function ln(1 + ex).
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5.1.2. The logit function

Logistic regression uses the sigmoid function for activation. We first wish to
explain the idea behind logistic regression as a probabilistic model.

• Let p be the probability of a particular event (having class label y = 1).
• Then the odds ratio of the particular event is defined as

p

1− p
.

• We can then define the logit function, which is simply the logarithm
of the odds ratio (log-odds):

logit(p) = ln
p

1− p
. (5.7)

• The logit function takes input values in (0, 1) and transforms them to
values over the entire real line,
which we can use to express a linear relationship between fea-
ture values and the log-odds:

logit(p(y=1|x)) = w0x0 + w1x1 + · · ·+ wmxm = wTx, (5.8)

where p(y = 1|x) is the conditional probability that a particular sample
(given its features x) belongs to class 1.

Remark 5.2. What we are actually interested in is

predicting the probability

that a certain sample belongs to a particular class, which is the inverse
form of the logit function:

p(y = 1|x) = logit−1(wTx). (5.9)

Quesiton. What is the inverse of the logit function?
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Example 5.3. Find the inverse of the logit function

logit(p) = ln
p

1− p
.

Solution.
Ans: logit−1(z) =

1

1 + e−z
, the standard logistic sigmoid function.

Figure 5.3: The standard logistic sigmoid function, again.

Note: The Sigmoid Function as an Activation Function

• When the standard logistic sigmoid function is adopted as an activa-
tion function, the prediction may be considered as the probability
that a certain sample belongs to a particular class.

• This explains why the logistic sigmoid function is one of most popular
activation functions.
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5.2. Classification via Logistic Regression

Logistic regression is a probabilistic model.
• Logistic regression maximizes the likelihood of the parameter

w; in realization, it is similar to Adaline.
• Only the difference is the activation function (the sigmoid function),

as illustrated in the figure:

Figure 5.4: Adaline vs. Logistic regression.

• The prediction (the output of the sigmoid function) is interpreted as
the probability of a particular sample belonging to class 1,

φ(z) = p(y = 1|x; w), (5.10)

given its features x parameterized by the weights w, z = wTx.

Remark 5.4. Logistic Regression can be applied not only for classi-
fication (class labels) but also for class-membership probability.

• For example, logistic regression is used in weather forecasting (to
predict the chance of rain).

• Similarly, it can be used to predict the probability that a patient has
a particular disease given certain symptoms.

– This is why logistic regression enjoys great popularity in the field
of medicine.
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5.2.1. The logistic cost function

Logistic regression incorporates a cost function in which the likeli-
hood is maximized.1

Definition 5.5. The binomial distribution with parameters n and p ∈
[0, 1] is the discrete probability distribution of the number of successes
in a sequence of n independent experiments, each asking a success–
failure question, with probability of success being p.

• The probability of getting exactly k successes in n trials is given by
the probability mass function

f(k, n, p) = P (k;n, p) = nCkp
k(1− p)n−k. (5.11)

Definition 5.6. (Likelihood). Let X1, X2, · · · , Xn have a joint den-
sity function f(X1, X2, · · · , Xn|θ). Given X1 = x1, X2 = x2, · · · , Xn = xn
observed, the function of θ defined by

L(θ) = L(θ|x1, x2, · · · , xn) = f(x1, x2, · · · , xn|θ) (5.12)

is the likelihood function, or simply the likelihood.

Note: The likelihood describes the joint probability of the observed
data, as a function of the parameters of the chosen statistical model.

• The likelihood function indicates which parameter values are more
likely than others, in the sense that they would make the observed
data more probable.

• The maximum likelihood estimator selects the parameter values
(θ = w) that give the observed data the largest possible probability.

1Note that the Adaline minimizes the sum-squared-error (SSE) cost function defined as J (w) =
1

2

∑
i

(
φ(z(i))− y(i)

)2
, where z(i) = wTx(i), using the gradient descent method; see Section 3.3.1.
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Derivation of the Logistic Cost Function

• Assume that the individual samples in our dataset are independent
of one another. Then we can define the likelihood L as

L(w) = P (y|x; w) = Πn
i=1P (y(i)|x(i); w)

= Πn
i=1

(
φ(z(i))

)y(i) (
1− φ(z(i))

)1−y(i)
,

(5.13)

where z(i) = wTx(i).
• In practice, it is easier to maximize the (natural) log of this equation,

which is called the log-likelihood function:

`(w) = ln(L(w)) =
n∑
i=1

[
y(i) ln

(
φ(z(i))

)
+ (1− y(i)) ln

(
1− φ(z(i))

)]
.

(5.14)

Remark 5.7. Log-Likelihood

• Firstly, applying the log function reduces the potential for numerical
underflow, which can occur if the likelihoods are very small.

• Secondly, we can convert the product of factors into a summation of
factors, which makes it easier to obtain the derivative of this function
via the addition trick, as you may remember from calculus.

• We can adopt the negation of the log-likelihood as a cost func-
tion J that can be minimized using gradient descent.

Now, we define the logistic cost function to be minimized:

J (w) =
n∑
i=1

[
−y(i) ln

(
φ(z(i))

)
−(1− y(i)) ln

(
1− φ(z(i))

)]
, (5.15)

where z(i) = wTx(i).

Note: Looking at the equation, we can see that the first term becomes
zero if y(i) = 0, and the second term becomes zero if y(i) = 1.
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Figure 5.5: Plot of J (w), when n = 1 (one single-sample):

J (w) =

{
− ln(φ(z)), if y = 1,
− ln(1− φ(z)), if y = 0.

Observation 5.8. We can see that

• (Solid curve, in blue). If we correctly predict that a sample belongs
to class 1, the cost approaches 0.

• (Dashed curve, in orange). If we correctly predict y = 0, the cost
also approaches 0.

• However, if the prediction is wrong, the cost goes towards infinity.

• Here, the main point is that we penalize wrong predictions with an
increasingly larger cost, which will enforce the model to fit the sample.

• For general n ≥ 1, it would try to fit all the samples in the training
dataset.
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5.2.2. Gradient descent learning for logistic regression

Let’s start by calculating the partial derivative of the logistic cost function
(5.15) with respect to the j–th weight, wj:

∂J (w)

∂wj
=

n∑
i=1

[
−y(i) 1

φ(z(i))
+ (1− y(i))

1

1− φ(z(i))

]
∂φ(z(i))

∂wj
, (5.16)

where, using z(i) = wTx(i) and (5.4),

∂φ(z(i))

∂wj
= φ′(z(i))

∂z(i)

∂wj
= φ(z(i))

(
1− φ(z(i))

)
x

(i)
j .

Thus, if follows from the above and (5.16) that

∂J (w)

∂wj
=

n∑
i=1

[
−y(i)

(
1− φ(z(i))

)
+ (1− y(i))φ(z(i))

]
x

(i)
j

= −
n∑
i=1

[
y(i) − φ(z(i))

]
x

(i)
j

and therefore

∇J (w) = −
n∑
i=1

[
y(i) − φ(z(i))

]
x(i). (5.17)

Algorithm 5.9. Gradient descent learning for Logistic Regression is
formulated as

w := w + ∆w, b := b+ ∆b, (5.18)

where η > 0 is the step length (learning rate) and

∆w = −η∇wJ (w, b) = η
∑
i

[
y(i) − φ(z(i))

]
x(i),

∆b = −η∇bJ (w, b) = η
∑
i

[
y(i) − φ(z(i))

]
.

(5.19)

Note: The above gradient descent rule for Logistic Regression is of the
same form as that of Adaline; see (3.15) on p. 54. Only the difference is
the activation function φ.
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5.2.3. Regularization: bias-variance tradeoff

• Overfitting is a common problem in ML.

– If a model performs well on the training data but does not gener-
alize well to unseen (test) data, then it is most likely the sign of
overfitting.

– Due to a high variance, from randomness (noise) in the training
data.

– Variance measures the consistency (or variability) of the model
prediction for a particular sample instance.

• Similarly, our model can also suffer from underfitting.

– Our model is not complex enough to capture the pattern in
the training data well, and therefore also suffers from low per-
formance on unseen data.

– Due to a high bias.
– Bias is the measure of the systematic error that is not due to

randomness.

Figure 5.6
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Regularization
• One way of finding a good bias-variance tradeoff.
• It is useful to prevent overfitting, also handling

– collinearity (high correlation among features)
– filter-out noise from data
– multiple local minima problem

• The concept behind regularization is to introduce additional in-
formation (bias) to penalize extreme parameter (weight) values.

• The most common form of regularization is so-called L2 regulariza-
tion (sometimes also called L2 shrinkage or weight decay):

λ

2
‖w‖2 =

λ

2

m∑
j=1

w2
j , (5.20)

where λ is the regularization parameter.

The cost function for logistic regression can be regularized by adding a sim-
ple regularization term, which will shrink the weights during model train-
ing: for z(i) = wTx(i),

J (w) =
n∑
i=1

[
−y(i) ln

(
φ(z(i))

)
− (1− y(i)) ln

(
1− φ(z(i))

)]
+
λ

2
‖w‖2. (5.21)

Note: Regularization
• Regularization is another reason why feature scaling such as stan-

dardization is important.
• For regularization to work properly, we need to ensure that all our

features are on comparable scales.
• Then, via the regularization parameter λ, we can control how well we

fit the training data while keeping the weights small. By increasing
the value of λ, we increase the regularization strength.

• See § 6.3 for details on feature scaling.
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5.3. Support Vector Machine

• Support vector machine (SVM), developed in 1995 by Cortes-
Vapnik [12], can be considered as an extension of the Percep-
tron/Adaline, which maximizes the margin.

• The rationale behind having decision boundaries with large margins
is that they tend to have a lower generalization error, whereas
models with small margins are more prone to overfitting.

5.3.1. Linear SVM

Figure 5.7: Linear support vector machine.

To find an optimal hyperplane that maximizes the margin, let’s begin with
considering the positive and negative hyperplanes that are parallel to the
decision boundary:

w0 + wTx+ = 1,
w0 + wTx− = −1.

(5.22)

where w = [w1, w2, · · · , wd]T . If we subtract those two linear equations from
each other, then we have

w · (x+ − x−) = 2

and therefore
w

‖w‖
· (x+ − x−) =

2

‖w‖
. (5.23)
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Note: w = [w1, w2, · · · , wd]T is a normal vector a to the decision bound-
ary (a hyperplane) so that the left side of (5.23) is the distance between
the positive and negative hyperplanes.

aSee Exercise 5.1.

Maximizing the distance (margin) is equivalent to minimizing its reciprocal
1
2‖w‖, or minimizing 1

2‖w‖
2.

Problem 5.10. The linear SVM is formulated as

min
w,w0

1

2
‖w‖2, subject to[
w0 + wTx(i) ≥ 1 if y(i) = 1,

w0 + wTx(i) ≤ −1 if y(i) = −1.

(5.24)

Remark 5.11. The constraints in Problem 5.10 can be written as

y(i)(w0 + wTx(i))− 1 ≥ 0, ∀ i. (5.25)

• The beauty of linear SVM is that if the data is linearly separable,
there is a unique global minimum value.

• An ideal SVM analysis should produce a hyperplane that completely
separates the vectors (cases) into two non-overlapping classes.

• However, perfect separation may not be possible, or it may result
in a model with so many cases that the model does not classify cor-
rectly.

Note: Constrained optimization problems such as (5.24) are typically
solved using the method of Lagrange multipliers.
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5.3.2. The method of Lagrange multipliers

In this subsection, we briefly consider Lagrange’s method to solve the
problem of the form

min /max
x

f(x) subj.to g(x) = c. (5.26)

Figure 5.8: The method of Lagrange multipliers in R2: ∇f //∇g, at optimum.

Strategy 5.12. (Method of Lagrange multipliers). For the maxi-
mum and minimum values of f(x) subject to g(x) = c,
(a) Find x and λ such that

∇f(x) = λ∇g(x) and g(x) = c.

(b) Evaluate f at all these points, to find the maximum and minimum.

Self-study 5.13. Use the method of Lagrange multipliers to find the ex-
treme values of f(x, y) = x2 + 2y2 on the circle x2 + y2 = 1.

Hint : ∇f = λ∇g =⇒
[
2x
4y

]
= λ

[
2x
2y

]
. Therefore,


2x = 2xλ 1
4y = 2y λ 2
x2 + y2 = 1 3

From 1 , x = 0 or λ = 1.

Ans: min: f(±1, 0) = 1; max: f(0,±1) = 2
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Lagrange multipliers – Dual variables

Figure 5.9: minx x
2 subj.to x ≥ 1.

For simplicity, consider

minx x
2 subj.to x ≥ 1. (5.27)

Rewriting the constraint

x− 1 ≥ 0,

introduce Lagrangian (objective):
L(x, α) = x2 − α (x− 1). (5.28)

Now, consider

minx maxα L(x, α) subj.to α ≥ 0.

(5.29)

Claim 5.14. The minimization problem (5.27) is equivalent to the min-
max problem (5.29).

Proof. 1 Let x > 1. ⇒ maxα≥0{−α(x− 1)} = 0 and α∗ = 0. Thus,

L(x, α) = x2. (original objective)

2 Let x = 1. ⇒ maxα≥0{−α(x− 1)} = 0 and α is arbitrary. Thus, again,

L(x, α) = x2. (original objective)

3 Let x < 1. ⇒ maxα≥0{−α(x − 1)} = ∞. However, minx won’t make this
happen! (minx is fighting maxα) That is, when x < 1, the objective L(x, α)

becomes huge as α grows; then, minx will push x↗ 1 or increase it to become
x ≥ 1. In other words, minx forces maxα to behave, so constraints will
be satisfied.

Now, the goal is to solve (5.29). In the following, we will define the dual
problem of (5.29), which is equivalent to the primal problem.
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Recall: The min-max problem in (5.29), which is equivalent to the (orig-
inal) primal problem:

min
x

max
α
L(x, α) subj.to α ≥ 0, (Primal) (5.30)

where
L(x, α) = x2 − α (x− 1).

Definition 5.15. The dual problem of (5.30) is formulated by swap-
ping minx and maxα as follows:

max
α

min
x
L(x, α) subj.to α ≥ 0, (Dual) (5.31)

The term minxL(x, α) is called the Lagrange dual function and the
Lagrange multiplier α is also called the dual variable.

How to solve it. For the Lagrange dual function minxL(x, α), the minimum
occurs where the gradient is equal to zero.

d

dx
L(x, α) = 2x− α = 0 ⇒ x =

α

2
. (5.32)

Plugging this to L(x, α), we have

L(x, α) =
(α

2

)2

− α
(α

2
− 1
)

= α− α2

4
.

We can rewrite the dual problem (5.31) as

max
α≥0

[
α− α2

4

]
. (Dual) (5.33)

⇒ the maximum is 1 when α∗ = 2 (for the dual problem).
Plugging α = α∗ into (5.32) to get x∗ = 1. Or, using the Lagrangian objective,
we have

L(x, α) = x2 − 2(x− 1) = (x− 1)2 + 1. (5.34)

⇒ the minimum is 1 when x∗ = 1 (for the primal problem).
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5.3.3. Karush-Kuhn-Tucker conditions and Complemen-
tary slackness

Allowing inequality constraints, the KKT approach generalizes the method
of Lagrange multipliers which allows only equality constraints.

Recall: The linear SVM formulated in Problem 5.10:

min
w,w0

1

2
‖w‖2, subj.to

y(i)(w0 + wTx(i))− 1 ≥ 0, ∀ i = 1, 2, · · · , N.
(Primal) (5.35)

To solve the problem, let’s begin with its Lagrangian:

L([w, w0],α) =
1

2
‖w‖2 −

N∑
i=1

αi[y
(i)(w0 + wTx(i))− 1], (5.36)

where α = [α1, α2, · · · , αN ]T , the dual variable (Lagrange multipliers).

• The primal problem of the SVM is formulated equivalently as

min
w,w0

max
α
L([w, w0],α) subj.to α ≥ 0, (Primal) (5.37)

while its dual problem reads

max
α

min
w,w0

L([w, w0],α) subj.to α ≥ 0. (Dual) (5.38)

• Solve the “min” problem of (5.38) first, using calculus techniques.

Definition 5.16. Karush-Kuhn-Tucker (KKT) conditions
In optimization, the KKT conditions [36, 42] are first derivative tests
for a solution in nonlinear programming to be optimized. It is also called
the first-order necessary conditions.
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Writing the KKT conditions, starting with Lagrangian stationarity, where
we need to find the first-order derivatives w.r.t. w and w0:

∇wL([w, w0],α) = w −
N∑
i=1

αiy
(i)x(i) = 0 ⇒ w =

N∑
i=1

αiy
(i)x(i),

∂

∂w0
L([w, w0],α) = −

N∑
i=1

αiy
(i) = 0 ⇒

N∑
i=1

αiy
(i) = 0,

αi ≥ 0, (dual feasibility)

αi [y
(i)(w0 + wTx(i))− 1] = 0, (complementary slackness)

y(i)(w0 + wTx(i))− 1 ≥ 0. (primal feasibility)
(5.39)

Complementary slackness will be discussed in detail on page 117.

Using the KKT conditions (5.39), we can simplify the Lagrangian:

L([w, w0],α) =
1

2
‖w‖2 −

N∑
i=1

αiy
(i)w0 −

N∑
i=1

αiy
(i)wTx(i) +

N∑
i=1

αi

=
1

2
‖w‖2 − 0−wTw +

N∑
i=1

αi

= −1

2
‖w‖2 +

N∑
i=1

αi.

(5.40)

Again using the first KKT condition, we can rewrite the first term.

−1

2
‖w‖2 = −1

2

( N∑
i=1

αiy
(i)x(i)

)
·
( N∑
j=1

αjy
(j)x(j)

)
= −1

2

N∑
i=1

N∑
j=1

αiαjy
(i)y(j) x(i) · x(j).

(5.41)

Plugging (5.41) into the (simplified) Lagrangian (5.40), we see that the La-
grangian now depends on α only.
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Problem 5.17. The dual problem of (5.35) is formulated as

max
α

[ N∑
i=1

αi −
1

2

N∑
i=1

N∑
j=1

αiαjy
(i)y(j) x(i) · x(j)

]
, subj.to[

αi ≥ 0, ∀ i,∑N
i=1 αiy

(i) = 0.

(5.42)

Remark 5.18. (Solving the dual problem).

• We can solve the dual problem (5.42), by using either a generic
quadratic programming solver or the Sequential Minimal Opti-
mization (SMO), which we will discuss in § 5.3.6, p. 126.

• For now, assume that we solved it to have α∗ = [α∗1, · · · , α∗n]T .
• Then we can plug it into the first KKT condition to get

w∗ =
N∑
i=1

α∗i y
(i)x(i). (5.43)

• We still need to get w∗0.

Remark 5.19. The objective function L(α) in (5.42) is a linear com-
bination of the dot products of data samples {x(i) · x(j)}, which will be
used when we generalize the SVM for nonlinear decision boundaries;
see § 5.3.5.



116 Chapter 5. Popular Machine Learning Classifiers

Support vectors
Assume momentarily that we have w∗0. Consider the complementary slack-
ness KKT condition along with the primal and dual feasibility conditions:

α∗i [y(i)(w∗0 + w∗Tx(i))− 1] = 0

⇒


α∗i > 0⇒ y(i)(w∗0 + w∗Tx(i)) = 1
α∗i < 0 (can’t happen)

y(i)(w∗0 + wTx(i))− 1 > 0⇒ α∗i = 0

y(i)(w∗0 + wTx(i))− 1 < 0 (can’t happen).

(5.44)

We define the optimal (scaled) scoring function:

f ∗(x(i)) = w∗0 + w∗Tx(i). (5.45)

Then {
α∗i > 0 ⇒ y(i)f ∗(x(i)) = scaled margin = 1,

y(i)f ∗(x(i)) > 1 ⇒ α∗i = 0.
(5.46)

Definition 5.20. The examples in the first category, for which the
scaled margin is 1 and the constraints are active, are called support
vectors. They are the closest to the decision boundary.

Finding the optimal value of w0

To get w∗0, use the primal feasibility condition:

y(i)(w∗0 + w∗Tx(i)) ≥ 1 and min
i
y(i)(w∗0 + w∗Tx(i)) = 1.

If you take a positive support vector (y(i) = 1), then

w∗0 = 1− min
i:y(i)=1

w∗Tx(i). (5.47)

Here, you’d better refer to Summary of SVM in Algorithm 5.27, p. 121.
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Complementary Slackness

Definition 5.21. Types of Constraints
• A binding constraint is one where some optimal solution is on the

hyperplane for the constraint.
• A non-binding constraint is one where no optimal solution is on

the line for the constraint.
• A redundant constraint is one whose removal would not change

the feasible region.

Theorem 5.22. Complementary Slackness
Assume the primal problem (P) has a solution w∗ and the dual problem
(D) has a solution α∗.

(a) If w∗j > 0, then the j-th constraint in (D) is binding.
(b) If α∗i > 0, then the i-th constraint in (P) is binding.

The term complementary slackness refers to a relationship between the
slackness in a primal constraint and the slackness (positivity) of the associ-
ated dual variable.

• Notice that the number of variables in the dual is the same as the num-
ber of constraints in the primal, and the number of constraints in the
dual is equal to the number of variables in the primal.

• This correspondence suggests that variables in one problem are com-
plementary to constraints in the other.

• We say that a constraint has slack if it is not binding.

Example 5.23. The contrapositive statement of Theorem 5.22 (b):

If the i-th constraint in (P) is not binding, then α∗i = 0.
or, equivalently,

If the i-th constraint in (P) has slack, then α∗i = 0.

See (5.46).
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5.3.4. The inseparable case: Soft-margin classification

When the dataset is inseparable, there would be no separating hyperplane;
there is no feasible solution to the linear SVM.

Figure 5.10: Slack variable: ξi.

Let’s fix our SVM so it can accommodate the inseparable case.

• The new formulation involves the slack variable; it allows some
instances to fall off the margin, but penalize them.

• So we are allowed to make mistakes now, but we pay a price.

Remark 5.24. The motivation for introducing the slack variable ξ is:

1. The linear constraints need to be relaxed for inseparable data.
2. Allow the optimization to converge

• under appropriate cost penalization,
• in the presence of misclassifications.

Such strategy of the SVM is called the soft-margin classification.
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Recall: The linear SVM formulated in Problem 5.10:

min
w,w0

1

2
‖w‖2, subj.to

y(i)(w0 + wTx(i))− 1 ≥ 0, ∀ i.
(Primal) (5.48)

Let’s change it to this new primal problem:

Problem 5.25. (Soft-margin classification). The SVM with the slack
variable is formulated as

min
w,w0,ξ

1

2
‖w‖2 + C

N∑
i=1

ξi subj.to[
y(i)(w0 + wTx(i)) ≥ 1− ξi,
ξi ≥ 0.

(Primal) (5.49)

Via the variable C, we can then con-
trol the penalty for misclassification.
Large values of C correspond to
large error penalties, whereas we
are less strict about misclassification
errors if we choose smaller values
for C. We can then use the C pa-
rameter to control the width of the
margin and therefore tune the bias-

variance trade-off, as illustrated
in the following figure:

Figure 5.11: Bias-variance trade-off, via C.

The constraints allow some slack of size ξi, but we pay a price for it in the
objective. That is,

if y(i)f(x(i)) ≥ 1, then ξi = 0 and penalty is 0. Otherwise, y(i)f(x(i)) = 1−ξi
and we pay price ξi > 0

.
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The Dual for soft-margin classification
Form the Lagrangian of (5.49):

L([w, w0], ξ,α, r) =
1

2
‖w‖2 + C

N∑
i=1

ξi −
N∑
i=1

riξi

−
N∑
i=1

αi[y
(i)(w0 + wTx(i))− 1 + ξi],

(5.50)

where αi’s and ri’s are Lagrange multipliers (constrained to be ≥ 0).

After some work, the dual turns out to be

Problem 5.26. The dual problem of (5.48) is formulated as

max
α

[ N∑
i=1

αi −
1

2

N∑
i=1

N∑
j=1

αiαjy
(i)y(j) x(i) · x(j)

]
, subj.to[

0 ≤ αi ≤ C, ∀ i,∑N
i=1 αiy

(i) = 0.

(5.51)

So the only difference from the original problem’s dual, (5.42), is that
αi ≥ 0 is changed to 0 ≤ αi ≤ C . Neat!

See § 5.3.6, p. 126, for the solution of (5.51), using the SMO algorithm.
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Algebraic expression for the dual problem :
Let

Z =


y(1)x(1)

y(2)x(2)

...
y(N)x(N)

 ∈ RN×m, 1 =


1
1
...
1

 ∈ RN .

Then dual problem (5.51) can be written as

max
0≤α≤C

[
α · 1− 1

2
αTZZTα

]
subj.to α · y = 0. (5.52)

Note:
• G = ZZT ∈ RN×N is called the Gram matrix. That is,

Gij = y(i)y(j) x(i) · x(j). (5.53)

• The optimization problem (5.52) is a typical quadratic program-
ming (QP) problem.

• It admits a unique solution.

Algorithm 5.27. (Summary of SVM)
• Training

– Compute Gram matrix: Gij = y(i)y(j) x(i) · x(j)

– Solve QP to get α∗ (Chapter 11, or § 5.3.6)

– Compute the weights: w∗ =
∑N

i=1 α
∗
i y

(i)x(i) (5.43)

– Compute the intercept: w∗0 = 1−mini:y(i)=1 w∗Tx(i) (5.47)

• Classification (for a new sample x)
– Compute ki = x · x(i) for support vectors x(i)

– Compute f(x) = w∗0 +
∑

i α
∗
i y

(i)ki (:= w∗0 + w∗Tx) (5.24)

– Test sign(f(x)).
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5.3.5. Nonlinear SVM and kernel trick

Note: A reason why the SVM is popular is that

• It can be easily kernelized to solve nonlinear classification prob-
lems incorporating linearly inseparable data.

The basic idea behind kernel methods is

• To transform the data to a higher-dimensional space where the
data becomes linearly separable.

For example, for the inseparable data set in Figure 5.12, we define

φ(x1, x2) = (x1, x2, x
2
1 + x2

2).

Figure 5.12: Inseparable dataset, feature expansion, and kernel SVM.

To solve a nonlinear problem using an SVM, we would

(a) 1 Transform the training data to a higher-dimensional
space, via a mapping φ, and 2 train a linear SVM model.

(b) Then, for new unseen data, classify using 1 the same map-
ping φ to transform and 2 the same linear SVM model.
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Kernel Trick
Recall: the dual problem to the soft-margin SVM given in (5.51):

max
α

[ N∑
i=1

αi −
1

2

N∑
i=1

N∑
j=1

αiαjy
(i)y(j) x(i) · x(j)

]
, subj.to[

0 ≤ αi ≤ C, ∀ i,∑N
i=1 αiy

(i) = 0.

(5.54)

Observation 5.28. The objective is a linear combination of dot prod-
ucts {x(i) · x(j)}. Thus,

• If the kernel SVM transforms the data samples through φ,
the dot product x(i) · x(j) must be replaced by φ(x(i)) · φ(x(j)).

• The dot product φ(x(i)) · φ(x(j)) is performed in a higher-dimension,
which may be costly.

Definition 5.29. In order to save the expensive step of explicit
computation of this dot product (in a higher-dimension), we define a
so-called kernel function:

K(x(i),x(j)) ≈ φ(x(i)) · φ(x(j)). (5.55)

One of the most widely used kernels is the Radial Basis Function
(RBF) kernel or simply called the Gaussian kernel:

K(x(i),x(j)) = exp
(
− ‖x

(i) − x(j)‖2

2σ2

)
= exp

(
−γ‖x(i) − x(j)‖2

)
, (5.56)

where γ = 1/(2σ2). Occasionally, the parameter γ plays an important
role in controlling overfitting.

Note: Roughly speaking, the term kernel can be interpreted as a
similarity function between a pair of samples.

This is the big picture behind the kernel trick.
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Kernel SVM: It can also be summarized as in Algorithm 5.27, p. 121;
only the difference is that dot products x(i) ·x(j) and x ·x(i) are replaced
by K(x(i),x(j)) and K(x,x(i)), respectively.

Common Kernels

• Polynomial of degree exactly k (e.g. k = 2):

K(x(i),x(j)) = (x(i) · x(j))k (5.57)

• Polynomial of degree up to k: for some c > 0,

K(x(i),x(j)) = (c+ x(i) · x(j))k (5.58)

• Sigmoid:
K(x(i),x(j)) = tanh(ax(i) · x(j) + b) (5.59)

• Gaussian RBF:

K(x(i),x(j)) = exp
(
− ‖x

(i) − x(j)‖2

2σ2

)
(5.60)

• And many others: Fisher kernel, graph kernel, string kernel, ...
very active area of research!

Example 5.30. (Quadratic kernels). Let K(x, z) = (c+ x · z)2:

(c+ x · z)2 =
(
c+

m∑
j=1

xjzj

)(
c+

m∑
`=1

x`z`

)
= c2 + 2c

m∑
j=1

xjzj +
m∑
j=1

m∑
`=1

xjzjx`z`

= c2 +
m∑
j=1

(
√

2cxj)(
√

2czj) +
m∑

j,`=1

(xjx`)(zjz`).

(5.61)

Define a feature expansion as

φ([x1, · · · , xm]) = [x2
1, x1x2, · · · , xmxm−1, x

2
m,
√

2cx1, · · · ,
√

2cxm, c], (5.62)

which is in Rm2+m+1. Then φ(x) · φ(z) = K(x, z) = (c+ x · z)2.
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Note: Kernel Functions

• Kernels may not be expressed as φ(x) · φ(z).
• The mapping φ may transform x to infinite dimensions.

Summary 5.31. Linear Classifiers

• They are a simple and popular way to learn a classifier
• They suffer from inefficient use of data, overfitting, or lack of expres-

siveness

• SVM

– It can fix these problems using 1 maximum margins and
2 feature expansion (mapping to a higher-dimension).

– In order to make feature expansion computationally feasible,
we need the 3 kernel trick, which avoids writing out high-
dimensional feature vectors explicitly.

Remark 5.32. Kernel Trick

• There is no explicit feature expansion.
• The kernel K(x, z) must be formulated meaningfully.

• The kernel function K must be considered as
a nonlinear measure for the data to become separable.
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5.3.6. Solving the dual problem with SMO

SMO (Sequential Minimal Optimization) is

• a type of coordinate ascent algorithm,

• but adapted to the SVM so that the solution always stays within the
feasible region.

Recall: The dual problem of the soft-margin SVM, formulated in
(5.51):

max
α

[ N∑
i=1

αi −
1

2

N∑
i=1

N∑
j=1

αiαjy
(i)y(j) x(i) · x(j)

]
, subj.to[

0 ≤ αi ≤ C, ∀ i,∑N
i=1 αiy

(i) = 0.

(5.63)

Quesiton. Start with (5.63). Let’s say you want to hold α2, · · · , αN fixed
and take a coordinate step in the first direction. That is, change α1 to
maximize the objective in (5.63). Can we make any progress? Can we
get a better feasible solution by doing this?

Turns out, no. Let’s see why. Look at the constraint in (5.63),
∑N

i=1 αiy
(i) = 0.

This means

α1y
(1) = −

N∑
i=2

αiy
(i) ⇒ α1 = −y(1)

N∑
i=2

αiy
(i).

So, since α2, · · · , αN are fixed, α1 is also fixed.
Thus, if we want to update any of the αi’s, we need to update at least
2 of them simultaneously to keep the solution feasible (i.e., to keep the
constraints satisfied).
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• Start with a feasible vector α.
• Let’s update α1 and α2, holding α3, · · · , αN fixed.

Question: What values of α1 and α2 are we allowed to choose?

• The constraint is: α1y
(1) + α2y

(2) = −
N∑
i=3

αiy
(i) =: ξ.

Figure 5.13

We are only allowed to choose α1 and α2 on the line.
• When we pick α2, we can get α1 from

α1 =
1

y(1)
(ξ − α2y

(2)) = y(1) (ξ − α2y
(2)). (5.64)

• Optimization for α2: The other constraints in (5.63) says 0 ≤
α1, α2 ≤ C. Thus, α2 needs to be within [L,H] on the figure (∵ α1 ∈
[0, C]). To do the coordinate ascent step, we will optimize the objective
over α2, keeping it within [L,H]. Using (5.64), (5.63) becomes

max
α2∈[L,H]

[
y(1) (ξ−α2y

(2))+α2+
N∑
i=3

αi−
1

2

N∑
i=1

N∑
j=1

αiαjy
(i)y(j) x(i)·x(j)

]
, (5.65)

of which the objective is quadratic in α2. This means we can just set
its derivative to 0 to optimize it =⇒ get α2.

• After updating α1 using (5.64), move to the next iteration of SMO.

Note: There are heuristics to choose the order of αi’s chosen to update.
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5.4. Decision Trees

Decision tree classifiers are attractive models if we care about
interpretability. As the name decision tree suggests, we can think of this
model as breaking down our data by making decision based on asking a
series of questions. Decision tree was invented by a British researcher,
William Belson, in 1959 [1].

Note: Decision trees are commonly used in operations research,
specifically in decision analysis, to help identify a strategy most likely
to reach a goal, but are also a popular tool in ML.

Figure 5.14: A decision tree to decide upon an activity on a particular day.

Key Idea 5.33. (Decision tree).

• Start at the tree root
• Split the data so as to result in the largest Information Gain (IG)
• Repeat the splitting at each child node until the leaves are pure

(This means the samples at each node all belong to the same class)

• In practice , this can result in a very deep tree with many nodes,
which can easily lead to overfitting
(We typically set a limit for the maximal depth of the tree)
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5.4.1. Decision tree objective

• Decision tree also needs to incorporate an objective function, to be
optimized via the tree learning algorithm.

• Here, the objective function is to maximize the information gain at
each split, which we define as follows:

IG(DP , f) = I(DP )−
m∑
j=1

Nj

NP
I(Dj), (5.66)

where
f : the feature to perform the split
DP : the parent dataset
Dj : the dataset of the j-th child node
I : the impurity measure
NP : the total number of samples at the parent note
Nj : the number of samples in the j-th child node

• The information gain is simply the difference between the impurity
of the parent node and the average of the child node impurities

– The lower the impurity of the child nodes, the larger the informa-
tion gain.

• However, for simplicity and to reduce the combinatorial search space,
most libraries implement binary decision trees, where each parent
node is split into two child nodes, DL and DR:

IG(DP , f) = I(DP )− NL

NP
I(DL)− NR

NP
I(DR). (5.67)
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Impurity measure?
Commonly used in binary decision trees:
• Entropy

IH(t) = −
c∑
i=1

p(i|t) log2 p(i|t) (5.68)

• Gini impurity

IG(t) =
c∑
i=1

p(i|t)
(
1− p(i|t)

)
= 1−

c∑
i=1

p(i|t)2 (5.69)

• Classification error
IE(t) = 1−max

i
{p(i|t)} (5.70)

where p(i|t) denotes the proportion of the samples that belong to class
i for a particular node t.

Mind simulation: When c = 2

• Entropy: It is maximal, if we have a uniform class distribution;
it is 0, if all samples at the node t belong to the same class.

IH(t) = 0, if p(i = 1|t) = 1 or p(i = 2|t) = 0

IH(t) = 1, if p(i = 1|t) = p(i = 2|t) = 0.5

⇒ We can say that the entropy criterion attempts to maximize the mu-
tual information in the tree.

• Gini impurity: Intuitively, it can be understood as a criterion to min-
imize the probability of misclassification. The Gini impurity is maxi-
mal, if the classes are perfectly mixed.

IG(t) = 1−
∑c

i=1 0.52 = 0.5

⇒ In practice, both Gini impurity and entropy yield very similar results.
• Classification error: It is less sensitive to changes in the class prob-

abilities of the nodes.
⇒ The classification error is a useful criterion for pruning, but not rec-

ommended for growing a decision tree.
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Figure 5.15: A decision tree result with Gini impurity measure, for three classes with
two features (petal length, petal width). Page 99, Python Machine Learning, 3rd Ed..

Quesiton. How can the decision tree find questions such as
petal width <= 0.75 petal length <= 4.75 ... ?
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Algorithm 5.34. (Decision tree split rule).

1. For each and every feature in DP , f
(i)
j :

◦ make a question to split Dp into DL and DR

(e.g. f (k)
j ≤ f

(i)
j , for which k’s?)

◦ compute the impurities: I(DL) and I(DR)

◦ compute the information gain:

IG(DP , f
(i)
j ) = I(DP )− NL

NP
I(DL)− NR

NP
I(DR).

2. Let
f (p)
q = arg max

i,j
IG(DP , f

(i)
j ). (5.71)

3. Then, the best split question (at the current node) is

f (k)
q ≤ f (p)

q , for which k’s ? (5.72)

The maximum in (5.71) often happens when one of the child impurities
is zero or very small.
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5.4.2. Random forests: Multiple decision trees

Random forests (or random decision forests) are an ensemble learn-
ing method for classification, regression, and other tasks that operates by
constructing multiple decision trees at training time and outputting the
class that is the mode of the predicted classes (classification) or mean
prediction (regression) of the individual trees [32].

• Random forests have gained huge popularity in applications of ML
during the last decade due to their good classification performance,
scalability, and ease of use.

• The idea behind a random forest is to average multiple (deep) de-
cision trees that individually suffer from high variance, to build a
more robust model that has a better generalization performance and
is less susceptible to overfitting.

Algorithm 5.35. Random Forest.
The algorithm can be summarized in four simple steps:

1. Draw a random bootstrap sample of size n
(Randomly choose n samples from the training set with replace-
ment).

2. Grow a decision tree from the bootstrap sample.
3. Repeat Steps 1-2 k times.
4. Aggregate the prediction by each tree to assign the class label by

majority vote.

Note: In Step 2, when we are training the individual decision tree:

• instead of evaluating all features to determine the best split at each
node,

• we can consider a random (without replacement) subset of those (of
size d ).
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Remark 5.36. A big advantage of random forests is that

we don’t have to worry so much about
choosing good hyperparameter values.

• A smaller n increases randomness of the random forest; the bigger n
is, the larger the degree of overfitting becomes.
Default n = size(the original training set), in most implementations

• Default d =
√
M , where M is the number of features in the training

set
• The only parameter that we really need to care about in practice is

the number of trees k (Step 3).

Typically, the larger the number of trees, the better the performance
of the random forest classifier at the expense of an increased compu-
tational cost.
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5.5. k-Nearest Neighbors

The k-nearest neighbor (k-NN) classifier is a typical example of a
lazy learner.

• It is called lazy not because of its apparent simplicity, but because it
doesn’t learn a discriminative function from the training data,
but memorizes the training dataset instead.

• Analysis of the training data is delayed until a query is made to
the system.

Algorithm 5.37. (k-NN algorithm). The algorithm itself is fairly
straightforward and can be summarized by the following steps:

1. Choose the number k and a distance metric.
2. For the new sample, find the k-nearest neighbors.
3. Assign the class label by majority vote.

Figure 5.16: Illustration for how a new data point (?) is assigned the triangle class label,
based on majority voting, when k = 5.
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k-NN: pros and cons
• Since it is memory-based, the classifier immediately adapts as we

collect new training data.
• The computational complexity for classifying new samples grows

linearly with the number of samples in the training dataset in the
worst-case scenario.a

• Furthermore, we can’t discard training samples since no training
step is involved. Thus, storage space can become a challenge if we
are working with large datasets.

aJ. H. Friedman, J. L. Bentley, and R.A. Finkel (1977). An Algorithm for Finding Best Matches in
Logarithmic Expected Time, ACM transactions on Mathematical Software (TOMS), 3, no. 3, pp. 209–
226. The algorithm in the article is called the KD-tree.

k-NN: what to choose k and a distance metric?
• The right choice of k is crucial to find a good balance between

overfitting and underfitting.
(For sklearn.neighbors.KNeighborsClassifier, default n_neighbors = 5.)

• We also choose a distance metric that is appropriate for the features
in the dataset. (e.g., the simple Euclidean distance, along with data
standardization)

• Alternatively, we can choose the Minkowski distance:

d(x, z) = ‖x− z‖p
def
==

( m∑
i=1

|xi − zi|p
)1/p

. (5.73)

(For sklearn.neighbors.KNeighborsClassifier, default p = 2.)

Remark 5.38. The k-NN algorithm is very susceptible (wide open) to
overfitting due to the curse of dimensionality.a

Since regularization is not applicable for k-NN, we can use feature se-
lection and dimensionality reduction techniques to help us avoid the
curse of dimensionality and avoid overfitting. This will be discussed in
more details later.

aThe curse of dimensionality describes the phenomenon where the feature space becomes increas-
ingly sparse for an increasing number of dimensions of a fixed-size training dataset. Intuitively, we
can think of even the closest neighbors being too far away in a high-dimensional space to give a good
estimate.
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Exercises for Chapter 5

5.1. The equation c1x1 + c2x2 + · · · + cnxn = d determines a hyperplane in Rn. Prove that
the vector [c1, c2, · · · , cn] is a normal vector of the hyperplane.

5.2. For this problem, you would modify the code used for Problem 3.2 in Chapter 3. For
the standardized data (XSD),

(a) Apply the logistic regression gradient descent (Algorithm 5.9).
(b) Compare the results with that of Adaline descent gradient.

5.3. (Continuation of Problem 5.2). Perturb the standardized data (XSD) by a random
Gaussian noise Gσ of an observable σ (so as for Gσ(XSD) not to be linearly separable).

(a) Apply the logistic regression gradient descent (Algorithm 5.9) for the noisy data
Gσ(XSD).

(b) Modify the code for the logistic regression with regularization (5.21) and apply
the resulting algorithm for Gσ(XSD).

(c) Compare their performances

5.4. (Optional for Undergraduate Students) Verify the formulation in (5.51), which is
dual to the minimization of (5.50).

5.5. Experiment examples on pp. 84–91, Python Machine Learning, 3rd Ed., in order to
optimize the performance of kernel SVM by finding a best kernel and optimal hyper-
parameters (gamma and C).

Choose one of Exercises 6 and 7 below to implement and experiment. The experiment
will guide you to understand how the LM software has been composed from scratch.
You may use the example codes thankfully shared by Dr. Jason Brownlee, who is
the founder of machinelearningmastery.com.

5.6. Implement a decision tree algorithm that incorporates the Gini impurity measure,
from scratch, to run for the data used on page 96, Python Machine Learning, 3rd Ed..
Compare your results with the figure on page 97 of the book. You may refer to
https://machinelearningmastery.com/implement-decision-tree-algorithm-scratch-python/

5.7. Implement a k-NN algorithm, from scratch, to run for the data used on page 106,
Python Machine Learning, 3rd Ed.. Compare your results with the figure on page
103 of the book. You may refer to
https://machinelearningmastery.com/tutorial-to-implement-k-nearest-neighbors-in-python-from-
scratch/
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CHAPTER 6
Data Preprocessing in Machine
Learning

Data preprocessing (or, data preparation) is a data mining technique,
which is the most time consuming (often, the most important) step in
machine learning.
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6.1. General Remarks on Data Preprocessing

Data preprocessing is a data mining technique.

• It involves transforming raw data into a understandable and
more tractable format.

• Real-world data is often incomplete, redundant, inconsistent,
and/or lacking in certain behaviors or trends, and is likely to
contain many errors.

• Data preprocessing is a proven method of resolving such issues.
• Often, data preprocessing is the most important phase of a ma-

chine learning project, especially in computational biology.

Summary 6.1. Different steps involved for data preprocessing can be
summarized as follows.

1. Data Cleaning: In this first step, the primary focus is on handling
missing data, noisy data, detection and removal of outliers, and min-
imizing duplication and computed biases within the data.

2. Data Integration: This process is used when data is gathered from
various data sources and data are combined to form consistent data.

3. Data Transformation: This step is used to convert the raw data
into a specified format according to the need of the model.
(a) Normalization – Numerical data is converted into the specified

range (e.g., feature scaling→∼ N (0, 1)).
(b) Aggregation – This method combines some features into one.

4. Data Reduction: Redundancy within the data can be removed and
efficiently organize the data.

The more disciplined you are in your handling of data, the more
consistent and better results you are likely to achieve.
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Remark 6.2. Data preparation is difficult because the process is
not objective, and it is important because ML algorithms learn from
data. Consider the following.

• Preparing data for analysis is one of the most important steps in
any data-mining project – and traditionally, one of the most time
consuming.

• Often, it takes up to 80% of the time.
• Data preparation is not a once-off process; that is, it is iterative

as you understand the problem deeper on each successive pass.
• It is critical that you feed the algorithms with the right data for

the problem you want to solve. Even if you have a good dataset, you
need to make sure that it is in a useful scale and format and that
meaningful features are included.

Questions in ML, in practice
• What would reduce the generalization error?
• What is the best form of the data to describe the problem?

(It is difficult to answer, because it is not objective.)
• Can we design effective methods and/or smart algorithms for

automated data preparation?
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6.2. Dealing with Missing Data & Categorical
Data

6.2.1. Handling missing data

Software: [pandas.DataFrame].isnull().sum() > 1

For missing values, three different steps can be executed.

• Removal of samples (rows) or features (columns):
– It is the simplest and efficient method for handling the missing

data.
– However, we may end up removing too many samples or features.

Software: pandas.dropna
• Filling the missing values manually:

– This is one of the best-chosen methods.
– But there is one limitation that when there are large data set, and

missing values are significant.

• Imputing missing values using computed values:

– The missing values can also be occupied by computing mean, me-
dian, or mode of the observed given values.

– Another method could be the predictive values that are computed
by using any ML or Deep Learning algorithms.

– But one drawback of this approach is that it can generate bias
within the data as the calculated values are not accurate concern-
ing the observed values.

Software: from sklearn.preprocessing import Imputer



6.2. Dealing with Missing Data & Categorical Data 143

6.2.2. Handling categorical data

It is common that real-world datasets contain one or more categorical fea-
ture columns. These categorical features must be effectively handled to fit
in numerical computing libraries.

When we are talking about categorical data, we should further distin-
guish between ordinal features and nominal features.

• Mapping ordinal features: e.g.,

size :

 M
L
XL

←→
0

1
2

 . (6.1)

– This is called an ordinal encoding or an integer encoding.
– The integer values have a natural ordered relationship between

each other; machine learning algorithms may understand and
harness this relationship.

• Encoding nominal features: one-hot encoding, e.g.,

color :

 blue
green
red

←→
0

1
2

←→
1 0 0

0 1 0
0 0 1

 . (6.2)

Software: from sklearn.preprocessing import OneHotEncoder

Remark 6.3. For categorical variables where no ordinal relationship
exists, the integer encoding is not enough.

• In fact, assuming a natural ordering between categories and using
the integer encoding may result in poor performance or unexpected
results.

• The one-hot encoding can be used, although ordinal relationship
exists.
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6.3. Feature Scaling

Note: Feature scaling is a method used to standardize the range of
independent variables or features of the data.

• It is one of data normalization methodsa in a broad sense.
• It is generally performed during the data preprocessing step.

• There are some scale-invariant algorithms such as decision trees
and random forests.

• Most of other algorithms (we have learned) perform better with fea-
ture scaling.

aIn a broad sense, data normalization is a process of reorganizing data, by cleaning and adjusting
data values measured on different scales to a notionally common scale; its intention is to bring the
entire probability distributions of adjusted values into alignment.

There are two common approaches to bring different features onto the same
scale:

• min-max scaling (normalization):

x
(i)
j,norm =

x
(i)
j − xj,min

xj,max − xj,min
∈ [0, 1], (6.3)

where xj,min and xj,max are the minimum and maximum of the j-th fea-
ture column (in the training dataset), respectively.

• standardization:

x
(i)
j,std =

x
(i)
j − µj
σj

, (6.4)

where µj is the sample mean of the j-th feature column and σj is the
corresponding standard deviation.

– The standardized data has the standard normal distribution.
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Remark 6.4. Standardization is more practical than the min-max
scaling for many ML methods, especially for optimization algorithms
such as the gradient descent method.

• Reason 1 : For many linear models such as the logistic regression and
the SVM, we can easily initialize the weights to 0 or small random
values close to 0.
⇐ Standardization possibly results in w∗ small.

• Reason 2 : It makes regularization perform more effectively; see
Sections 5.2.3 and 6.4.3 for regularization.
⇐ The minimizer of the penalty term is 0.
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6.4. Feature Selection

6.4.1. Selecting meaningful variables

Remark 6.5. Overfitting. If we observe that a model performs much
better on a training dataset than on the test dataset, it is a strong
indicator of overfitting.

• Overfitting means the model fits the parameters too closely
with regard to the particular observations in the training dataset,
but does not generalize well to new data. (The model has a high
variance.)

• The reason for the overfitting is that our model is too complex for
the given training data.

Common solutions to reduce the generalization error (via bias-variance
tradeoff) are listed as follows:

• Collect more training data (often, not applicable)
• Introduce regularization (penalty for complexity)
• Choose a simpler model (fewer parameters)
• Reduce the dimensionality (feature selection)

Feature Selection (a.k.a. Variable Selection)
Its objective is four-fold:

• enhancing generalization by reducing overfitting/variance,
• providing faster and more cost-effective predictors,
• reducing training time, and
• providing a better understanding of the underlying process that gen-

erated the data.

Recall: Curse of Dimensionality. It describes the phenomenon where
the feature space becomes increasingly sparse for an increasing number
of dimensions of a fixed-size training dataset.
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Methods for “automatic” feature selection

• Filter methods: Filter methods suppress the least interesting
features, after assigning a scoring to each feature and ranking the
features. The methods consider the feature independently, or with re-
gard to the dependent variable.
Examples: Chi-squared test & correlation coefficient scores.

• Wrapper methods: Wrapper methods evaluate subsets of features
which allows, unlike filter approaches, to detect the possible inter-
actions between features. They prepare various combinations
of features, to evaluate and compare with other combinations. The
two main disadvantages of these methods are:

– Increasing overfitting risk, when the data size is not enough.
– Significant computation time, for a large number of variables.

Example: The recursive feature elimination algorithm

• Embedded methods: Embedded methods have been recently pro-
posed that try to combine the advantages of both previous meth-
ods. They learn which features contribute the best to the accuracy of
the model while the model is being created. The most common types of
embedded feature selection methods are regularization methods.
Examples: ridge regressiona, LASSOb, & elastic net regularizationc

aThe ridge regression (a.k.a. Tikhonov regularization) is the most commonly used method of reg-
ularization of ill-posed problems. In machine learning, ridge regression is basically a regularized linear
regression model: minwQ(X,y;w) + λ

2 ‖w‖
2
2, in which the regularization parameter λ should be learned

as well, using a method called cross validation. It is related to the Levenberg-Marquardt algorithm for
non-linear least-squares problems.

bLASSO (least absolute shrinkage and selection operator) is a regression analysis method that per-
forms both variable selection and regularization in order to enhance the prediction accuracy and inter-
pretability of the statistical model it produces. It includes an L1 penalty term: minwQ(X,y;w) + λ‖w‖1.
It was originally developed in Geophysics [68, (Santosa-Symes, 1986)], and later independently redis-
covered and popularized in 1996 by Robert Tibshirani [75], who coined the term and provided further
insights into the observed performance.

cThe elastic net regularization is a regularized regression method that linearly combines the L1

and L2 penalties of the LASSO and ridge methods, particularly in the fitting of linear or logistic regres-
sion models.

We will see how L1-regularization can reduce overfitting (serving as a fea-
ture selection method).
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6.4.2. Sequential backward selection (SBS)

The idea behind the sequential backward selection (SBS) algorithm is
quite simple:

• The SBS sequentially removes features one-by-one until the new
feature subspace contains the desired number of features.

• In order to determine which feature is to be removed at each stage,
we need to define the criterion function C, e.g., performance of the
classifier after the removal of a particular feature.

• Then, the feature to be removed at each stage can simply be defined
as the feature that maximizes this criterion; or in more intuitive
terms, at each stage we eliminate the feature that causes the least
performance loss after removal.

Algorithm 6.6. Sequential Backward Selection
We can outline the algorithm in four simple steps:

1. Initialize the algorithm with k = d, where d is the dimensionality of
the full feature space Fd.

2. Determine the feature f̂ such that
f̂ = arg max

f∈Fk
C(Fk − f).

3. Remove the feature f̂ from the feature set:
Fk−1 = Fk − f̂ ; k = k − 1;

4. Terminate if k equals the number of desired features; otherwise, go
to step 2.
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6.4.3. Ridge regression vs. LASSO

Observation 6.7. When an Lp-penalty term is involved (p = 1, 2), the
minimization problem can be written as follows:

w∗ = arg min
w
Q(X,y; w) + λRp(w), (6.5)

where
Rp(w) :=

1

p
‖w‖pp, p = 1, 2. (6.6)

• Regularization can be considered as adding a penalty term to the
cost function to encourage smaller weights; or in other words, we
penalize large weights.

• Thus, by increasing the regularization strength (λ ↑),
– we can shrink the weights towards zero, and
– decrease the dependence of our model on the training data.

• The minimizer w∗ must be the point where the Lp-ball intersects
with the minimum-valued contour of the unpenalized cost function.

– The variable λ in (6.5) is a kind of Lagrange multiplier.

Figure 6.1: L2-regularization (‖w‖22 =
∑m

i=1w
2
i ) and L1-regularization (‖w‖1 =∑m

i=1 |wi|).
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LASSO (L1-regularization). In the right figure, the L1-ball touches the
minimum-valued contour of the cost function at w1 = 0; the optimum
is more likely located on the axes, which encourages sparsity (zero
entries in w∗).

Remark 6.8. LASSO (L1-regularization)

• We can enforce sparsity (more zero entries) by increasing the reg-
ularization strength λ.

• A sparse model is a model where many of the weights are 0 or close
to 0. Therefore L1-regularization is more suitable to create desired
0-weights, particularly for sparse models.

Remark 6.9. Regularization
In general, regularization can be understood as adding bias and pre-
ferring a simpler model to reduce the variance (overfitting),
in the absence of sufficient training data, in particular.

• L1-regularization encourages sparsity.
• We can enforce sparsity (more zero entries) by increasing the reg-

ularization strength λ.
• Thus it can reduce overfitting, serving as a feature selection

method.

• L1-regularization may introduce oscillation, particularly when the
regularization strength λ is large.

• A post-processing operation may be needed to take into account
oscillatory behavior of L1-regularization.
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Example 6.10. Consider a model consisting of the weights w =

(w1, · · · , wm)T and

R1(w) =
m∑
i=1

|wi|, R2(w) =
1

2

m∑
i=1

w2
i . (6.7)

Let us minimize Rp(w), p = 1, 2, using gradient descent.

Solution. The gradients read

∇wR1(w) = sign(w), ∇wR2(w) = w, (6.8)

where

sign(wi) =


1, if wi > 0
−1, if wi < 0

0, if wi = 0.

Thus the gradient descent becomes

R1 : wk+1 = wk − λ sign(wk),
R2 : wk+1 = wk − λwk = (1− λ) wk = (1− λ)k+1 w0.

(6.9)

• The L2-gradient is linearly decreasing towards 0 as the weight goes
towards 0. Thus L2-regularization will move any weight towards 0,
but it will take smaller and smaller steps as a weight approaches 0.
(The model never reaches a weight of 0.)

• In contrast, L1-regularization will move any weight towards 0 with
the same step size λ, regardless the weight’s value.

– The iterates for minimizing R1 may oscillate endlessly near 0.
(e.g., w0 = 0.2 and λ = 0.5
⇒ w1 = −0.3 ⇒ w2 = 0.2 ⇒ w3 = −0.3 ⇒ w4 = 0.2 ⇒ · · · )

– The oscillatory phenomenon may not be severe for real-world prob-
lems where R1 is used as a penalty term for a cost function.

– However, we may need a post-processing to take account of os-
cillation, when λ is set large.
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6.5. Feature Importance

The concept of feature importance is straightforward: it is the increase
in the model’s prediction error after we permuted the feature’s values,
which breaks the relationship between the feature and the true outcome.

• A feature is “important" if shuffling its values increases the
model error, because in this case the model relied on the feature
for the prediction.

• A feature is “unimportant" if shuffling its values leaves the model
error unchanged, because in this case the model ignored the feature
for the prediction.

• The permutation feature importance measurement was introduced
by Breiman (2001) [8] for random forests.

• Based on this idea, Fisher, Rudin, and Dominici (2018) [19] proposed a
model-agnostic version of the feature importance and called it model
reliance.

Algorithm 6.11. Permutation feature importance (FI)

input: Trained model f , feature matrix X, target vector y,
error measure L(f,X,y);

1. Estimate the original model error εorig = L(f,X,y);
2. For each feature j = 1, 2, · · · , d; do: Permute feature j in the data X to get X(j);

Estimate error ε(j) = L(f,X(j),y);
Calculate permutation FI: FI(j) = ε(j)/εorig (or, ε(j) − εorig);

3. Sort features by descending FI;
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Should we compute FI on training or test data?

To answer the question, you need to decide whether
• you want to know how much the model relies on each feature

for making predictions (→ training data) or
• how much the feature contributes to the performance of the

model on unseen data (→ test data).

There is no research addressing the question of training vs. test data; more
research and more experience are needed to gain a better understanding.
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Exercises for Chapter 6

First, read pp. 135-143, Python Machine Learning, 3rd Ed..

6.1. On pp. 135-143, the sequential backward selection (SBS) is implemented as a
feature selection method and experimented with a k-NN classifier (n_neighbors=5),
using the wine dataset.

(a) Perform the same experiment with the k-NN classifier replaced by the support
vector machine (soft-margin SVM classification).

(b) In particular, analyze accuracy of the soft-margin SVM and plot the result
as in the figure on p. 139.

6.2. On pp. 141-143, the permutation feature importance is assessed from the ran-
dom forest classifier, using the wine dataset.

(a) Discuss whether or not you can derive feature importance for a k-NN classifier.
(b) Assess feature importance with the logistic regression classifier, using the

same dataset.
(c) Based on the computed feature importance, analyze and plot accuracy of the

logistic regression classifier for k_features = 1, 2, · · · , 13.



CHAPTER 7
Feature Extraction: Data Compression

There are two main categories of dimensionality reduction methods:

• Feature selection: Select a subset of the original features.
• Feature extraction: Construct a new feature subspace.

Feature Extraction

• It can be understood as an approach to dimensionality reduction
and data compression.

– with the goal of maintaining most of the relevant information

• In practice, feature extraction is used
– to improve storage space or the computational efficiency
– to improve the predictive performance by reducing the curse

of dimensionality

In this chapter, we will study three fundamental techniques for dimen-
sionality reduction:

• Principal component analysis (PCA)
• Linear discriminant analysis (LDA), maximizing class separability
• Kernel principal component analysis, for nonlinear PCA
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7.1. Principal Component Analysis

• Principal component analysis (PCA) (a.k.a. orthogonal linear
transformation) was invented in 1901 by K. Pearson [58], as an ana-
logue of the principal axis theorem in mechanics; it was later indepen-
dently developed and named by H. Hotelling in the 1930s [33, 34].

• The PCA is a statistical procedure that uses an orthogonal trans-
formation to convert a set of observations (of possibly correlated vari-
ables) to a set of linearly uncorrelated variables called the prin-
cipal components.

• The orthogonal axes of the new subspace can be interpreted as the
directions of maximum variance given the constraint that the new
feature axes are orthogonal to each other:

Figure 7.1: Principal components.

• As an unsuperviseda linear transformation technique, the PCA is
widely used across various fields – in ML, most prominently for fea-
ture extraction and dimensionality reduction.

• The PCA identifies patterns in data based on the correlation be-
tween features.

• The PCA directions are highly sensitive to data scaling, and we
need to standardize the features prior to PCA.
aThe PCA is a unsupervised technique, because it does not use any class label information.
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7.1.1. Computation of principal components

• Consider a data matrix X ∈ RN×d:
– each of the N rows represents a different data point,
– each of the d columns gives a particular kind of feature, and
– each column has zero empirical mean (e.g., after standardization).

• The goal is to find an orthogonal weight matrix W ∈ Rd×d such
that

Z = XW (7.1)

maximizes the variance (⇒ minimizes the reconstruction error).
• Here Z ∈ RN×d is called the score matrix, of which columns represent

principal components of X.

First weight vector w1: the first column of W :
In order to maximize variance of z1, the first weight vector w1 should satisfy

w1 = arg max
‖w‖=1

‖z1‖2 = arg max
‖w‖=1

‖Xw‖2

= arg max
‖w‖=1

wTXTXw = arg max
w 6=0

wTXTXw

wTw
,

(7.2)

where the quantity to be maximized can be recognized as a Rayleigh quo-
tient.

Theorem 7.1. For a positive semidefinite matrix (such asXTX), the
maximum of the Rayleigh quotient is the same as the largest eigenvalue
of the matrix, which occurs when w is the corresponding eigenvector, i.e.,

w1 = arg max
w 6=0

wTXTXw

wTw
=

v1

‖v1‖
, (XTX)v1 = λ1v1, (7.3)

where λ1 is the largest eigenvalue of XTX ∈ Rd×d.

Example 7.2. With w1 found, the first principal component of a data
vector x(i) can then be given as a score z(i)

1 = x(i) ·w1.
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Further weight vectors wk :
The k-th weight vector can be found by 1 subtracting the first (k − 1) prin-
cipal components from X:

X̂k := X −
k−1∑
i=1

Xwiw
T
i , (7.4)

and then 2 finding the weight vector which extracts the maximum vari-
ance from this new data matrix X̂k:

wk = arg max
‖w‖=1

‖X̂kw‖2. (7.5)

Claim 7.3. The above turns out to give the (normalized) eigenvectors of
XTX. That is, the transformation matrix W is the stack of eigenvec-
tors of XTX:

W = [w1|w2| · · · |wd], (XTX) wj = λj wj, wT
i wj = δij, (7.6)

where λ1 ≥ λ2 ≥ · · · ≥ λd ≥ 0.

With W found, a data vector x is transformed to a d-dimensional row vec-
tor of principal components

z = xW, (7.7)

of which components zj, j = 1, 2, · · · , d, are decorrelated.

Remark 7.4. From Singular Value Decomposition:

While the weight matrix W ∈ Rd×d is the collection of eigenvectors of
XTX, the score matrix Z ∈ RN×d is the stack of eigenvectors of XXT ,
scaled by the square-root of eigenvalues:

Z = [
√
λ1 u1|

√
λ2 u2| · · · |

√
λd ud], (XXT ) uj = λj uj, uTi uj = δij. (7.8)

See (7.14) and § 7.2.
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7.1.2. Dimensionality reduction

The transformation Z = XW maps data points in Rd to a new d-dimensional
space of principal components. Keeping only the first k principal com-
ponents (k < d) gives a truncated transformation:

Zk = XWk : x(i) ∈ Rd 7→ z(i) ∈ Rk, (7.9)

where Zk ∈ RN×k and Wk ∈ Rd×k. Define the truncated data as

Xk := ZkW
T
k = XWkW

T
k . (7.10)

Quesitons. How can we choose k ?
Is the difference ‖X −Xk‖ small ?

Remark 7.5. The principal components transformation can also be as-
sociated with the singular value decomposition (SVD) of X:

X = U ΣV T , (7.11)

where
U : n× d orthogonal (the left singular vectors of X.)
Σ : d× d diagonal (the singular values of X.)
V : d× d orthogonal (the right singular vectors of X.)

• The matrix Σ explicitly reads
Σ = diag(σ1, σ2, · · · , σd), (7.12)

where σ1 ≥ σ2 ≥ · · · ≥ σd ≥ 0.
• In terms of this factorization, the matrix XTX reads

XTX = (U ΣV T )TU ΣV T = V ΣUTU ΣV T = V Σ2V T . (7.13)

• Comparing with the eigenvector factorization of XTX, we have
– the right singular vectors V ∼= the eigenvectors of XTX ⇒ V ∼= W

– the square of singular values of X are equal to the eigenvalues of XTX
⇒ σ2

j = λj, j = 1, 2, · · · , d.
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Further considerations for the SVD
• Using the SVD, the score matrix Z reads

Z = XW = U ΣV TW = U Σ, (7.14)

and therefore each column of Z is given by one of the left singular
vectors of X multiplied by the corresponding singular value. This form
is also the polar decomposition of Z. See (7.8) on p. 158.

• As with the eigen-decomposition, the SVD, the truncated score ma-
trix Zk ∈ RN×k can be obtained by considering only the first k largest
singular values and their singular vectors:

Zk = XWk = U ΣV TWk = U Σk, (7.15)

where
Σk := diag(σ1, · · · , σk, 0, · · · , 0). (7.16)

• Now, using (7.15), the truncated data matrix reads
Xk = ZkW

T
k = U ΣkW

T
k = U ΣkW

T = U ΣkV
T . (7.17)

Claim 7.6. It follows from (7.11) and (7.17) that

‖X −Xk‖2 = ‖U ΣV T − U ΣkV
T‖2

= ‖U(Σ− Σk)V
T‖2

= ‖Σ− Σk‖2 = σk+1,

(7.18)

where ‖ · ‖2 is the induced matrix L2-norm.

Remark 7.7. Efficient algorithms exist to calculate the SVD of X with-
out having to form the matrix XTX. Computing the SVD is now the
standard way to carry out the PCA. See [27, 79].
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7.1.3. Explained variance

Note: Since we want to reduce the dimensionality of our dataset by com-
pressing it onto a new feature subspace, we only select the subset of the
eigenvectors (principal components) that contains most of the infor-
mation (variance). The eigenvalues define the magnitude of the
eigenvectors, so we have to sort the eigenvalues by decreasing magni-
tude; we are interested in the top k eigenvectors based on the values of
their corresponding eigenvalues.

Definition 7.8. Let λj (= σ2
j ) be eigenvalues of XTX: (XTX)vj = λjvj.

Define the explained variance ratio of each eigenvalue as

evr(λi) =
λi∑d
j=1 λj

, i = 1, 2, · · · , d, (7.19)

and cumulative explained variance as

cev(λk) =
k∑
i=1

evr(λi) =
k∑
i=1

λi

/ d∑
j=1

λj, k = 1, 2, · · · , d. (7.20)

Then, we may choose k satisfying
cev(λk−1) < ε and cev(λk) ≥ ε, (7.21)

for a tolerance ε. (The smallest k such that cev(λk) ≥ ε.)

Figure 7.2: evr and cev for the wine dataset.
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7.2. Singular Value Decomposition

Here we will deal with the SVD in detail.

Theorem 7.9. (SVD Theorem). Let A ∈ Rm×n with m ≥ n. Then we
can write

A = U ΣV T , (7.22)

where U ∈ Rm×n and satisfies UTU = I, V ∈ Rn×n and satisfies V TV = I,
and Σ = diag(σ1, σ2, · · · , σn), where

σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0.

Remark 7.10. The matrices are illustrated pictorially as A

 =

 U


 Σ

 V T

 , (7.23)

where

U : m× n orthogonal (the left singular vectors of A.)
Σ : n× n diagonal (the singular values of A.)
V : n× n orthogonal (the right singular vectors of A.)

• For some r ≤ n, the singular values may satisfy

σ1 ≥ σ2 ≥ · · · ≥ σr︸ ︷︷ ︸
nonzero singular values

> σr+1 = · · · = σn = 0. (7.24)

In this case, rank(A) = r.
• If m < n, the SVD is defined by considering AT .
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Proof. (of Theorem 7.9) Use induction on m and n: we assume that
the SV D exists for (m− 1)× (n− 1) matrices, and prove it for m× n. We
assume A 6= 0; otherwise we can take Σ = 0 and let U and V be arbitrary
orthogonal matrices.

• The basic step occurs when n = 1 (m ≥ n). We let A = UΣV T with
U = A/||A||2, Σ = ||A||2, V = 1.

• For the induction step, choose v so that

||v||2 = 1 and ||A||2 = ||Av||2 > 0.

• Let u = Av
||Av||2 , which is a unit vector. Choose Ũ , Ṽ such that

U = [u Ũ ] ∈ Rm×n and V = [v Ṽ ] ∈ Rn×n

are orthogonal.
• Now, we write

UTAV =

[
uT

ŨT

]
· A · [v Ṽ ] =

[
uTAv uTAṼ

ŨTAv ŨTAṼ

]
Since

uTAv =
(Av)T (Av)

||Av||2
=
||Av||22
||Av||2

= ||Av||2 = ||A||2 ≡ σ,

ŨTAv = ŨTu||Av||2 = 0,

we have

UTAV =

[
σ 0
0 U1Σ1V

T
1

]
=

[
1 0
0 U1

] [
σ 0
0 Σ1

] [
1 0
0 V1

]T
,

or equivalently

A =

(
U

[
1 0
0 U1

])[
σ 0
0 Σ1

](
V

[
1 0
0 V1

])T
. (7.25)

Equation (7.25) is our desired decomposition.
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7.2.1. Interpretation of the SVD

Algebraic interpretation of the SVD

Let rank(A) = r. let the SVD of A be A = U ΣV T , with

U = [u1 u2 · · · un],
Σ = diag(σ1, σ2, · · · , σn),
V = [v1 v2 · · · vn],

and σr be the smallest positive singular value. Since

A = U ΣV T ⇐⇒ AV = UΣV TV = UΣ,

we have

AV = A[v1 v2 · · · vn] = [Av1 Av2 · · · Avn]

= [u1 · · · ur · · · un]


σ1

. . .
σr

. . .
0


= [σ1u1 · · · σrur 0 · · · 0].

(7.26)

Therefore,

A = U ΣV T ⇔
{
Avj = σjuj, j = 1, 2, · · · , r
Avj = 0, j = r + 1, · · · , n (7.27)

Similarly, starting from AT = V ΣUT ,

AT = V ΣUT ⇔
{
ATuj = σjvj, j = 1, 2, · · · , r
ATuj = 0, j = r + 1, · · · , n (7.28)
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Summary 7.11. It follows from (7.27) and (7.28) that

• (vj, σ
2
j ), j = 1, 2, · · · , r, are eigenvector-eigenvalue pairs of ATA.

ATAvj = AT (σjuj) = σ2
jvj, j = 1, 2, · · · , r. (7.29)

So, the singular values play the role of eigenvalues.

• Similarly, we have

AAT uj = A(σjvj) = σ2
juj, j = 1, 2, · · · , r. (7.30)

• Equation (7.29) gives how to find the singular values {σj} and the
right singular vectors V , while (7.27) shows a way to compute the
left singular vectors U .

• (Dyadic decomposition) The matrix A ∈ Rm×n can be expressed as

A =
n∑
j=1

σjujv
T
j . (7.31)

When rank(A) = r ≤ n,

A =
r∑
j=1

σjujv
T
j . (7.32)

This property has been utilized for various approximations and ap-
plications, e.g., by dropping singular vectors corresponding to small
singular values.
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Geometric interpretation of the SVD

The matrix A maps an orthonormal basis

B1 = {v1,v2, · · · ,vn}

of Rn onto a new “scaled” orthogonal basis

B2 = {σ1u1, σ2u2, · · · , σrur}

for a subspace of Rm:

B1 = {v1,v2, · · · ,vn}
A−→ B2 = {σ1u1, σ2u2, · · · , σrur} (7.33)

Consider a unit sphere Sn−1 in Rn:

Sn−1 =
{

x
∣∣∣ n∑
j=1

x2
j = 1

}
.

Then, ∀x ∈ Sn−1,

x = x1v1 + x2v2 + · · ·+ xnvn

Ax = σ1x1u1 + σ2x2u2 + · · ·+ σrxrur

= y1u1 + y2u2 + · · ·+ yrur, (yj = σjxj)

(7.34)

So, we have

yj = σjxj ⇐⇒ xj =
yj
σj

n∑
j=1

x2
j = 1 (sphere) ⇐⇒

r∑
j=1

y2
j

σ2
j

= α ≤ 1 (ellipsoid)
(7.35)
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Example 7.12. We build the set A(Sn−1) by multiplying one factor of A =

UΣV T at a time. Assume for simplicity that A ∈ R2×2 and nonsingular. Let

A =

[
3 −2
−1 2

]
= UΣV T

=

[
−0.8649 0.5019

0.5019 0.8649

] [
4.1306 0

0 0.9684

] [
−0.7497 0.6618

0.6618 0.7497

]
Then, for x ∈ S1,

Ax = UΣV Tx = U
(
Σ(V Tx)

)

In general,

• V T : Sn−1 → Sn−1 (rotation in Rn)

• Σ : ej 7→ σjej (scaling from Sn−1 to Rn)

• U : Rn → Rm (rotation)
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7.2.2. Properties of the SVD

Theorem 7.13. Let A ∈ Rm×n with m ≥ n. Let A = UΣV T be the SVD
of A, with

σ1 ≥ · · · ≥ σr > σr+1 = · · · = σn = 0.

Then, 

rank(A) = r

Null(A) = Span{vr+1, · · · ,vn}
Range(A) = Span{u1, · · · ,ur}

A =
r∑
i=1

σiuiv
T
i

(7.36)

and 

||A||2 = σ1 (See Exercise 2.)
||A||2F = σ2

1 + · · ·+ σ2
r (See Exercise 3.)

min
x 6=0

||Ax||2
||x||2

= σn (m ≥ n)

κ2(A) = ||A||2 · ||A−1||2 =
σ1

σn
( when m = n,& ∃A−1)

(7.37)

Theorem 7.14. Let A ∈ Rm×n, m ≥ n, rank(A) = n, with singular
values

σ1 ≥ σ2 ≥ · · ·σn > 0.

Then
||(ATA)−1||2 = σ−2

n ,

||(ATA)−1AT ||2 = σ−1
n ,

||A(ATA)−1||2 = σ−1
n ,

||A(ATA)−1AT ||2 = 1.

(7.38)

Definition 7.15. (ATA)−1AT is called the pseudoinverse of A, while
A(ATA)−1 is called the pseudoinverse of AT . Let A = UΣV T be the SVD
of A. Then

(ATA)−1AT = V Σ−1UT def
== A+. (7.39)
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Theorem 7.16. Let A ∈ Rm×n with rank(A) = r > 0. Let A = UΣV T be
the SVD of A, with singular values

σ1 ≥ · · · ≥ σr > 0.

Define, for k = 1, · · · , r − 1,

Ak =
k∑
j=1

σjujv
T
j (sum of rank-1 matrices).

Then, rank(Ak) = k and

||A− Ak||2 = min{||A−B||2
∣∣ rank(B) ≤ k}

= σk+1,

||A− Ak||2F = min{||A−B||2F
∣∣ rank(B) ≤ k}

= σ2
k+1 + · · ·+ σ2

r .

(7.40)

That is, of all matrices of rank ≤ k, Ak is closest to A.

Note: The matrix Ak can be written as

Ak = U ΣkV
T , (7.41)

where Σk = diag(σ1, · · · , σk, 0, · · · , 0). The pseudoinverse of Ak reads

A+
k = V Σ+

k U
T , (7.42)

where
Σ+
k = diag(1/σ1, 1/σ2, · · · , 1/σk, 0, · · · , 0). (7.43)

Corollary 7.17. Suppose A ∈ Rm×n has full rank; rank(A) = n. Let
σ1 ≥ · · · ≥ σn be the singular values of A. Let B ∈ Rm×n satisfy

||A−B||2 < σn.

Then B also has full rank.
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Full SVD

• For A ∈ Rm×n,
A = UΣV T ⇐⇒ UTAV = Σ,

where U ∈ Rm×n and Σ, V ∈ Rn×n.

• Expand
U → Ũ = [U U2] ∈ Rm×m, (orthogonal)

Σ → Σ̃ =

[
Σ

O

]
∈ Rm×n,

where O is an (m− n)× n zero matrix.

• Then,

ŨΣ̃V T = [U U2]

[
Σ

O

]
V T = UΣV T = A (7.44)
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7.2.3. Computation of the SVD

For A ∈ Rm×n, the procedure is as follows.

1. Form ATA (ATA – covariance matrix of A).

2. Find the eigen-decomposition of ATA by orthogonalization process,
i.e., Λ = diag(λ1, · · · , λn),

ATA = V ΛV T ,

where V = [v1 · · · vn] is orthogonal, i.e., V TV = I.

3. Sort the eigenvalues according to their magnitude and let

σj =
√
λj, j = 1, 2, · · · , n.

4. Form the U matrix as follows,

uj =
1

σj
Avj, j = 1, 2, · · · , r.

If necessary, pick up the remaining columns of U so it is orthogonal.
(These additional columns must be in Null(AAT ).)

5. A = UΣV T = [u1 · · · ur · · · un] diag(σ1, · · · , σr, 0, · · · , 0)

 vT1
...

vTn


Lemma 7.18. Let A ∈ Rn×n be symmetric. Then (a) all the eigenvalues
of A are real and (b) eigenvectors corresponding to distinct eigenvalues
are orthogonal.

Proof. See Exercise 4.
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Example 7.19. Find the SV D for A =

 1 2
−2 1

3 2

.

Solution.

1. ATA =

[
14 6
6 9

]
.

2. Solving det(ATA− λI) = 0 gives the eigenvalues of ATA

λ1 = 18 and λ2 = 5,

of which corresponding eigenvectors are

ṽ1 =

[
3

2

]
, ṽ2 =

[
−2

3

]
. =⇒ V =

[
3√
13
− 2√

13
2√
13

3√
13

]

3. σ1 =
√
λ1 =

√
18 = 3

√
2, σ2 =

√
λ2 =

√
5. So

Σ =

[√
18 0

0
√

5

]

4. u1 = 1
σ1
Av1 = 1√

18
A

[
3√
13
2√
13

]
= 1√

18
1√
13

 7

−4

13

 =


7√
234

− 4√
234
13√
234


u2 = 1

σ2
Av2 = 1√

5
A

[
−2√
13
3√
13

]
= 1√

5
1√
13

 4

7

0

 =


4√
65
7√
65

0

 .

5. A = UΣV T =


7√
234

4√
65

− 4√
234

7√
65

13√
234

0

[√18 0

0
√

5

] [ 3√
13

2√
13

− 2√
13

3√
13

]
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Example 7.20. Find the pseudoinverse of A,

A+ = (ATA)−1AT = V Σ−1UT ,

when A =

 1 2
−2 1

3 2

.

Solution. From Example 7.19, we have

A = UΣV T =


7√
234

4√
65

− 4√
234

7√
65

13√
234

0

[√18 0

0
√

5

] [ 3√
13

2√
13

− 2√
13

3√
13

]

Thus,

A+ = V Σ−1UT =

[
3√
13
− 2√

13
2√
13

3√
13

][
1√
18

0

0 1√
5

][
7√
234
− 4√

234
13√
234

4√
65

7√
65

0

]

=

[
− 1

30 −
4
15

1
6

11
45

13
45

1
9

]
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Computer implementation [25]

Figure 7.3: A two-phase procedure for the SVD: A = UΣV T .

Algorithm 7.21. (Golub and Reinsch, 1970) [26]. Let A ∈ Rm×n.

• Phase 1: It constructs two finite sequences of Householder
transformations to find an upper bidiagonal matrix:

Pn · · ·P1 AQ1 · · ·Qn−2 = B (7.45)

• Phase 2: It is to iteratively diagonalize B using the QR method.

Golub-Reinsch SVD algorithm
• It is extremely stable.
• Computational complexity:

– Computation of U , V , and Σ: 4m2n+ 8mn2 + 9n3.
– Computation of V and Σ: 4mn2 + 8n3.

• Phases 1 & 2 take O(mn2) and O(n2) flops, respectively.
(when Phase 2 is done with O(n) iterations)

• Python: U,S,V = numpy.linalg.svd(A)

• Matlab/Maple: [U,S,V] = svd(A)

• Mathematica: {U,S,V} = SingularValueDecomposition[A]
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Numerical rank
In the absence of round-off errors and uncertainties in the data, the SVD
reveals the rank of the matrix. Unfortunately the presence of errors makes
rank determination problematic. For example, consider

A =


1/3 1/3 2/3
2/3 2/3 4/3
1/3 2/3 3/3
2/5 2/5 4/5
3/5 1/5 4/5

 (7.46)

• Obviously A is of rank 2, as its third column is the sum of the first two.

• Matlab “svd" (with IEEE double precision) produces

σ1 = 2.5987, σ2 = 0.3682, and σ3 = 8.6614× 10−17.

• What is the rank of A, 2 or 3? What if σ3 is in O(10−13)?

• For this reason we must introduce a threshold T . Then we say that A
has numerical rank r if A has r singular values larger than T , that
is,

σ1 ≥ σ2 ≥ · · · ≥ σr > T ≥ σr+1 ≥ · · · (7.47)

In Matlab
• Matlab has a “rank" command, which computes the numerical rank

of the matrix with a default threshold

T = 2 max{m,n} ε ||A||2 (7.48)

where ε is the unit round-off error.
• In Matlab, the unit round-off error can be found from the parameter

“eps"
eps = 2−52 = 2.2204× 10−16.

• For the matrix A in (7.46),

T = 2 · 5 · eps · 2.5987 = 5.7702× 10−15

and therefore rank(A)=2.

See Exercise 5.
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7.2.4. Application of the SVD to image compression

• A ∈ Rm×n is a sum of rank-1 matrices (dyadic decomposition):
V = [v1, · · · ,vn], U = [u1, · · · ,un],

A = UΣV T =
n∑
i=1

σiuiv
T
i , ui ∈ Rm, vi ∈ Rn.

(7.49)

• The approximation

Ak = UΣkV
T =

k∑
i=1

σiuiv
T
i (7.50)

is closest to A among matrices of rank≤ k, and
||A− Ak||2 = σk+1. (7.51)

• It only takes (m+n) · k words to store u1 through uk, and σ1v1 through
σkvk, from which we can reconstruct Ak.

Image compression using k singular values
peppers_SVD.m

1 img = imread('Peppers.png'); [m,n,d]=size(img);
2 [U,S,V] = svd(reshape(im2double(img),m,[]));
3 %%---- select k <= p=min(m,n)
4 k = 20;
5 img_k = U(:,1:k)*S(1:k,1:k)*V(:,1:k)';
6 img_k = reshape(img_k,m,n,d);
7 figure, imshow(img_k)

The “Peppers" image is in [270, 270, 3] ∈ R270×810.
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Original (k = 270) k = 1 k = 10

k = 20 k = 50 k = 100

Peppers: Singular values

Peppers: Storage: It requires (m+n) · k words.For example, when k = 50,

(m+ n) · k = (270 + 810) · 50 = 54,000 , (7.52)

which is approximately a quarter the full storage space

270× 270× 3 = 218,700 .
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7.3. Linear Discriminant Analysis
Linear discriminant analysis is a method to find a linear combination
of features that characterizes or separates two or more classes of ob-
jects or events.
• The LDA is sometimes also called Fisher’s LDA. Fisher initially for-

mulated the LDA for two-class classification problems in 1936 [20], and
later generalized for multi-class problems by C. Radhakrishna Rao under
the assumption of equal class covariances and normally distributed
classes in 1948 [61].

• The LDA may be used as a linear classifier, or, more commonly, for
dimensionality reduction (§ 7.3.4) for a later classification.

• The general concept behind the LDA is very similar to PCA.1

LDA objective
• The LDA objective is to perform dimensionality reduction.

– So what? PCA does that, too!
• However, we want to preserve as much of the class discriminatory
information as possible.
– OK, this is new!

LDA
• Consider a pattern classification problem, where we have c classes.
• Suppose each class has Nk samples in Rd, where k = 1, 2, · · · , c.
• Let Xk = {x(1),x(2), · · · ,x(Nk)} be the set of d-dimensional samples for

class k.
• Let X ∈ Rd×N be the data matrix, stacking all the samples from

all classes, such that each column represents a sample, where N =∑
kNk.

• The LDA seeks to obtain a transformation ofX to Z through projecting
the samples in X onto a hyperplane with dimension c− 1.

1In PCA, the main idea is to re-express the available dataset to extract the relevant information by re-
ducing the redundancy and to minimize the noise. While (unsupervised) PCA attempts to find the
orthogonal component axes of maximum variance in a dataset, the goal in the (supervised) LDA is to find
the feature subspace that optimizes class separability.



7.3. Linear Discriminant Analysis 179

7.3.1. Fisher’s LDA (classifier): two classes

Let us define a transformation of samples x onto a line [(c − 1)-space, for
c = 2]:

z = wTx = w · x, (7.53)

where w ∈ Rd is a projection vector.

Of all the possible lines, we would like to select the one that maximizes the
separability of the scalars {z}.

• In order to find a good projection vector, we need to define a measure
of separation between the projections.

• The mean vector of each class in x and z feature space is

µk =
1

Nk

∑
x∈Xk

x, µ̃k =
1

Nk

∑
x∈Xk

z =
1

Nk

∑
x∈Xk

wTx = wTµk, (7.54)

i.e., projecting x to z will lead to projecting the mean of x to the mean
of z.

• We could then choose the distance between the projected means
as our objective function:

Ĵ (w) = |µ̃1 − µ̃2| = |wT (µ1 − µ2)|. (7.55)

Figure 7.4: The x1-axis has a larger dis-
tance between means, while the x2-axis
yields a better class separability.

• However, the distance between

the projected means is not a
very good measure, since it
does not take into account the
sample distribution within the
classes.

• The maximizer w∗ of (7.55) must
be parallel to (µ1 − µ2):

w∗ // (µ1 − µ2);

the projection to a parallel line of
(µ1 −µ2) is not an optimal trans-
formation.
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Fisher’s LDA: The Key Idea
The solution proposed by Fisher is to maximize a function that rep-
resents the difference between the means, normalized by a measure
of the within-class variability (called the scatter).

• For each class k, we define the scatter (an equivalent of the variance)
as

s̃2
k =

∑
x∈Xk

(z − µ̃k)2, z = wTx. (7.56)

• The quantity s̃2
k measures the variability within class Xk after project-

ing it on the z-axis.
• Thus, s̃2

1 + s̃2
2 measures the variability within the two classes at hand

after projection; it is called the within-class scatter of the projected
samples.

• Fisher’s linear discriminant is defined as the linear function wTx
that maximizes the objective function:

w∗ = arg max
w
J (w), where J (w) =

(µ̃1 − µ̃2)
2

s̃2
1 + s̃2

2

. (7.57)

• Therefore, Fisher’s LDA searches for a projection where samples from
the same class are projected very close to each other; at the same time,
the projected means are as farther apart as possible.

Figure 7.5: Fisher’s LDA.
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7.3.2. Fisher’s LDA: the optimum projection

Rewrite the Fisher’s objective function:

J (w) =
(µ̃1 − µ̃2)

2

s̃2
1 + s̃2

2

, (7.58)

where
µk =

1

Nk

∑
x∈Xk

x, µ̃k = wTµk, s̃2
k =

∑
x∈Xk

(z − µ̃k)2.

• In order to express J (w) as an explicit function of w, we first define a
measure of the scatter in the feature space x:

Sw = S1 + S2, for Sk =
∑
x∈Xk

(x− µk)(x− µk)T , (7.59)

where Sw ∈ Rd×d is called the within-class scatter matrix of samples x,
while Sk is the covariance matrix of class Xk.

Then, the scatter of the projection z can then be expressed as

s̃2
k =

∑
x∈Xk

(z − µ̃k)2 =
∑
x∈Xk

(wTx−wTµk)
2

=
∑
x∈Xk

wT (x− µk)(x− µk)Tw

= wT
(∑

x∈Xk

(x− µk)(x− µk)T
)
w = wTSkw.

(7.60)

Thus, the denominator of the objective function gives

s̃2
1 + s̃2

2 = wTS1w + wTS2w = wTSww =: S̃w, (7.61)

where S̃w is the within-class scatter of projected samples z.

• Similarly, the difference between the projected means (in z-space) can be
expressed in terms of the means in the original feature space (x-space).

(µ̃1 − µ̃2)
2 = (wTµ1 −wTµ2)

2 = wT (µ1 − µ2)(µ1 − µ2)
T︸ ︷︷ ︸

=:Sb

w

= wTSbw =: S̃b,

(7.62)
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where the rank-one matrix Sb ∈ Rd×d is called the between-class scatter
matrix of the original samples x, while S̃b is the between-class scatter
of the projected samples z.

• Since Sb is the outer product of two vectors, rank(Sb) ≤ 1.

We can finally express the Fisher criterion in terms of Sw and Sb as

J (w) =
(µ̃1 − µ̃2)

2

s̃2
1 + s̃2

2

=
wTSbw

wTSww
. (7.63)

Hence, J (w) is a measure of the difference between class means (en-
coded in the between-class scatter matrix), normalized by a measure
of the within-class scatter matrix.

• To find the maximum of J (w), we differentiate it with respect to w and
equate to zero. Applying some algebra leads (Exercise 6)

S−1
w Sbw = J (w) w. (7.64)

Note that S−1
w Sb is a rank-one matrix.

Equation (7.64) is a generalized eigenvalue problem:

S−1
w Sb w = λw⇐⇒ Sb w = λSw w; (7.65)

the maximizer w∗ of J (w) is the eigenvector associated with the nonzero
eigenvalue λ∗ = J (w).

Summary 7.22. Finding the eigenvector of S−1
w Sb associated with the

largest eigenvalue yields

w∗ = arg max
w
J (w) = arg max

w

wTSbw

wTSww
. (7.66)

This is known as Fisher’s Linear Discriminant, although it is not a discrim-
inant but a specific choice of direction for the projection of the data down to
one dimension.
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Fisher’s LDA: an example

We will compute the Linear Discriminant projection for the following two-
dimensional dataset of two classes (c = 2).

lda_Fisher.m
1 m=2; n=5;
2

3 X1=[2,3; 4,3; 2,1; 3,4; 5,4];
4 X2=[7,4; 6,8; 7,6; 8,9; 10,9];
5

6 Mu1 = mean(X1)'; % Mu1 = [3.2,3.0]
7 Mu2 = mean(X2)'; % Mu2 = [7.6,7.2]
8

9 S1 = cov(X1,0)*n;
10 S2 = cov(X2,0)*n;
11 Sw = S1+S2; % Sw = [20,13; 13,31]
12

13 Sb = (Mu1-Mu2)*(Mu1-Mu2)'; % Sb = [19.36,18.48; 18.48,17.64]
14

15 invSw_Sb = inv(Sw)*Sb;
16 [V,L] = eig(invSw_Sb); % V1 = [ 0.9503,0.3113]; L1 = 1.0476
17 % V2 = [-0.6905,0.7234]; L2 = 0.0000

Figure 7.6: A synthetic dataset and Fisher’s LDA projection.
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7.3.3. LDA for multiple classes
• Now, we have c-classes instead of just two.
• We are now seeking (c−1) projections [z1, z2, · · · , zc−1] by means of (c−1)

projection vectors wk ∈ Rd.
• Let W = [w1|w2| · · · |wc−1], a collection of column vectors, such that

zk = wT
k x =⇒ z = W Tx ∈ Rc−1. (7.67)

• If we have N sample (column) vectors, we can stack them into one ma-
trix as follows.

Z = W TX, (7.68)

where X ∈ Rd×N , W ∈ Rd×(c−1), and Z ∈ R(c−1)×N .

Recall: For the two classes case, the within-class scatter matrix was
computed as

Sw = S1 + S2.

This can be generalized in the c-classes case as:

Sw =
c∑

k=1

Sk, Sk =
∑
x∈Xk

(x− µk)(x− µk)T , (7.69)

where µk = 1
Nk

∑
x∈Xk x, where Nk is the number of data samples in class

Xk, and Sw ∈ Rd×d.

Recall: For the two classes case, the between-class scatter matrix
was computed as

Sb = (µ1 − µ2)(µ1 − µ2)
T .

For c-classes case, we will measure the between-class scatter matrix
with respect to the mean of all classes as follows:

Sb =
c∑

k=1

Nk(µk − µ)(µk − µ)T , µ =
1

N

∑
∀x

x, (7.70)

where rank(Sb) = c− 1.
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Definition 7.23. As an analogue to (7.66), we may define the LDA
optimization, for c classes case, as follows.

W ∗ = arg max
W
J (W ) = arg max

W

W TSbW

W TSwW
. (7.71)

Recall: For two-classes case, when we set ∂J (w)
∂w = 0, the optimization

problem is reduced to the eigenvalue problem

S−1
w Sb w

∗ = λ∗w∗, where λ∗ = J (w∗).

For c-classes case, we have (c− 1) projection vectors. Hence the eigenvalue
problem can be generalized to the c-classes case:

S−1
w Sb w

∗
k = λ∗k w∗k, λ∗k = J (w∗k), k = 1, 2, · · · , c− 1. (7.72)

Thus, it can be shown that the optimal projection matrix

W ∗ = [w∗1|w∗1| · · · |w∗c−1] ∈ Rd×(c−1) (7.73)

is the one whose columns are the eigenvectors corresponding to the
eigenvalues of the following generalized eigenvalue problem:

S−1
w SbW

∗ = λ∗ ·W ∗, λ∗ = [λ∗1, · · · , λ∗c−1], (7.74)

where S−1
w Sb ∈ Rd×d and (·) denotes the pointwise product.
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Illustration – 3 classes

• Let us generate a dataset for each class to illustrate the LDA transfor-
mation.

• For each class:
– Use the random number generator to generate a uniform stream of

500 samples that follows U(0, 1).
– Using the Box-Muller approach, convert the generated uniform stream

to N (0, 1).
– Then use the method of eigenvalues and eigenvectors to manip-

ulate the standard normal to have the required mean vector and
covariance matrix .

– Estimate the mean and covariance matrix of the resulted dataset.

Figure 7.7: Generated and manipulated dataset, for 3 classes.



7.3. Linear Discriminant Analysis 187

lda_c3.m
1 close all;
2 try, pkg load statistics; end % for octave
3

4 %% uniform stream
5 U = rand(2,1000); u1 = U(:,1:2:end); u2 = U(:,2:2:end);
6

7 %% Box-Muller method to convert to N(0,1)
8 X = sqrt((-2).*log(u1)).*(cos(2*pi.*u2)); % 2 x 500
9 clear u1 u2 U;

10

11 %% manipulate for required Mean and Cov
12 Mu = [5;5];
13

14 Mu1= Mu +[-3;7]; Cov1 =[5 -1; -3 3];
15 X1 = denormalize(X,Mu1,Cov1);
16 Mu2= Mu +[-3;-4]; Cov2 =[4 0; 0 4];
17 X2 = denormalize(X,Mu2,Cov2);
18 Mu3= Mu +[7; 5]; Cov3 =[4 1; 3 3];
19 X3 = denormalize(X,Mu3,Cov3);
20

21 %%Begin the comptation of the LDA Projection Vectors
22 % estimate mean and covariance
23 N1 = size(X1,2); N2 = size(X2,2); N3 = size(X3,2);
24 Mu1 = mean(X1')'; Mu2 = mean(X2')'; Mu3 = mean(X3')';
25 Mu = (Mu1+Mu2+Mu3)/3.;
26

27 % within-class scatter matrix
28 S1 = cov(X1'); S2 = cov(X2'); S3 = cov(X3');
29 Sw = S1+S2+S3;
30

31 % between-class scatter matrix
32 Sb1 = N1 * (Mu1-Mu)*(Mu1-Mu)'; Sb2 = N2 * (Mu2-Mu)*(Mu2-Mu)';
33 Sb3 = N3 * (Mu3-Mu)*(Mu3-Mu)';
34 Sb = Sb1+Sb2+Sb3;
35

36 % computing the LDA projection
37 invSw_Sb = inv(Sw)*Sb; [V,D] = eig(invSw_Sb);
38 w1 = V(:,1); w2 = V(:,2);
39 if D(1,1)<D(2,2), w1 = V(:,2); w2 = V(:,1); end
40

41 lda_c3_visualize;

Figure 7.8: lda_c3.m
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denormalize.m
1 function Xnew = denormalize(X,Mu,Cov)
2 % it manipulates data samples in N(0,1) to something else.
3

4 [V,D] = eig(Cov); VsD = V*sqrt(D);
5

6 Xnew = zeros(size(X));
7 for j=1:size(X,2)
8 Xnew(:,j)= VsD * X(:,j);
9 end

10

11 %Now, add "replicated and tiled Mu"
12 Xnew = Xnew +repmat(Mu,1,size(Xnew,2));

lda_c3_visualize.m
1 figure, hold on; axis([-10 20 -5 20]);
2 xlabel('x_1 - the first feature','fontsize',12);
3 ylabel('x_2 - the second feature','fontsize',12);
4 plot(X1(1,:)',X1(2,:)','ro','markersize',4,"linewidth",2)
5 plot(X2(1,:)',X2(2,:)','g+','markersize',4,"linewidth",2)
6 plot(X3(1,:)',X3(2,:)','bd','markersize',4,"linewidth",2)
7 hold off
8 print -dpng 'LDA_c3_Data.png'
9

10 figure, hold on; axis([-10 20 -5 20]);
11 xlabel('x_1 - the first feature','fontsize',12);
12 ylabel('x_2 - the second feature','fontsize',12);
13 plot(X1(1,:)',X1(2,:)','ro','markersize',4,"linewidth",2)
14 plot(X2(1,:)',X2(2,:)','g+','markersize',4,"linewidth",2)
15 plot(X3(1,:)',X3(2,:)','bd','markersize',4,"linewidth",2)
16

17 plot(Mu1(1),Mu1(2),'c.','markersize',20)
18 plot(Mu2(1),Mu2(2),'m.','markersize',20)
19 plot(Mu3(1),Mu3(2),'r.','markersize',20)
20 plot(Mu(1),Mu(2),'k*','markersize',15,"linewidth",3)
21 text(Mu(1)+0.5,Mu(2)-0.5,'\mu','fontsize',18)
22

23 t = -5:20; line1_x = t*w1(1); line1_y = t*w1(2);
24 plot(line1_x,line1_y,'k-',"linewidth",3);
25 t = -5:10; line2_x = t*w2(1); line2_y = t*w2(2);
26 plot(line2_x,line2_y,'m--',"linewidth",3);
27 hold off
28 print -dpng 'LDA_c3_Data_projection.png'
29

30 %Project the samples through w1
31 wk = w1;
32 z1_wk = wk'*X1; z2_wk = wk'*X2; z3_wk = wk'*X3;
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33

34 z1_wk_Mu = mean(z1_wk); z1_wk_sigma = std(z1_wk);
35 z1_wk_pdf = mvnpdf(z1_wk',z1_wk_Mu,z1_wk_sigma);
36

37 z2_wk_Mu = mean(z2_wk); z2_wk_sigma = std(z2_wk);
38 z2_wk_pdf = mvnpdf(z2_wk',z2_wk_Mu,z2_wk_sigma);
39

40 z3_wk_Mu = mean(z3_wk); z3_wk_sigma = std(z3_wk);
41 z3_wk_pdf = mvnpdf(z3_wk',z3_wk_Mu,z3_wk_sigma);
42

43 figure, plot(z1_wk,z1_wk_pdf,'ro',z2_wk,z2_wk_pdf,'g+',...
44 z3_wk,z3_wk_pdf,'bd')
45 xlabel('z','fontsize',12); ylabel('p(z|w1)','fontsize',12);
46 print -dpng 'LDA_c3_Xw1_pdf.png'
47

48 %Project the samples through w2
49 wk = w2;
50 z1_wk = wk'*X1; z2_wk = wk'*X2; z3_wk = wk'*X3;
51

52 z1_wk_Mu = mean(z1_wk); z1_wk_sigma = std(z1_wk);
53 z1_wk_pdf = mvnpdf(z1_wk',z1_wk_Mu,z1_wk_sigma);
54

55 z2_wk_Mu = mean(z2_wk); z2_wk_sigma = std(z2_wk);
56 z2_wk_pdf = mvnpdf(z2_wk',z2_wk_Mu,z2_wk_sigma);
57

58 z3_wk_Mu = mean(z3_wk); z3_wk_sigma = std(z3_wk);
59 z3_wk_pdf = mvnpdf(z3_wk',z3_wk_Mu,z3_wk_sigma);
60

61 figure, plot(z1_wk,z1_wk_pdf,'ro',z2_wk,z2_wk_pdf,'g+',...
62 z3_wk,z3_wk_pdf,'bd')
63 xlabel('z','fontsize',12); ylabel('p(z|w2)','fontsize',12);
64 print -dpng 'LDA_c3_Xw2_pdf.png'
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Figure 7.9: w∗1 (solid line in black) and w∗2 (dashed line in magenta).

• w∗1 = [0.85395, 0.52036]T , w∗2 = [−0.62899, 0.77742]T .
• Corresponding eigenvalues read

λ1 = 3991.2, λ2 = 1727.7.
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Figure 7.10: Classes PDF, along the first projection vector w∗1; λ1 = 3991.2.

Figure 7.11: Classes PDF, along the second projection vector w∗2; λ2 = 1727.7.

Apparently, the projection vector that has the highest eigenvalue pro-
vides higher discrimination power between classes.
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7.3.4. The LDA: dimensionality reduction

Let X ∈ RN×d be the data matrix, in which each row represents a sam-
ple.

We summarize the main steps that are required to perform the LDA for
dimensionality reduction.

1. Standardize the d-dimensional dataset (d is the number of features).
2. For each class j, compute the d-dimensional mean vector µj.
3. Construct the within-class scatter matrix Sw (7.69) and the

between-class scatter matrix Sb (7.70).
4. Compute the eigenvectors and corresponding eigenvalues of the ma-

trix S−1
w Sb (7.72).

5. Sort the eigenvalues by decreasing order to rank the corresponding
eigenvectors.

6. Choose the k eigenvectors that correspond to the k largest eigenvalues
to construct a transformation matrix

W = [w1|w2| · · · |wk] ∈ Rd×k; (7.75)

the eigenvectors are the columns of this matrix.
7. Project the samples onto a new feature subspace: X → Z := XW .

Remark 7.24.

• rank(S−1
w Sb) ≤ c− 1; we must have k ≤ c− 1.

• The projected feature Zij is x(i) ·wj in the projected coordinates and
(x(i) ·wj) wj in the original coordinates.
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Limitations of the LDA (classifier)

• The LDA produces at most (c− 1) feature projections.
– If the classification error estimates establish that more features

are needed, some other method must be employed to provide those
additional features.

• The LDA is a parametric method, since it assumes unimodal Gaus-
sian likelihoods.

– If the distributions are significantly non-Gaussian, the LDA pro-
jections will not be able to preserve any complex structure of the
data, which may be needed for classification.

• The LDA will fail when the discriminatory information is not in the
mean but rather in the variance of the data.
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LDA vs. PCA

Figure 7.12: PCA vs. LDA.

The (supervised) LDA classifier must work better than the (unsuper-
vised) PCA, for datasets in Figures 7.9 and 7.12.

Recall: Fisher’s LDA was generalized under the assumption of equal class
covariances and normally distributed classes.
However, even if one or more of those assumptions are (slightly) violated,
the LDA for dimensionality reduction can still work reasonably well.
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7.4. Kernel Principal Component Analysis
The kernel principal component analysis (kernel PCA) [70] is an ex-
tension of the PCA using kernel techniques and performing the origi-
nally linear operations of the PCA in a kernel Hilbert space.

Recall: (PCA). Consider a data matrix X ∈ RN×d:
◦ each of the N rows represents a different data point,
◦ each of the d columns gives a particular kind of feature, and
◦ each column has zero empirical mean (e.g., after standardization).

• The goal of the standard PCA is to find an orthogonal weight matrix
Wk ∈ Rd×k such that

Zk = XWk, k ≤ d, (7.76)

where Zk ∈ RN×k is call the truncated score matrix and Zd = Z.
Columns of Z represent the principal components of X.

• (Claim 7.3, p. 158). The transformation matrix Wk turns out to be the
collection of normalized eigenvectors of XTX:

Wk = [w1|w2| · · · |wk], (XTX) wj = λj wj, wT
i wj = δij, (7.77)

where λ1 ≥ λ2 ≥ · · · ≥ λk ≥ 0.
• (Remark 7.4, p. 158). The matrix Zk ∈ RN×k is scaled eigenvectors of
XXT :

Zk = [
√
λ1 u1|

√
λ2 u2| · · · |

√
λk uk], (XXT ) uj = λj uj, uTi uj = δij.

(7.78)
• A data (row) vector x (new or old) is transformed to a k-

dimensional row vector of principal components
z = xWk ∈ R1×k. (7.79)

• (Remark 7.5, p. 159). Let X = U ΣV T be the SVD of X, where
Σ = diag(σ1, σ2, · · · , σd), σ1 ≥ σ2 ≥ · · · ≥ σd ≥ 0.

Then,
V ∼= W ; σ2

j = λj, j = 1, 2, · · · , d,
Zk = [σ1 u1|σ2 u2| · · · |σk uk].

(7.80)
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7.4.1. Principal components of the kernel PCA

Note: Let C = 1
N X

TX, the covariance matrix of X. Then,

C =
1

N

N∑
i=1

x(i)x(i)T ∈ Rd×d, Cjk =
1

N

N∑
i=1

x
(i)
j x

(i)
k . (7.81)

Here, we consider x(i) as a column vector (when standing alone), while it
lies in X as a row.

• The kernel PCA is a generalization of the PCA, where the dataset X
is transformed into a higher dimensional space (by creating non-
linear combinations of the original features):

φ : X ∈ RN×d → φ(X) ∈ RN×p, d < p, (7.82)

and the covariance matrix is computed via outer products between
such expanded samples:

C =
1

N

N∑
i=1

φ(x(i))φ(x(i))T =
1

N
φ(X)Tφ(X) ∈ Rp×p. (7.83)

• To obtain the eigenvectors – the principal components – from the
covariance matrix, we should solve the eigenvalue problem:

Cv = λv. (7.84)

• Assume (7.84) is solved.
– Let, for λ1 ≥ λ2 ≥ · · · ≥ λk ≥ · · · ≥ λp ≥ 0,

Vk = [v1|v2| · · · |vk] ∈ Rp×k, Cvj = λjvj, vTi vj = δij. (7.85)

– Then, the score matrix Zk (principal components) for the ker-
nel PCA reads

Zk = φ(X)Vk ∈ RN×k, (7.86)

which is an analogue to (7.76).

However, it is computationally expensive or impossible to solve the
eigenvalue problem (7.84), when p is large or infinity.
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An Alternative to the Computation of the Score Matrix

Claim 7.25. Let v be an eigenvector of C as in (7.84). Then it can be
expressed as linear combination of data points:

v =
N∑
i=1

αi φ(x(i)). (7.87)

Proof. Since Cv = λv, we get

1

N

N∑
i=1

φ(x(i))φ(x(i))Tv = λv

and therefore

v =
1

λN

N∑
i=1

φ(x(i))φ(x(i))Tv =
1

λN

N∑
i=1

[φ(x(i)) · v]φ(x(i)), (7.88)

where φ(x(i)) · v is a scalar and αi := (φ(x(i)) · v)/(λN).

Note:

• The above claim means that all eigenvectors v with λ 6= 0 lie in the
span of φ(x(1)), · · · , φ(x(N)).

• Thus, finding the eigenvectors in (7.84) is equivalent to finding the
coefficients α = (α1, α2, · · · , αN)T .
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How to find α

• Let Cvj = λjvj with λj 6= 0. Then, (7.87) can be written as

vj =
N∑
`=1

α`jφ(x(`)) = φ(X)Tαj. (7.89)

• By substituting this back into the equation and using (7.83), we get

Cvj = λjvj ⇒
1

N
φ(X)Tφ(X)φ(X)Tαj = λj φ(X)Tαj. (7.90)

and therefore
1

N
φ(X)φ(X)Tφ(X)φ(X)Tαj = λj φ(X)φ(X)Tαj. (7.91)

• Let K be the similarity (kernel) matrix:

K
def
== φ(X)φ(X)T ∈ RN×N . (7.92)

• Then, (7.91) can be rewritten as
K2αj = (Nλj)Kαj. (7.93)

• We can remove a factor of K from both sides of the above equation:a

Kαj = µjαj , µj = Nλj. (7.94)

which implies that αj are eigenvectors of K .
• It should be noticed that αj are analogues of uj, where X =
UΣV T .
aThis will only affects the eigenvectors with zero eigenvalues, which will not be a principle component

anyway.

Note: There is a normalization condition for the αj vectors:
‖vj‖ = 1 ⇐⇒ ‖αj‖ = 1/

√
µj.

∵

[
1 = vTj vj = (φ(X)Tαj)

Tφ(X)Tαj = αT
j φ(X)φ(X)Tαj ⇐ (7.89)

= αT
j Kαj = αT

j (µjαj) = µj ‖αj‖2 ⇐ (7.94)

(7.95)
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7.4.2. Computation of the kernel PCA

Remark 7.26. Let the eigenvalue-eigenvector pairs of the kernel ma-
trix K be given as

Kαj = µjαj, j = 1, 2, · · · , N ; αT
i αj = δij . (7.96)

• Then, referring (7.78) derived for the standard PCA, we may conclude
that the k principal components for the kernel PCA are

Ak = [
√
µ1α1|

√
µ2α2| · · · |

√
µkαk] ∈ RN×k. (7.97)

• It follows from (7.86), (7.89), and (7.95)-(7.96) that for a new point x,
its projection onto the principal components is:

zj = φ(x)Tvj =
1
√
µj
φ(x)T

N∑
`=1

α`jφ(x(`)) =
1
√
µj

N∑
`=1

α`jφ(x)Tφ(x(`))

=
1
√
µj

N∑
`=1

α`jK(x,x(`)) =
1
√
µj
K(x, X)Tαj .

(7.98)
That is, due to (7.95) and (7.96), when vj is expressed in terms of αj,
it must be scaled by 1/

√
µj.

Construction of the kernel matrix K

• The kernel trick is to avoid calculating the pairwise dot products of
the transformed samples φ(x) explicitly by using a kernel function.

• For a selected kernel function K,

K =


K(x(1),x(1)) K(x(1),x(2)) · · · K(x(1),x(N))

K(x(2),x(1)) K(x(2),x(2)) · · · K(x(2),x(N))
... ... . . . ...

K(x(N),x(1)) K(x(N),x(2)) · · · K(x(N),x(N))

 ∈ RN×N . (7.99)

where K is called the kernel function.a
aAs for nonlinear SVM, the most commonly used kernels are the polynomial kernel, the hyperbolic

tangent (sigmoid) kernel, and the Gaussian Radial Basis Function (RBF) kernel. See (5.57)-(5.60), p. 124.
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Normalizing the feature space

• In general, φ(x(i)) may not be zero mean.
• Thus K = φ(X)φ(X)T would better be normalized before start finding

its eigenvectors and eigenvalues.
• Centered features:

φ̃(x(i)) = φ(x(i))− 1

N

N∑
k=1

φ(x(k)), ∀ i. (7.100)

• The corresponding kernel is

K̃(x(i),x(j)) = φ̃(x(i))T φ̃(x(j))

=
(
φ(x(i))− 1

N

N∑
k=1

φ(x(k))
)T(

φ(x(j))− 1

N

N∑
k=1

φ(x(k))
)

= K(x(i),x(j))− 1

N

N∑
k=1

K(x(i),x(k))− 1

N

N∑
k=1

K(x(k),x(j))

+
1

N 2

N∑
k,`=1

K(x(k),x(`)).

(7.101)

• In a matrix form

K̃ = K −K1
1/N
− 1

1/N
K + 1

1/N
K1

1/N
, (7.102)

where 1
1/N

is an N ×N matrix where all entries are equal to 1/N .
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Summary 7.27. (Summary of the Kernel PCA).

• Pick a kernel function K.
• For data X ∈ RN×d, construct the kernel matrix

K = [K(x(i),x(j))] ∈ RN×N . (7.103)

• Normalize the kernel matrix K:

K̃ = K −K1
1/N
− 1

1/N
K + 1

1/N
K1

1/N
. (7.104)

• Solve an eigenvalue problem:

K̃αj = µjαj, αT
i αj = δij. (7.105)

• Then, the k principal components for the kernel PCA are
Ak = [µ1α1|µ2α2| · · · |µkαk] ∈ RN×k, k ≤ N. (7.106)

• For a data point x (new or old), we can represent it as

zj = φ(x)Tvj = φ(x)T
N∑
`=1

α`jφ(x(`)) =
N∑
`=1

α`jK(x,x(`)), j = 1, 2, · · · , k.

(7.107)

Note: Formulas in (7.106)-(7.107) are alternatives of (7.97)-(7.98).

Properties of the KPCA

• With an appropriate choice of kernel function, the kernel PCA can give
a good re-encoding of the data that lies along a nonlinear manifold.

• The kernel matrix is in (N × N)-dimensions, so the kernel PCA will
have difficulties when we have lots of data points.
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Exercises for Chapter 7

7.1. Read pp. 145–158, Python Machine Learning, 3rd Ed., about the PCA.
(a) Find the optimal number of components k∗ which produces the best classifica-

tion accuracy (for logistic regression), by experimenting the example code with
n_components = 1, 2, · · · , 13.

(b) What is the corresponding cumulative explained variance?

7.2. Let A ∈ Rm×n. Prove that ||A||2 = σ1, the largest singular value of A. Hint: Use the
following

||Av1||2
||v1||2

=
σ1||u1||2
||v1||2

= σ1 =⇒ ||A||2 ≥ σ1

and arguments around Equations (7.34) and (7.35) for the opposite directional in-
equality.

7.3. Recall that the Frobenius matrix norm is defined by

||A||F =
( m∑
i=1

n∑
j=1

|aij|2
)1/2

, A ∈ Rm×n.

Show that ||A||F = (σ2
1 + · · ·+ σ2

k)
1/2, where σj are nonzero singular values of A. Hint:

You may use the norm-preserving property of orthogonal matrices. That is, if U is
orthogonal, then ||UB||2 = ||B||2 and ||UB||F = ||B||F .

7.4. Prove Lemma 7.18. Hint: For (b), let Avi = λivi, i = 1, 2, and λ1 6= λ2. Then

(λ1v1) · v2 = (Av1) · v2 = v1 · (Av2)︸ ︷︷ ︸
∵ A is symmetric

= v1 · (λ2v2).

For (a), you may use a similar argument, but with the dot product being defined for
complex values, i.e.,

u · v = uT v,

where v is the complex conjugate of v.
7.5. Use Matlab to generate a random matrix A ∈ R8×6 with rank 4. For example,

A = randn(8,4);
A(:,5:6) = A(:,1:2)+A(:,3:4);
[Q,R] = qr(randn(6));
A = A*Q;

(a) Print out A on your computer screen. Can you tell by looking if it has (numerical)
rank 4?

(b) Use Matlab’s “svd" command to obtain the singular values of A. How many are
“large?" How many are “tiny?" (You may use the command “format short e" to get
a more accurate view of the singular values.)

(c) Use Matlab’s “rank" command to confirm that the numerical rank is 4.



7.4. Kernel Principal Component Analysis 203

(d) Use the “rank" command with a small enough threshold that it returns the value
6. (Type “help rank" for information about how to do this.)

7.6. Verify (7.64). Hint : Use the quotient rule for ∂J (w)
∂w

and equate the numerator to zero.
7.7. Try to understand the kernel PCA more deeply by experimenting pp. 175–188, Python

Machine Learning, 3rd Ed.. Its implementation is slightly different from (but equiv-
alent to) Summary 7.27.

(a) Modify the code, following Summary 7.27, and test if it works as expected as in
Python Machine Learning, 3rd Ed..

(b) The datasets considered are transformed via the Gaussian radial basis function
(RBF) kernel only. What happens if you use the following kernels?

K1(x
(i),x(j)) = (a1 + b1x

(i) · x(j))2 (polynomial of degree up to 2)
K2(x

(i),x(j)) = tanh(a2 + b2x
(i) · x(j)) (sigmoid)

Can you find ai and bi, i = 1, 2, appropriately?
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CHAPTER 8
Cluster Analysis

Cluster analysis or clustering is the task of finding groups of objects
such that the objects in a group will be similar (or related) to one another
and different from (or unrelated to) the objects in other groups. It is a main
task of exploratory data mining, and a common technique for statisti-
cal data analysis, used in many fields, including machine learning, pat-
tern recognition, image analysis, information retrieval, bioinformatics, data
compression, and computer graphics.

History . Cluster analysis was originated in anthropology by Driver
and Kroeber in 1932 [16], introduced to psychology by Zubin in 1938
[84] and Robert Tryon in 1939 [76], and famously used by Cattell begin-
ning in 1943 [11] for trait theory classification in personality psychol-
ogy.
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8.1. Basics for Cluster Analysis

Figure 8.1: Intra-cluster distance vs. inter-cluster distance.

Applications of Cluster Analysis

• Understanding
– group related documents or browsings
– group genes/proteins that have similar functionality, or
– group stocks with similar price fluctuations

• Summarization
– reduce the size of large data sets

Not Cluster Analysis
• Supervised classification – Uses class label information
• Simple segmentation – Dividing students into different registration

groups alphabetically, by last name
• Results of a query – Groupings are a result of an external specification

Clustering uses only the data (unsupervised learning):
to discover hidden structures in data
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8.1.1. Quality of clustering

• A good clustering method will produce high quality clusters with
– high intra-class similarity
– low inter-class similarity

• The quality of a clustering result depends on both the similarity
measure and its implementation

• The quality of a clustering method is also measured by its ability to
discover some or all of the hidden patterns

Measuring the Quality of Clustering

• Dissimilarity/Similarity/Proximity metric: Similarity is ex-
pressed in terms of a distance function d(i, j)

• The definitions of distance functions are usually very different for
interval-scaled, boolean, categorical, ordinal ratio, and vector vari-
ables.

• There is a separate “quality” function that measures the “goodness” of
a cluster.

• Weighted measures: Weights should be associated with different vari-
ables based on applications and data semantics.

• It is hard to define “similar enough” or “good enough”
– the answer is typically highly subjective
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Notion of a Cluster can be Ambiguous

Figure 8.2: How many clusters?

The answer could be:

Figure 8.3: Two clusters.

Figure 8.4: Four clusters.

Figure 8.5: Six clusters.
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Similarity and Dissimilarity Between Objects

• Distances are normally used to measure the similarity or dissimilar-
ity between two data objects

• Some popular ones include: Minkowski distance

d(i, j) = ‖xi − xj‖p = (|xi1 − xj1|p + |xi2 − xj2|p · · · |xid − xjd|p)1/p , (8.1)

where xi, xj ∈ Rd, two d-dimensional data objects.

– When p = 1, it is Manhattan distance
– When p = 2, it is Euclidean distance

• Other Distances: Also, one can use weighted distance, parametric
Pearson product moment correlation, or other dissimilarity measures

• Various similarity measures have been studied for
– Binary variables
– Nominal variables & ordinal variables
– Ratio-scaled variables
– Variables of mixed types
– Vector objects
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8.1.2. Types of clusters

• Center-based clusters
• Contiguity/connectivity-based clusters
• Density-based clusters
• Conceptual clusters

Note: (Well-separated clusters). A cluster is a set of objects such that
an object in a cluster is closer (more similar) to every/some of points
in the cluster, than any points not in the cluster.

Center-based Clusters

• The center of a cluster is often

– a centroid, the average of all the points in the cluster, or
– a medoid, the most representative point of a cluster.

• A cluster is a set of objects such that an object in a cluster is closer (more
similar) to the “center” of a cluster, than to the center of any other
clusters.

Figure 8.6: Well-separated, 4 center-based clusters.
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Contiguity-based Clusters

• Contiguous cluster (nearest neighbor or transitive)
• A cluster is a set of points such that a point in a cluster is closer (or

more similar) to one or more other points in the cluster, than to any
points not in the cluster.

Figure 8.7: 8 contiguous clusters.

Density-based Clusters

• A cluster is a dense region of points, which is separated by low-density
regions, from other regions of high density.

• Used when the clusters are irregular or intertwined, and when noise
and outliers are present.

Figure 8.8: 6 density-based clusters.
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Conceptual Clusters

• Points in a cluster share some general property.

– Conceptual clusters are hard to detect, because they are often none
of the center-based, contiguity-based, or density-based.

– Points in the intersection of the circles belong to both.

Figure 8.9: Conceptual clusters

Clusters Defined by an Objective Function

• Find clusters that minimize or maximize an objective function.

• Enumerate all possible ways of dividing the points into clusters and
evaluate the “goodness” of each potential set of clusters by using the
given objective function. (NP-Hard)

• Can have global or local objectives. Typically,

– Partitional clustering algorithms have global objectives
– Hierarchical clustering algorithms have local objectives
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Computational Complexity Theory

Problem Types
• P (Polynomial Time): Problems which are solvable in polyno-

mial time (when running on a deterministic Turing machinea).
• NP (Non-deterministic Polynomial Time): Decision problems

which can be verified in polynomial time.
• NP-Hard: These are at least as hard as the hardest problems in

NP, in both solution and verification.
• NP-Complete: These are the problems which are both NP and NP-

Hard.
aA Turing machine is a theoretical machine that manipulates symbols on a strip of tape according to

a table of rules. A deterministic Turing machine is a theoretical machine, used in thought experiments
to examine the abilities and limitations of algorithms. In a deterministic Turing machine, the set of
rules impose at most one action to be performed for any given situation. In a nondeterministic Turing
machine, it may have a set of rules that prescribes more than one action for a given situation [13].

Problem Type Verifiable in P-time Solvable in P-time
P Yes Yes
NP Yes Yes or No
NP-Complete Yes Unknown
NP-Hard Yes or No Unknown

Quesiton. P = NP? (P versus NP problem)

• This one is the most famous problem in computer science, and one
of the most important outstanding questions in the mathematical
sciences.

• In fact, the Clay Institute is offering one million dollars for a solu-
tion to the problem.

– It’s clear that P is a subset of NP.
– The open question is whether or not NP problems have deter-

ministic polynomial time solutions.
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8.1.3. Types of clustering and Objective functions

• Partitional clustering
• Hierarchical clustering (agglomerative; divisive)
• Density-based clustering (DBSCAN)

Partitional Clustering

Divide data objects into non-overlapping subsets (clusters) such that
each data object is in exactly one subset

Figure 8.10: Original points & A partitional clustering

Examples are

• K-Means, Bisecting K-Means

• K-Medoids (PAM: partitioning around medoids)

• CLARA, CLARANS (Sampling-based PAMs)
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Hierarchical Clustering

A set of nested clusters, organized as a hierarchical tree

Figure 8.11: Dendrogram and Nested cluster diagram.

Other Distinctions Between Sets of Clusters
• Exclusive (hard) vs. Non-exclusive (soft)

– In non-exclusive clusterings, points may belong to multiple clus-
ters.

• Fuzzy vs. Non-fuzzy

– In fuzzy clustering, a point belongs to every cluster with some
membership weight between 0 and 1

– Membership weights must sum to 1
– Probabilistic clustering has similar characteristics

• Partial vs. Complete

– In some cases, we only want to cluster some of the data

• Homogeneous vs. Heterogeneous

– Cluster of widely different sizes, shapes, and densities
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Objective Functions
Global objective function

• Typically used in partitional clustering

– K-Means minimizes the Sum of Squared Errors (SSE):

SSE =
K∑
i=1

∑
x∈Ci

‖x− µi‖2
2, (8.2)

where x is a data point in cluster Ci and µi is the center for cluster
Ci as the mean of all points in the cluster.

• Mixture models: assume that
the dataset is a “mixture” of a
number of parametric statistical
distributions
(e.g., Gaussian mixture models).

Figure 8.12: A two-component Gaussian
mixture model: data points, and equi-
probability surfaces of the model.

Local objective function

• Hierarchical clustering algorithms typically have local objectives
• Density-based clustering is based on local density estimates
• Graph based approaches: Graph partitioning and shared nearest

neighbors

We will consider the objective functions when we talk about individual
clustering algorithms.
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8.2. K-Means and K-Medoids Clustering

• Given

– X, a dataset of N objects
– K, the number of clusters to form

• Organize the objects into K partitions (K ≤ N ), where each partition
represents a cluster

• The clusters are formed to optimize an objective partitioning cri-
terion:

– Objects within a cluster are similar
– Objects of different clusters are dissimilar

8.2.1. The (basic) K-Means clustering

• Partitional clustering approach

• Each cluster is associated with a centroid (mean)

• Each point is assigned to the cluster with the closest centroid

• Number of clusters, K, must be specified

Algorithm 8.1. Lloyd’s algorithm (a.k.a. Voronoi iteration):
(Lloyd, 1957) [48]

1. Select K points as the initial centroids;
2. repeat
3. Form K clusters by assigning all points to the closest centroid;
4. Recompute the centroid of each cluster;
5. until (the centroids don’t change)
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iteration=1 iteration=2

iteration=3 iteration=15

Figure 8.13: Lloyd’s algorithm: The Voronoi diagrams, the given centroids (•), and the
updated centroids (+), for iteration = 1, 2, 3, and 15.
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The K-Means Clustering – Details

• Initial centroids are often chosen randomly.
– Clusters produced vary from one run to another.

• The centroid is (typically) the mean of the points in the cluster.
• “Closeness” is measured by Euclidean distance, cosine similarity,

correlation, etc..
• The K-Means will converge typically in the first few iterations.

– Often the stopping condition is changed to “until (relatively few
points change clusters)” or some measure of clustering doesn’t
change.

• Complexity is O(N ∗ d ∗K ∗ I), where
N : the number of points
d: the number of attributes
K: the number of clusters
I: the number of iterations

Evaluating the K-Means Clusters

• Most common measure is Sum of Squared Error (SSE):

SSE =
K∑
i=1

∑
x∈Ci

‖x− µi‖2
2, (8.3)

where x is a data point in cluster Ci and µi is the center for cluster Ci.
• Multiple runs: Given sets of clusters, we can choose the one with the

smallest error.
• One easy way to reduce SSE is to increase K, the number of clusters.

– A good clustering with smaller K can have a lower SSE than a
poor clustering with higher K.

The K-Means is heuristic to minimize the SSE.
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Figure 8.14: K-Means clustering example.
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Problems with Selecting Initial Points

The chance of selecting one centroid from each cluster is small.

• Chance is relatively small when K is large

• If clusters are the same size, n, then

P =
# of ways to select a centroid from each cluster

# of ways to select K centroids

=
K!nK

(Kn)K
=

K!

KK
.

• For example, if K = 5 or 10, then probability is:

5!/55 = 0.0384, 10!/1010 = 0.00036.

• Sometimes the initial centroids will readjust themselves in “right”
way, and sometimes they don’t.

Figure 8.15: Importance of choosing initial centroids.
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Solutions to Initial Centroids Problem
• Multiple runs

– Helps, but probability is not on your side

• Sample and use hierarchical clustering to determine initial cen-
troids

• Select more than K initial centroids and then, among these initial
centroids

– Select most widely separated

• Post-processing

• Bisecting K-Means
– Not as susceptible to initialization issues

Pre-processing and Post-processing

• Pre-processing

– Normalize the data
– Eliminate outliers

• Post-processing

– Eliminate small clusters that may represent outliers
– Split “loose” clusters, i.e., clusters with relatively high SSE
– Merge clusters that are “close” and that have relatively low SSE

* Can use these steps during the clustering process – ISODATA
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8.2.2. Bisecting K-Means algorithm

A variant of the K-Means that can produce a partitional or a hierarchical
clustering

1. Initialize (a list of clusters), containing all points.
2. Repeat

(a) Select a cluster from the list of clusters
(b) for i = 1 to iter_runs do

Bisect the selected cluster using the basic K-Means
end for

(c) Add the two clusters from the bisection with the lowest
SSE to the list of clusters.

until (the list of clusters contains K clusters)

Figure 8.16: Bisecting K-Means algorithm, with K = 4.

Note: The bisecting K-Means algorithm is not as susceptible to initial-
ization issues as the basic K-Means clustering.
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Limitations of K-Means Algorithms

• The K-Means have problems when clusters are of differing

– sizes, densities, and non-globular shapes

• The K-Means have problems when the data contains outliers

Figure 8.17: The K-Means with 3 clusters of different sizes.

Figure 8.18: The K-Means with 3 clusters of different densities.

Figure 8.19: The K-Means with 2 non-globular clusters.



8.2. K-Means and K-Medoids Clustering 225

Overcoming K-Means Limitations

• Use a larger number of clusters
• Several clusters represent a true cluster

Figure 8.20: Unequal-sizes.

Figure 8.21: Unequal-densities.
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Figure 8.22: Non-spherical shapes.

Overcoming the K-Means Outlier Problem

• The K-Means algorithms are sensitive to outliers.

– Since an object with an extremely large value may substantially
distort the distribution of the data.

• Solutions:

(a) Instead of taking the mean value of the object in a cluster as a ref-
erence point, medoids can be used, which is the most centrally
located object in a cluster.

(b) Develop an effective outlier removal algorithm. We will do
it as a project which combines clustering and supervised learning
for classification.
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8.2.3. The K-Medoids algorithm

The K-Medoids algorithm (or PAM algorithm) is a clustering al-
gorithm similar to the K-Means algorithm. Both the K-Means and
K-Medoids algorithms are partitional (breaking the dataset up into
groups) and both attempt to minimize the distance between points la-
beled to be in a cluster and a point designated as the center of that clus-
ter. The K-Medoids chooses data points as centers (medoids) and can
be used with arbitrary distances, while the K-Means only minimizes
the squared Euclidean distances from cluster means. The PAM method
was proposed by (Kaufman & Rousseeuw, 1987) [37] for the work with
L1-norm and other distances.

• Find representative objects, called medoids, in clusters.
• The PAM (partitioning around medoids) starts from an initial set of

medoids and iteratively replaces one of the medoids by one of the
non-medoids if it improves the total distance of the resulting clus-
tering.

• The PAM works effectively for small datasets, but does not scale
well for large data sets.

• CLARA (Clustering LARge Applications): sampling-based method
(Kaufmann & Rousseeuw, 1990) [38]

• CLARANS: CLARA with randomized search (Ng & Han, 1994) [54]

PAM (Partitioning Around Medoids) : Use real objects to represent the
clusters (called medoids).

Initialization: select K representative objects;
Associate each data point to the closest medoid;
while (the cost of the configuration decreases) :

For each medoid m and each non-medoid data point o :
swap m and o;
associate each data point to the closest medoid;
recompute the cost (sum of distances of points to their medoid);

If the total cost of the configuration increased, undo the swap;
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Pros and cons of the PAM
• The PAM is more robust than the K-Means in the presence of noise

and outliers, because a medoid is less influenced by outliers or other
extreme values than a mean.

• The PAM works efficiently for small datasets but does not scale well
for large data sets.

• The run-time complexity of the PAM is O(K(N − K)2) for each itera-
tion, where N is the number of data points and K is the number of
clusters.

⇒ CLARA (Clustering LARge Applications): sampling-based method
(Kaufmann & Rousseeuw, 1990) [38]

The PAM finds the best K-medoids among a given data, and the CLARA
finds the best K-medoids among the selected samples.

8.2.4. CLARA and CLARANS

CLARA (Clustering LARge Applications)
• Sampling-based PAM (Kaufmann & Rousseeuw, 1990) [38]
• It draws multiple samples of the dataset, applies the PAM on each

sample, and gives the best clustering as the output.

⊕ Strength: deals with larger data sets than the PAM.
	 Weakness:

– Efficiency depends on the sample size.
– A good clustering based on samples will not necessarily represent

a good clustering of the whole data set, if the sample is biased.

• Medoids are chosen from the sample:
	 The algorithm cannot find the best solution if one of the best K-

Medoids is not among the selected samples.
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CLARANS (“Randomized” CLARA)
• CLARANS (CLARA with Randomized Search) (Ng & Han; 1994,2002)

[54, 55]
• The CLARANS draws sample of neighbors dynamically.

– CLARANS draws a sample of neighbors in each step of a search,
while CLARA draws a sample of nodes at the beginning of a
search.

• The clustering process can be presented as searching a graph where
every node is a potential solution, that is, a set of K medoids.

• If a local optimum is found, the CLARANS starts with new ran-
domly selected node in search for a new local optimum.

• Finds several local optimums and output the clustering with the best
local optimum.

⊕ It is more efficient and scalable than both the PAM and the CLARA;
handles outliers.

⊕ Focusing techniques and spatial access structures may further im-
prove its performance; see (Ng & Han, 2002) [55] and (Schubert &
Rousseeuw, 2018) [71].

	 Yet, the computational complexity of the CLARANS is O(N 2), where
N is the number of objects.

	 The clustering quality depends on the sampling method.
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8.3. Hierarchical Clustering

8.3.1. Basics of AGNES and DIANA

Hierarchical clustering can be divided into two main types: agglomerative
and divisive.

Figure 8.23: AGNES and DIANA

Agglomerative hierarchical clustering
(a.k.a. AGNES: Agglomerative Nesting). It works in a bottom-up manner.

• Each object is initially considered as its own singleton cluster (leaf).
• At each iteration, the two closest clusters are merged into a new

bigger cluster (nodes).
• This procedure is iterated until all points are merged into a single

cluster (root).
• The result is a tree which can be plotted as a dendrogram.

Divisive hierarchical clustering
(a.k.a. DIANA: Divisive Analysis). It works in a top-down manner; the
algorithm is an inverse order of the AGNES.

• It begins with the root, where all objects are included in a single cluster.

• Repeat: the most heterogeneous cluster is divided into two.
• Until: all objects are in their own cluster.
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Note: Agglomerative clustering is good at identifying small clusters,
while divisive hierarchical clustering is good for large clusters.

Complexity

• The optimum cost is O(N 2), because it uses the proximity matrix. (N
is the number of points)

• In practice, O(N 3) in many cases.

– There are O(N) steps and at each step the proximity matrix of size
O(N 2) must be updated and searched.

– Complexity can be reduced to O(N 2log(N)) for some approaches.

Limitations

• Greedy: Once a decision is made to combine two clusters, it cannot be
undone.

• No global objective function is directly minimized.

• Most algorithms have problems with one or more of:

– Sensitivity to noise and outliers
– Difficulty handling different sized clusters and non-convex shapes
– Chaining, breaking large clusters

Hierarchical Clustering vs. K-Means

• Recall that K-Means or K-Medoids requires

– The number of clusters K
– An initial assignment of data to clusters
– A distance measure between data d(xi,xj)

• Hierarchical clustering requires only a similarity measure between
groups/clusters of data points.
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8.3.2. AGNES: Agglomerative clustering

Quesiton. How do we measure the similarity (or dissimilarity) between
two groups of observations?

A number of different cluster agglomeration methods (i.e, linkage meth-
ods) have been developed to answer to the question. The most popular
choices are:

• Single linkage
• Complete linkage
• Group linkage
• Centroid linkage
• Ward’s minimum variance

1. Single linkage: the similarity of the closest pair

dSL(G,H) = min
i∈G,j∈H

d(i, j). (8.4)

• Single linkage can produce “chaining”, where a sequence of
close observations in different groups cause early merges of those
groups

• It tends to produce long “loose” clusters.

2. Complete linkage: the similarity of the furthest pair

dCL(G,H) = max
i∈G,j∈H

d(i, j). (8.5)

• Complete linkage has the opposite problem; it might not merge
close groups because of outlier members that are far apart.

• It tends to produce more compact clusters.
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3. Group average: the average similarity between groups

dGA(G,H) =
1

NGNH

∑
i∈G

∑
j∈H

d(i, j). (8.6)

– Group average represents a natural compromise, but depends
on the scale of the similarities. Applying a monotone transforma-
tion to the similarities can change the results.

4. Centroid linkage: It computes the dissimilarity between the cen-
troid for group G (a mean vector of length d variables) and the centroid
for group H.

5. Ward’s minimum variance: It minimizes the total within-cluster
variance. More precisely, at each step, the method finds the pair of
clusters that leads to minimum increase in total within-cluster
variance after merging. It uses the squared error (as an objective
function).
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Interpretable Visualization of AGNES

• Each level of the resulting tree is a segmentation of data
• The algorithm results in a sequence of groupings
• It is up to the user to choose a natural clustering from this se-

quence

Dendrogram

• Agglomerative clustering is monotonic

– The similarity between merged clusters is monotone decreas-
ing with the level of the merge.

• Dendrogram: Plot each merge at the dissimilarity between the two
merged groups

– Provides an interpretable visualization of the algorithm and
data

– Useful summarization tool, part of why hierarchical clustering
is popular

Figure 8.24: Six observations and a dendrogram showing their hierarchical clustering.

Remark 8.2.

• The height of the dendrogram indicates the order in which the clus-
ters were joined; it reflects the distance between the clusters.

• The greater the difference in height, the more dissimilarity.
• Observations are allocated to clusters by drawing a horizontal line

through the dendrogram. Observations that are joined together below
the line are in the same clusters.
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Single Link

Figure 8.25: Single link clustering of six points.

• Pros: Non-spherical, non-convex clusters
• Cons: Chaining

Complete Link

Figure 8.26: Complete link clustering of six points.

• Pros: more robust against noise (no chaining)
• Cons: Tends to break large clusters; biased towards globular clusters
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Average Link

Figure 8.27: Average link clustering of six points.

• Compromise between single and complete links

Ward’s Minimum Variance Method

• Similarity of two clusters is based on the increase in squared error
when two clusters are merged

• Less susceptible to noise and outliers

• Biased towards globular clusters.

• Hierarchical analogue of the K-Means; it can be used to initialize
the K-Means. (Note that the K-Means works with a global objective
function.)
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8.4. DBSCAN: Density-based Clustering

In density-based clustering:

• Clusters are defined as areas of higher density than the remainder
of the data set. (core points)

• Objects in sparse areas are usually considered to be noise and border
points.

• The most popular density-based clustering method is
– DBSCANa (Ester, Kriegel, Sander, & Xu, 1996) [18].

aDensity-Based Spatial Clustering of Applications with Noise (DBSCAN).

DBSCAN

• Given a set of points, it groups points that are closely packed together
(points with many nearby neighbors),

– marking as outliers points that lie alone in low-density regions.

• It is one of the most common clustering algorithms and also most
cited in scientific literature. (Citation #: 28,008, as of Apr. 15, 2023)

– In 2014, the algorithm was awarded the test of time awarda at
the leading data mining conference,
KDD 2014: https://www.kdd.org/kdd2014/.

aThe test of time award is an award given to algorithms which have received substantial attention in
theory and practice.
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Preliminary for DBSCAN

• Consider a dataset to be clustered.

• Let ε be a parameter specifying the radius of a neighborhood with
respect to some point.

• In DBSCAN clustering, the points are classified as core points,
reachable points, and outliers, as follows:

– A point p is a core point if at least m (=minPts) points are within
distance ε of it (including p itself).

– A point q is directly reachable from p if point q is within dis-
tance ε from the core point p.
(Points are only said to be directly reachable from core points.)

– A point q is reachable from p if there is a path p1, · · · , pn with
p1 = p and pn = q, where each pi+1 is directly reachable from pi.
(Note that this implies that all points on the path must be core
points, with the possible exception of q.)

– All points not reachable from any other points are outliers or
noise points.

• Now, a core point forms a cluster together with all points (core or
non-core) that are reachable from it.

– Each cluster contains at least one core point;
non-core points can be part of a cluster, but they form its “edge”,
since they cannot be used to reach more points.

– A non-core reachable point is also called a border point.

User parameters:

• ε: the radius of a neighborhood
• minPts: the minimum number of points in the ε-neighborhood
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Illustration of the DBSCAN

Figure 8.28: Illustration of the DBSCAN, with m (= minPts) = 4.

• Point A and 5 other red points are core points. They are all reachable
from one another, so they form a single cluster.

• Points B and C are not core points, but are reachable from A (via
other core points) and thus belong to the cluster as well.

• Point N is a noise point that is neither a core point nor directly-
reachable.

Note: Reachability is not a symmetric relation since, by definition,
no point may be reachable from a non-core point, regardless of distance.
(A non-core point may be reachable, but nothing can be reached from it.)

Definition 8.3. Two points p and q are density-connected if there
is a point c such that both p and q are reachable from c. Density-
connectedness is symmetric.

A DBSCAN cluster satisfies two properties:

1. All points within the cluster are mutually density-connected.
2. If a point is density-reachable from any point of the cluster, then

it is part of the cluster as well.
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DBSCAN: Pseudocode
DBSCAN

1 DBSCAN(D, eps, MinPts)
2 C=0 # Cluster counter
3 for each unvisited point P in dataset D
4 mark P as visited
5 NP = regionQuery(P, eps) # Find neighbors of P
6 if size(NP) < MinPts
7 mark P as NOISE
8 else
9 C = C + 1

10 expandCluster(P, NP, C, eps, MinPts)
11

12 expandCluster(P, NP, C, eps, MinPts)
13 add P to cluster C
14 for each point Q in NP
15 if Q is not visited
16 mark Q as visited
17 NQ = regionQuery(Q, eps)
18 if size(NQ) >= MinPts
19 NP = NP joined with NQ
20 if Q is not yet member of any cluster
21 add Q to cluster C

Figure 8.29: Original points (left) and point types of the DBSCAN clustering with eps=10
and MinPts=4 (right): core (green), border (blue), and noise (red).

Note: In Pseudocode: Line 7 may classify a border point as noise,
which would be corrected by Lines 20-21.
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Properties of DBSCAN Clustering

• Resistant to Noise
• Can handle clusters of different shapes and sizes
• Eps and MinPts depend on each other and can be hard to specify

When the DBSCAN does NOT work well

• Varying densities
• High-dimensional data

Figure 8.30: Original points.

Figure 8.31: The DBSCAN clustering. For both cases, it results in 3 clusters.

Overall, DBSCAN is a great density-based clustering algorithm.
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8.5. Cluster Validation

8.5.1. Basics of cluster validation

• For supervised classification (= using class label), we have a variety of
measures to evaluate how good our model is.
◦ Accuracy, precision, recall

• For cluster analysis (= unsupervised), the analogous question is:

How to evaluate the “goodness” of the resulting clusters?

• But “clusters are in the eye of the beholder”!

• Yet, we want to evaluate them. Why?
◦ To avoid finding patterns in noise
◦ To compare clustering algorithms
◦ To compare two sets of clusters
◦ To compare two clusters

Aspects of Cluster Validation

1. Understanding the clustering tendency of a set of data,
(i.e., distinguishing non-random structures from all the retrieved).

2. Validation Methods?
• External validation: Compare the results of a cluster analysis

to externally known class labels (ground truth).
• Internal validation: Evaluating how well the results of a cluster

analysis fit the data without reference to external information –
use only the data.

3. Compare clusterings to determine which is better.
4. Determining the “correct” number of clusters.

For 2 and 3, we can further distinguish whether we want to evaluate the
entire clustering or just individual clusters.
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Definition 8.4. Precision and Recall
Precision is the fraction of relevant instances among all the retrieved,
while recall (a.k.a. sensitivity) is the fraction of relevant instances that
were retrieved.

Figure 8.32: Illustration of precision and recall, Wikipedia.

Note: Therefore, both precision and recall are about relevance of
the retrieval, measured respectively from all the retrieved instances
and all the relevant instances in the database.
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Measures of Cluster Validity

Numerical measures for judging various aspects of cluster validity are
classified into the following three types.

• External Measures: Used to measure the extent to which cluster
labels match externally supplied class labels.

– Entropy, Purity, Rand index
– Precision, Recall

• Internal Measures: Used to measure the goodness of a clustering
structure without respect to external information.

– Correlation, Similarity matrix
– Sum of Squared Error (SSE), Silhouette coefficient

• Relative Measures:

– Used to compare 2 different clusterings or clusters.
– Often an external or internal measure is used for this function,

e.g., SSE or entropy

Definition 8.5. The correlation coefficient ρX,Y between two random
variables X and Y with expected values µX and µY and standard devia-
tions σX and σY is defined as

ρX,Y = corr(X, Y ) =
cov(X, Y )

σXσY
=

E[(X − µX)(Y − µY )]

σXσY
∈ [−1, 1]. (8.7)

If X and Y are independent, ρX,Y = 0. (The reverse may not be true.)

Note: The correlation between two vectors u and v is the cosine of
the angle between the two vectors.

corr(u,v) =
u · v
‖u‖ ‖v‖

. (8.8)

The correlation between two matrices can be defined similarly, by con-
sidering the matrices as vectors.
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Measuring Cluster Validity Via Correlation

• Two matrices

– Proximity matrixa (P ∈ RN×N )
– Incidence matrix (I ∈ RN×N )

* One row and one column for each data point
* An entry is 1 if the associated pair of points belong to the same cluster
* An entry is 0 if the associated pair of points belongs to different clusters

• Compute the correlation between the two matrices

– Since the matrices are symmetric, only the correlation between
N(N − 1)/2 entries needs to be calculated.

• High correlation indicates that points that belong to the same clus-
ter are close to each other.
Example: For K-Means clusterings of two data sets, the correlation
coefficient are:

Figure 8.33: ρP,I = −0.924. Figure 8.34: ρP,I = −0.581.

• Not a good measure for some density- or contiguity-based clus-
ters (e.g., single link HC).
aA proximity matrix is a square matrix in which the entry in cell (i, j) is some

measure of the similarity (or distance) between the items to which row i and column j
correspond.
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Using Similarity Matrix for Cluster Validation

Order the similarity matrix with respect to cluster labels and inspect
visually.

Figure 8.35: Clusters are so crisp!

Figure 8.36: Clusters in random data are not so crisp.
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Figure 8.37: Similarity matrix for cluster validation, for DBSCAN.

8.5.2. Internal and external measures of cluster validity

Internal Measures
• (Average) SSE is good for comparing two clusterings or two clusters.

SSE =
K∑
i=1

∑
x∈Ci

||x− µi‖2. (8.9)

• It can also be used to estimate the number of clusters

10 clusters

Figure 8.38: Estimation for the number of clusters.
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Cohesion and Separation

• Cluster cohesion: Measure how closely related are objects in a cluster

– Example: Within-cluster sum of squares (WSS=SSE)

WSS =
K∑
i=1

∑
x∈Ci

||x− µi‖2. (8.10)

• Cluster separation: Measures how distinct or well-separated a clus-
ter is from other clusters

– Example: Between-cluster sum of squares (BSS)

BSS =
K∑
i=1

|Ci| ||µ− µi‖2. (8.11)

• Total sum of squares: TSS = WSS +BSS

– TSS is a constant for a given data set (independently of the number
of clusters)

– Example: a cluster {1, 2, 4, 5} can be separated into two clusters
{1, 2} ∪ {4, 5}. It is easy to check the following.

* 1 cluster: TSS = WSS +BSS = 10 + 0 = 10.
* 2 clusters: TSS = WSS +BSS = 1 + 9 = 10.

Silhouette Coefficient

• Silhouette coefficient combines ideas of both cohesion and sepa-
ration, but for individual points. For an individual point i:

– Calculate a(i) = average distance of i to all other points in its cluster
– Calculate b(i) = min {average distance of i to points in another cluster}
– The silhouette coefficient for the point i is then given by

s(i) = 1− a(i)/b(i). (8.12)
– Typically, s(i) ∈ [0, 1].
– The closer to 1, the better.

• We can calculate the average silhouette width for a cluster or a
clustering
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Selecting K with Silhouette Analysis on K-Means Clustering

Figure 8.39: n_clusters = 2;
average silhouette score = 0.705.

Figure 8.40: n_clusters = 3;
average silhouette score = 0.588.

Figure 8.41: n_clusters = 4;
average silhouette score = 0.651.

https://scikit-learn.org

Figure 8.42: n_clusters = 5;
average silhouette score = 0.564.

Figure 8.43: n_clusters = 6;
average silhouette score = 0.450.

• The silhouette plot shows that
(n_clusters = 3, 5, and 6) are
bad picks for the data, due to
– the presence of clusters with below

average silhouette scores
– wide fluctuations in the size of the

silhouette plots

• Silhouette analysis is ambiva-
lent in deciding between 2 and
4.

• When n_clusters = 4, all the
silhouette subplots are more or
less of similar thickness.
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Another way of Picking K with Silhouette Analysis

10 clusters

Figure 8.44: Average silhouette coefficient vs. number of clusters.
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External Measures of Cluster Validity

• Entropya

– For cluster j, let pij be the probability that a member of cluster j
belongs to class i, defined as

pij = nij/Nj, (8.13)

where Nj is the number of points in cluster j and nij is the number
of points of class i in cluster j.

– The entropy of each cluster j is defined as

ej = −
L∑
i=1

pij log2 pij, (8.14)

where L is the number of classes and
– The total entropy is calculated as the sum of entropies of each clus-

ter weighted by the size of each cluster: for N =
∑K

j=1Nj,

e =
1

N

K∑
j=1

Nj ej. (8.15)

• Purity

– The purity of cluster j is given by

purityj = max
i
pij. (8.16)

– The overall purity of a clustering is

purity =
1

N

K∑
j=1

Nj purityj. (8.17)

aThe concept of entropy was introduced earlier in § 5.4.1. Decision tree objectives, when we defined
impurity measures. See (5.68) on p. 130.
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Final Comment on Cluster Validity

The following is a claim in an old book by (Jain & Dubes, 1988) [35].
However, today, the claim is yet true.

“The validation of clustering structures is the most difficult and frus-
trating part of cluster analysis. Without a strong effort in this direction,
cluster analysis will remain a black art accessible only to those true be-
lievers who have experience and great courage.”
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8.6. Self-Organizing Maps

8.6.1. Basics of the SOM

• Self-Organizing Map (SOM) refers to a process in which the inter-
nal organization increases automatically without being guided or man-
aged by an outside source.

– This process is due to local interaction with simple rules.
– Local interaction gives rise to a global structure.

• Why SOM?
A high-dimensional dataset is represented as an one/two-dimensional
discretized pattern using self-organizing maps or Kohonen maps.

• Advantage of SOM?
The primary benefit of employing an SOM is that the data is sim-
ple to read and comprehend. Grid clustering and the decrease of
dimensionality make it simple to spot patterns in the data.

We can interpret emerging global structures as learned structures,
which in turn appear as clusters of similar objects.

Note: The SOM acts as a unsupervised clustering algorithm and a
powerful visualization tool as well.

• It considers a neighborhood structure among the clusters.
⊕ The SOM is widely used in many application domains, such as econ-

omy, industry, management, sociology, geography, text mining, etc..
⊕ Many variants have been suggested to adapt the SOM to the pro-

cessing of complex data, such as time series, categorical data, nominal
data, dissimilarity or kernel data.

	 However, the SOM has suffered from a lack of rigorous results on
its convergence and stability.
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Game of Life : – Most famous example of self-organization.

Simple local rules (en.wikipedia.org/wiki/Conway’s_Game_of_Life):
Suppose that every cell interacts with its eight neighbors.

• Any live cell with fewer than two live neighbors dies, as if
caused by under-population.

• Any live cell with two or three live neighbors lives on to the
next generation.

• Any live cell with more than three live neighbors dies, as if by
overcrowding.

• Any dead cell with exactly three live neighbors becomes a live
cell, as if by reproduction.

Figure 8.45: Still life, oscillator, and spaceship.
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SOM Architecture

• A feed-forward neural network architecture based on competi-
tive learninga, invented by Teuvo Kohonen in 1982 [39].

• Neurobiological studies indicate that different sensory inputs (motorb,
visual, auditory, etc.) are mapped onto corresponding areas of the cere-
bral cortex in an orderly fashion.

– Our interest is in building artificial topographic maps that
learn through self-organization in a neurobiologically inspired
manner.

aOne particularly interesting class of unsupervised system is based on competitive
learning, in which the output neurons compete amongst themselves to be activated,
with the result that only one is activated at any one time. This activated neuron is
called a winner-takes-all neuron or simply the winning neuron. Such competi-
tion can be induced/implemented by having lateral inhibition connections (nega-
tive feedback paths) between the neurons. The result is that the neurons are forced to
organize themselves.

bMotor output is a response to the stimuli received by the nervous system.

• The principal goal of an SOM is to transform an incoming sig-
nal pattern of arbitrary dimension into a one/two-dimensional dis-
crete map, and to perform this transformation adaptively in a topo-
logically ordered fashion.

– We therefore set up our SOM by placing neurons at the nodes of a
one/two-dimensional lattice.

– Higher dimensional maps are also possible, but not so common.

• The neurons become selectively tuned, and the locations of the
neurons so tuned (i.e. the winning neurons) become ordered, and a
meaningful coordinate system for the input features is created on
the lattice.

– The SOM thus forms the required topographic map of the input
patterns.

• We can view this as a non-linear generalization of principal com-
ponent analysis (PCA).
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Versions of the SOM

• Basic version: a stochastic process
• Deterministic version:

– For industrial applications, it can be more convenient to use a
deterministic version of the SOM, in order to get the same results
at each run of the algorithm when the initial conditions and the
data remain unchanged (repeatable!).

– To address this issue, T. Kohonen has introduced the batch SOM
in 1995 [40].

Remark 8.6. The following are quite deeply related to each other.

(a) Repeatability
(b) Optimality
(c) Convergence
(d) Interpretability

Indeterministic Issue & Deterministic Clustering

Clustering algorithms are to partition objects into groups based on their
similarity.

• Many clustering algorithms face indeterministic issue.

– For example, the standard K-means algorithm randomly selects
its initial centroids, which causes to produce different results in
each run.

• There have been several studies on how to achieve deterministic
clustering.

(a) Multiple runs
(b) Initialization, using hierarchical clustering approaches and PCA
(c) Elimination of randomness (Zhang et al., 2018) [83]
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8.6.2. Kohonen SOM networks

We will see some details of the Kohonen SOM network or Kohonen
network.

• The Kohonen SOM network has a feed-forward structure with a
single computational layer arranged in rows and columns.

• Each neuron is fully connected to all the source nodes in the input
layer

Figure 8.46: Kohonen network.

Data Types for the Kohonen SOM

Originally, the SOM algorithm was defined for data described by numer-
ical vectors which belong to a subset X of Rd.

• Continuous setting: the input space X ⊂ Rd is modeled by a proba-
bility distribution with a density function f ,

• Discrete setting: the input space X comprises N data points

x1,x2, · · · ,xN ∈ Rd.

Here the discrete setting means a finite subset of the input space.
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Components of Self-Organization

Preliminary 8.7. The self-organization process involves four major
components:

1. Initialization: All the connection weights are initialized with
small random values.

2. Competition: For each input pattern, the neurons compute their re-
spective values of a discriminant function which provides the basis
for competition.

• The particular neuron with the smallest value of the discrim-
inant function is declared the winner.

3. Cooperation: The winning neuron determines the spatial lo-
cation of a topological neighborhood of excited neurons, thereby
providing the basis for cooperation among neighboring neurons.
(smoothing the neighborhood of the winning neuron)

4. Adaptation: The excited neurons decrease their individual values
of the discriminant function in relation to the input pattern through
suitable adjustment of the associated connection weights, such that
the response of the winning neuron to the subsequent application of a
similar input pattern is enhanced.
(making the winning neuron look more like the observation)

Remark 8.8. The SOM is an unsupervised system based on competi-
tive learning.

• The output neurons compete amongst themselves to be activated,
with the result that only one is activated at any one time.

• This activated neuron is called a winner-takes-all neuron or sim-
ply the winning neuron.

• Such competition can be implemented by having lateral inhibition
connections (negative feedback paths) between the neurons.

• The result: The neurons are forced to organize themselves.
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The Competitive Process

• The input space is d-dimensional (i.e. there are d input units).
• The connection weights between the d input units and the kth

output neuron (in the computational layer) can be written

wk =


w1k

w2k
...
wdk

, k = 1, · · · , K, (8.18)

where K is the total number of neurons in the computational layer.

Definition 8.9. We can define the discriminant function to be the
squared Euclidean distance between the input vector x and the weight
vector wk for each neuron k:

dk(x) = ||x−wk||2 =
d∑
i=1

(xi − wik)2. (8.19)

Thus, the neuron whose weight vector comes closest to the input vector (i.e.
is most similar to it) is declared the winner; see Preliminary 8.7, item 2.
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The Cooperative Process

In neurobiological studies, it is found that there is lateral interaction
between a set of excited neurons.

• When one neuron fires, its closest neighbors tend to get excited more
than those further away.

• There is a topological neighbourhood that decays with distance.

Definition 8.10. Neighbourhood Function

• Let us take K units on a regular lattice
(string-like for 1D, or grid-like for 2D).

• If K = {1, 2, · · · , K} and t is the time, a neighborhood function h(t)
is defined on K ×K. It has to satisfy the following properties:

(a) h is symmetric with hkk = 1,
(b) hk` depends only on the distance dist(k, `) between units k and ` on

the lattice, and
(c) h decreases with increasing distance.

• Several choices are possible for h.

– The most classical is the step function; equal to 1 if the distance
between k and ` is less than a specific radius (this radius can de-
crease with time), and 0 otherwise.

– Another very classical choice is a Gaussian-shaped function

hk`(t) = exp
(
− dist2(k, `)

2σ2(t)

)
, (8.20)

where σ2(t) can decrease over time to reduce the intensity and
the scope of the neighborhood relations. A popular time depen-
dence is an exponential decay:

σ(t) = σ0 exp(−t/τσ). (8.21)
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The Adaptive Process

The SOM must involve an adaptive (learning) process by which

• the outputs become self-organized and
• the feature map between inputs and outputs is formed.

Learning Rule in the Adaptive Process

• The point of the topographic neighborhood is twofold:

– The winning neuron gets its weights updated.
– Its neighbors will have their weights updated as well, although

by not as much as the winner itself.

• An appropriate weight update rule is formulated as

∆wk = η(t) · hI(x),k(t) · (x−wk), ∀ k ∈ K, (8.22)

where I(x) is the index of the winning neuron and η(t) is a learning
rate (0 < η(t) < 1, constant or decreasing).

• The effect of each weight update is to move the weight vectors
wk of the winning neuron and its neighbors towards the input vector
x.

– Repeated presentations of the training data thus leads to topo-
logical ordering.

Remark 8.11. The learning rule (8.22) has several properties:

• Maximal at the winning neuron.
• Symmetric about that neuron.
• Decreases monotonically to zero as the distance goes to infinity.
• Translation invariant (i.e., independent of the location of the win-

ning neuron).
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8.6.3. The SOM algorithm and its interpretation

The stages of the SOM can be summarized as follows.

Algorithm 8.12. The Stochastic SOM

• Initialization: A connection weight wk ∈ Rd is attached to each unit
k, whose initial values are chosen at random and denoted by

W (0) = [w1(0),w2(0), · · · ,wK(0)].

• For t = 0, 1, 2, · · ·

(a) Sampling: A data point x is randomly drawn (according to the
density function f or from the finite set X)

(b) Matching: The best matching unit is defined by

I(x) = arg min
k∈K
||x−wk(t)||2 (8.23)

(c) Updating: All the weights are updated via

wk(t+ 1) = wk(t) + ∆wk, ∀ k ∈ K, (8.24)

where, as defined in (8.22),

∆wk = η(t) · hI(x),k(t) · (x−wk).

(d) Continuation: Keep returning to the sampling step until the
feature map stops changing.

Results of the SOM

• After learning, cluster Ck can be defined as the set of inputs closer to
wk than to any other one.

• The Kohonen map is the representation of

– the weights or
– the cluster contents,

displayed according to the neighborhood structure.



8.6. Self-Organizing Maps 263

Example: Data approximation

Figure 8.47: Data approximation: One-dimensional SOM vs. PCA.
SOM is a red broken line with squares, 20 nodes. The first principal component is pre-
sented by a blue line. Data points are the small gray circles. The fraction of variance
unexplained in this example is 6.86% for SOM and 23.23% for PCA.
(“Self-organizing map”, Wikipedia)

Properties of the Kohonen Maps

• The quantization property: the weights represent the data space
as accurately as possible, as do other quantization algorithms.

– To get a better quantization, the learning rate η(t) decreases with
time as well as the scope of the neighborhood function h.

• The self-organization property, that means that the weights pre-
serve the topology of the data:

– close inputs belong to the same cluster (as do any clustering
algorithms) or to neighboring clusters.
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Theoretical Issues

• The algorithm is easy to define and to use, and a lot of practical studies
confirm that it works.

– However, the theoretical study of its convergence when t tends to
∞ remains without complete proof and provides open problems.

– The main question is to know if the solution obtained from a finite
sample converges to the true solution that might be obtained from
the true data distribution.

• When t tends to ∞, the Rd-valued stochastic processes [wk(t)]k=1,2,··· ,K
can present oscillations, explosion to infinity, convergence in distribu-
tion to an equilibrium process, convergence in distribution or almost
sure to a finite set of points in Rd, etc.. Some of the open questions are:

– Is the algorithm convergent in distribution or almost surely, when
t tends to∞?

– What happens when η(t) is constant? (when it decreases?)
– If a limit state exists, is it stable?
– How to characterize the organization?
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In Practice: Ordering and Convergence

Note: The SOM algorithm may start from an initial state of complete
disorder, and it will gradually lead to an organized representation of ac-
tivation patterns drawn from the input space.

There are two identifiable phases of the adaptive process:

1. Ordering or Self-organizing phase – during which the topologi-
cal ordering of the weight vectors takes place.

• Typically this will take as many as 1000 iterations of the SOM
algorithm.

• Careful consideration needs to be given to the choice of neigh-
bourhood and learning rate parameters.

2. Convergence phase – during which the feature map is fine tuned
and comes to provide an accurate statistical quantification of the
input space.

• Typically the number of iterations in this phase will be at least
500 times the number of neurons in the network.

• Again, the parameters must be chosen carefully.
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Exercises for Chapter 8

8.1. We will experiment the K-Means algorithm following the first section of Chapter 11,
Python Machine Learning, 3rd Ed., in a little bit different fashion.
(a) Make a dataset of 4 clusters (modifying the code on pp. 354–355).
(b) ForK = 1, 2, · · · , 10, run the K-Means clustering algorithm with the initialization

init=’k-means++’.
(c) For each K, compute the within-cluster SSE (distortion) for an elbow analysis

to select an appropriate K. Note: Rather than using inertia_ attribute, imple-
ment a function for the computation of distortion.

(d) Produce silhouette plots for K = 3, 4, 5, 6.

8.2. Now, let’s experiment DBSCAN, following Python Machine Learning, 3rd Ed., pp. 376–
381.
(a) Produce a dataset having three half-moon-shaped structures each of which con-

sists of 100 samples.
(b) Compare performances of K-Means, AGNES, and DBSCAN.

(Set n_clusters=3 for K-Means and AGNES.)
(c) For K-Means and AGNES, what if you choose n_clusters much larger than 3 (for

example, 9, 12, 15)?
(d) Again, for K-Means and AGNES, perform an elbow analysis to select an appro-

priate K.



CHAPTER 9
Neural Networks and Deep Learning

Deep learning is a family of machine learning methods based on learning
data representations (features), as opposed to task-specific algorithms.
Learning can be supervised, semi-supervised, or unsupervised [3, 5, 69].
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9.1. Basics for Deep Learning

Conventional Machine Learning

• Limited in their ability to process data in their raw form
• Feature!!

– Coming up with features:
Difficult, time-consuming, requiring expert knowledge.

– Tuning the features: We spend a lot of time, before and during
learning.

−→ Feature
Representation

−→ Learning
Algorithm

Examples of features: Histogram of oriented gradients (HOG),
the scale-invariant feature transform (SIFT) (Lowe, 1999) [50], etc.

Representation Learning

• Discover representations, automatically
⇒ The machine is fed with raw data

• Deep Learning methods are representation-learning methods with
multiple levels of representation/abstraction

– Simple non-linear modules⇒ higher and abstract representation
– With the composition of enough such transformations, very com-

plex functions can be learned.

• Key Aspects
– Layers of features are not designed by human engineers.
– Learn features from data using a general-purpose learning pro-

cedure.
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Advances in Deep Learning

• Image recognition [23, 29, 41]
• Speech recognition [29, 66]
• Natural language understanding [23, 73, 81]

– Machine translation
– Image 2 text
– Sentiment analysis
– Question-answering (QA) machine:

IBM’s Watson, 2011, defeated legendary Jeopardy champions
Brad Rutter and Ken Jennings, winning the first place prize of
$1 million

• Many other domains

– Predicting the activity of potential drug molecules
– Analyzing particle accelerator data
– Reconstructing brain circuits
– Predicting the effects of mutations in non-coding DNA on gene ex-

pression and disease

• Image-based Classifications: Deep learning has provided break-
through results in speech recognition and image classification.
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Why/What about Deep Learning?

• Why is it generally better than other methods on image, speech,
and certain other types of data? Short answers:

– Deep learning means using a neural network with several lay-
ers of nodes between input and output

– The series of layers between input & output do feature identifi-
cation and processing in a series of stages, just as our brains
seem to do.

• Multi-layer neural networks have been more than 30 years (Rina
Dechter, 1986) [14]. What is actually new?

– We have always had good algorithms for learning the weights in
networks with 1 hidden layer.
But these algorithms are not good at learning the weights for net-
works with more hidden layers

– The New are: methods for training many-layer networks

Terms: AI vs. ML vs. Deep Learning

• Artificial intelligence (AI): Intelligence exhibited by machines
• Machine learning (ML): An approach to achieve AI
• Deep learning (DL): A technique for implementing ML

– Feature/Representation-learning
– Multi-layer neural networks (NN)
– Back-propagation

(In the 1980s and 1990s, researchers did not have much luck, except
for a few special architectures.)

– New ideas enable learning in deep NNs, since 2006
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Back-propagation to Train Multi-layer Architectures

• Nothing more than a practical application of the chain rule,
for derivatives

• Forsaken because poor local minima
• Revived around 2006 by unsupervised learning procedures with unla-

beled data

– CIFAR (Canadian Institute for Advanced Research): [4, 30, 31, 46]
– Recognizing handwritten digits or detecting pedestrians
– Speech recognition by GPUs, with 10 or 20 times faster

(Raina et al., 2009) [60] and (Bengio, 2013) [2].
– Local minima become rarely a problem.

• Convolutional neural network (CNN)
– Widely adopted by computer-vision community

(LeCun et al., 1989) [45]

• Activations
– Non-linear functions: max(z, 0) (ReLU), tanh(z), 1/(1 + e−z)

Machine Learning Challenges We’ve Yet to Overcome

• Interpretability: Although ML has come very far, researchers still
don’t know exactly how deep training nets work.

– If we don’t know how training nets actually work,
⇒ how do we make any real progress?

• One-Shot Learning: We still haven’t been able to achieve one-shot
learning. Traditional networks need a huge amount of data, and
are often in the form of extensive iterative training.

– Instead, we should find a way to enable neural networks to learn,
using just a few examples.

– Current neural networks are gradient-and-iteration-based;
⇒ can we modify/replace it?
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9.2. Neural Networks

Recall: In 1957, Frank Rosenblatt invented the perceptron algorithm:

• For input values: x = (x1, x2, · · · , xd)T ,
• Learn weight vector: w = (w1, w2, · · · , wd)T

• Get the net input z = w1x1 + w2x2 + · · ·+ wdxd = w · x
• Classify, using the activation function

φ(z) =

{
1 if z ≥ θ,
−1 otherwise, z = w · x, (9.1)

or, equivalently,

φ(z) =

{
1 if z ≥ 0,
−1 otherwise, z = b+ w · x, (9.2)

where b = −θ is the bias. (See (3.2) and (3.3), p. 44.)

Figure 9.1: Perceptron: The simplest artificial neuron.

Perceptron is the simplest artificial neuron:

• It makes decisions by weighting up evidence.
• However, it is not a complete model for decision-making!
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Complex Network of Perceptrons

• Perceptron as a building block:

– What the example illustrates is how a perceptron can weigh
up different kinds of evidence in order to make decisions.

Figure 9.2: A complex network of perceptrons.

• It should seem plausible that a complex network of perceptrons
could make quite subtle decisions.

An Issue on Perceptron Networks

• Thresholding. A small change in the weights or bias of any single
perceptron in the network can sometimes cause the output of that per-
ceptron to completely flip, say from −1 to 1.

– That flip may then cause the behavior of the rest of the net-
work to completely change in some very complicated way.

• We can overcome this problem by introducing a new type of artificial
neuron, e.g., a sigmoid neuron.
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9.2.1. Sigmoid neural networks

Recall: The logistic sigmoid function is defined as

σ(z) =
1

1 + e−z
. (9.3)

Figure 9.3: The standard logistic sigmoid function σ(z) = 1/(1 + e−z).

Sigmoid Neural Networks

• They are built with sigmoid neurons.
• The output of a sigmoid neuron with inputs x, weights w, and bias b is

σ(z) =
1

1 + exp(−b−w · x)
, (9.4)

which we considered as the logistic regression model in Section 5.2.
• Advantages of the sigmoid activation:

– It allows calculus to design learning rules. (σ′ = σ(1− σ))
– Small changes in weights and bias produce a corresponding

small change in the output.

∆output ≈
∑
j

∂ output
∂wj

∆wj +
∂ output

∂b
∆b. (9.5)

Figure 9.4: ∆output is a linear combination of ∆wj and ∆b.
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The Architecture of (Smooth) Neural Networks

• The leftmost layer is called the input layer, and the neurons within
the layer are called input neurons.

• The rightmost layer is the output layer.
• The middle layers are called hidden layers.

• The design of the input and output layers in a network is of-
ten straightforward. For example, for the classification of hand-
written digits:

– If the images are in 28× 28 grayscale pixels, then we’d have 784(=
28× 28) input neurons.

– It is heuristic to set 10 neurons in the output layer. (rather than
4, where 24 = 16 ≥ 10)

• There can be quite an art to the design of the hidden layers.

– In particular, it is not possible to sum up the design process
for the hidden layers with a few simple rules of thumb.

– Instead, neural networks researchers have developed many de-
sign heuristics for the hidden layers, which help people get the
behavior they want out of their nets.

– For example, such heuristics can be used to help determine how
to trade off the number of hidden layers against the accuracy
and the time required to train the network.
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9.2.2. A simple network to classify handwritten digits

• The problem of recognizing handwritten digits has two components:
segmentation and classification.

=⇒
Figure 9.5: Segmentation.

• We’ll focus on algorithmic components for the classification of individ-
ual digits.

MNIST Dataset :

A modified subset of two datasets collected by NIST (US National Insti-
tute of Standards and Technology):

• The first part contains 60,000 images (for training)
• The second part is 10,000 images (for test)

Each image is in 28× 28 grayscale pixels.

A Simple Feed-forward Network

Figure 9.6: A sigmoid network having a hidden layer.
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What the Neural Network Will Do

• Let’s concentrate on the first
output neuron, the one that is
trying to decide whether or not
the input digit is a 0.

• It does this by weighing up ev-
idence from the hidden layer of
neurons.

• What are those hidden neurons doing?

– Let’s suppose for the sake of argument that the first neuron
in the hidden layer may detect whether or not an image like the
following is present

It can do this by heavily weighting input pixels which overlap
with the image, and only lightly weighting the other inputs.

– Similarly, let’s suppose that the second, third, and fourth
neurons in the hidden layer detect whether or not the following
images are present

– As you may have guessed, these four images together make up
the 0 image that we saw in the line of digits shown in Figure 9.5:

– So if all four of these hidden neurons are firing, then we can
conclude that the digit is a 0.
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Learning with Gradient Descent

• Dataset: {(x(i),y(i))}, i = 1, 2, · · · , N

– y(i) ? For example, if an image x(i) depicts a 2, then

y(i) = (0, 0, 1, 0, 0, 0, 0, 0, 0, 0)T .

• Cost function

C(W , B) =
1

2N

∑
i

||y(i) − a(x(i))||2, (9.6)

whereW denotes the collection of all weights in the network, B all the
biases, and a(x(i)) is the vector of outputs from the network when x(i)

is input.
• Gradient descent method[

W
B

]
←
[
W
B

]
+

[
∆W
∆B

]
, (9.7)

where [
∆W
∆B

]
= −η

[
∇WC
∇BC

]
.

Note: To compute the gradient ∇C, we need to compute the gradients
∇Cx(i) separately for each training input, x(i), and then average them:

∇C =
1

N

∑
i

∇Cx(i). (9.8)

• Unfortunately, when the number of training inputs is very large, it
can take a long time, and learning thus occurs slowly.

• An idea called stochastic gradient descent can be used to speed
up learning.
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Stochastic Gradient Descent
The idea is to estimate the gradient ∇C by computing ∇Cx(i) for a small
sample of randomly chosen training inputs. By averaging over this
small sample, it turns out that we can quickly get a good estimate of
the true gradient ∇C; this helps speed up gradient descent, and thus
learning.

• Pick out a small number of randomly chosen training inputs (m� N):

x̃(1), x̃(2), · · · , x̃(m),

which we refer to as a mini-batch.
• Average ∇Cx̃(k) to approximate the gradient ∇C. That is,

1

m

m∑
k=1

∇Cx̃(k) ≈ ∇C def
==

1

N

∑
i

∇Cx(i). (9.9)

• For classification of handwritten digits for the MNIST dataset, you
may choose: batch_size = 10.

Note: In practice, you can implement the stochastic gradient descent as
follows. For an epoch,

• Shuffle the dataset
• For each m samples (selected from the beginning), update (W , B)

using the approximate gradient (9.9).
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Implementing a Network to Classify Digits [56]
network.py

1 """
2 network.py (by Michael Nielsen)
3 ~~~~~~~~~~
4 A module to implement the stochastic gradient descent learning
5 algorithm for a feedforward neural network. Gradients are calculated
6 using backpropagation. """
7 #### Libraries
8 # Standard library
9 import random

10 # Third-party libraries
11 import numpy as np
12

13 class Network(object):
14 def __init__(self, sizes):
15 """The list ``sizes`` contains the number of neurons in the
16 respective layers of the network. For example, if the list
17 was [2, 3, 1] then it would be a three-layer network, with the
18 first layer containing 2 neurons, the second layer 3 neurons,
19 and the third layer 1 neuron. """
20

21 self.num_layers = len(sizes)
22 self.sizes = sizes
23 self.biases = [np.random.randn(y, 1) for y in sizes[1:]]
24 self.weights = [np.random.randn(y, x)
25 for x, y in zip(sizes[:-1], sizes[1:])]
26

27 def feedforward(self, a):
28 """Return the output of the network if ``a`` is input."""
29 for b, w in zip(self.biases, self.weights):
30 a = sigmoid(np.dot(w, a)+b)
31 return a
32

33 def SGD(self, training_data, epochs, mini_batch_size, eta,
34 test_data=None):
35 """Train the neural network using mini-batch stochastic
36 gradient descent. The ``training_data`` is a list of tuples
37 ``(x, y)`` representing the training inputs and the desired
38 outputs. """
39

40 if test_data: n_test = len(test_data)
41 n = len(training_data)
42 for j in xrange(epochs):
43 random.shuffle(training_data)
44 mini_batches = [
45 training_data[k:k+mini_batch_size]
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46 for k in xrange(0, n, mini_batch_size)]
47 for mini_batch in mini_batches:
48 self.update_mini_batch(mini_batch, eta)
49 if test_data:
50 print "Epoch {0}: {1} / {2}".format(
51 j, self.evaluate(test_data), n_test)
52 else:
53 print "Epoch {0} complete".format(j)
54

55 def update_mini_batch(self, mini_batch, eta):
56 """Update the network's weights and biases by applying
57 gradient descent using backpropagation to a single mini batch.
58 The ``mini_batch`` is a list of tuples ``(x, y)``, and ``eta``
59 is the learning rate."""
60 nabla_b = [np.zeros(b.shape) for b in self.biases]
61 nabla_w = [np.zeros(w.shape) for w in self.weights]
62 for x, y in mini_batch:
63 delta_nabla_b, delta_nabla_w = self.backprop(x, y)
64 nabla_b = [nb+dnb for nb, dnb in zip(nabla_b, delta_nabla_b)]
65 nabla_w = [nw+dnw for nw, dnw in zip(nabla_w, delta_nabla_w)]
66 self.weights = [w-(eta/len(mini_batch))*nw
67 for w, nw in zip(self.weights, nabla_w)]
68 self.biases = [b-(eta/len(mini_batch))*nb
69 for b, nb in zip(self.biases, nabla_b)]
70

71 def backprop(self, x, y):
72 """Return a tuple ``(nabla_b, nabla_w)`` representing the
73 gradient for the cost function C_x. ``nabla_b`` and
74 ``nabla_w`` are layer-by-layer lists of numpy arrays, similar
75 to ``self.biases`` and ``self.weights``."""
76 nabla_b = [np.zeros(b.shape) for b in self.biases]
77 nabla_w = [np.zeros(w.shape) for w in self.weights]
78 # feedforward
79 activation = x
80 activations = [x] #list to store all the activations, layer by layer
81 zs = [] # list to store all the z vectors, layer by layer
82 for b, w in zip(self.biases, self.weights):
83 z = np.dot(w, activation)+b
84 zs.append(z)
85 activation = sigmoid(z)
86 activations.append(activation)
87 # backward pass
88 delta = self.cost_derivative(activations[-1], y) * \
89 sigmoid_prime(zs[-1])
90 nabla_b[-1] = delta
91 nabla_w[-1] = np.dot(delta, activations[-2].transpose())
92
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93 for l in xrange(2, self.num_layers):
94 z = zs[-l]
95 sp = sigmoid_prime(z)
96 delta = np.dot(self.weights[-l+1].transpose(), delta) * sp
97 nabla_b[-l] = delta
98 nabla_w[-l] = np.dot(delta, activations[-l-1].transpose())
99 return (nabla_b, nabla_w)

100

101 def evaluate(self, test_data):
102 test_results = [(np.argmax(self.feedforward(x)), y)
103 for (x, y) in test_data]
104 return sum(int(x == y) for (x, y) in test_results)
105

106 def cost_derivative(self, output_activations, y):
107 """Return the vector of partial derivatives \partial C_x /
108 \partial a for the output activations."""
109 return (output_activations-y)
110

111 #### Miscellaneous functions
112 def sigmoid(z):
113 return 1.0/(1.0+np.exp(-z))
114

115 def sigmoid_prime(z):
116 return sigmoid(z)*(1-sigmoid(z))

The code is executed using
Run_network.py

1 import mnist_loader
2 training_data, validation_data, test_data = mnist_loader.load_data_wrapper()
3

4 import network
5 n_neurons = 20
6 net = network.Network([784 , n_neurons, 10])
7

8 n_epochs, batch_size, eta = 30, 10, 3.0
9 net.SGD(training_data , n_epochs, batch_size, eta, test_data = test_data)

len(training_data)=50000, len(validation_data)=10000, len(test_data)=10000
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Validation Accuracy
Validation Accuracy

1 Epoch 0: 9006 / 10000
2 Epoch 1: 9128 / 10000
3 Epoch 2: 9202 / 10000
4 Epoch 3: 9188 / 10000
5 Epoch 4: 9249 / 10000
6 ...
7 Epoch 25: 9356 / 10000
8 Epoch 26: 9388 / 10000
9 Epoch 27: 9407 / 10000

10 Epoch 28: 9410 / 10000
11 Epoch 29: 9428 / 10000

Accuracy Comparisons

• scikit-learn’s SVM classifier using the default settings: 9435/10000
• A well-tuned SVM: ≈98.5%
• Well-designed (convolutional) NN: 9979/10000 (only 21 missed!)

Note: For well-designed neural networks, the performance is close
to human-equivalent, and is arguably better, since quite a few of
the MNIST images are difficult even for humans to recognize with confi-
dence, e.g.,

Figure 9.7: MNIST images difficult even for humans to recognize.

Moral of the Neural Networks
• Let all the complexity be learned, automatically, from data
• Simple algorithms can perform well for some problems:
(sophisticated algorithm) ≤ (simple learning algorithm + good training data)
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9.3. Back-Propagation

• In the previous section, we saw an example of neural networks that
could learn their weights and biases using the stochastic gradient de-
scent algorithm.

• In this section, we will see how to compute the gradient, more
precisely, the derivatives of the cost function with respect to
weights and biases in all layers.

• The back-propagation is a practical application of the chain
rule for the computation of derivatives.

• The back-propagation algorithm was originally introduced in the
1970s, but its importance was not fully appreciated until a famous
1986 paper by Rumelhart-Hinton-Williams [65], in Nature.

9.3.1. Notations

• Let’s begin with notations which let us refer to weights, biases, and
activations in the network in an unambiguous way.

w`
jk: the weight for the connection from the k-th neuron in the

(`− 1)-th layer to the j-th neuron in the `-th layer
b`j: the bias of the j-th neuron in the `-th layer
a`j: the activation of the j-th neuron in the `-th layer

Figure 9.8: The weight w`jk.
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Figure 9.9: The bias b`j and activation a`j.

• With these notations, the activation a`j reads

a`j = σ
(∑

k

w`
jka

`−1
k + b`j

)
, (9.10)

where the sum is over all neurons k in the (`− 1)-th layer. Denote the
weighted input by

z`j :=
∑
k

w`
jka

`−1
k + b`j. (9.11)

• Now, define

W ` = [w`
jk] : the weight matrix for layer `

b` = [b`j] : the bias vector for layer `
z` = [z`j ] : the weighted input vector for layer `
a` = [a`j] : the activation vector for layer `

(9.12)

• Then, (9.10) can be rewritten (in a vector form) as

a` = σ(z`) = σ(W `a`−1 + b`). (9.13)
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9.3.2. The cost function

The Cost Function: With the notations, the quadratic cost function
(9.6) has the form

C =
1

2N

∑
x

||y(x)− aL(x)||2, (9.14)

whereN is the total number of training examples, y(x) is the correspond-
ing desired output for the training example x, and L denotes the number
of layers in the network.

Two Assumptions for the Cost Function

1. The cost function can be written as an average

C =
1

N

∑
x

Cx, (9.15)

over cost functions Cx for individual training examples x.
2. The cost function can be written as a function of the outputs from the

neural network (aL).

Remark 9.1. Thus the cost function in (9.14) satisfies the assumptions,
with

Cx =
1

2
||y(x)− aL(x)||2 =

1

2

∑
j

(yj(x)− aLj (x))2. (9.16)

• The reason we need the first assumption is because what the back-
propagation actually lets us do is compute the partial derivatives
∂Cx/∂w

`
jk and ∂Cx/∂b

`
j for a single training example.

– We then can recover ∂C/∂w`
jk and ∂C/∂b`j by averaging over

training examples.

• With the assumptions in mind, we may focus on computing the
partial derivatives for a single example.
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9.3.3. The four fundamental equations behind the back-
propagation

The back-propagation is about understanding how changing the weights
and biases in a network changes the cost function, which means com-
puting the partial derivatives ∂C/∂w`

jk and ∂C/∂b`j.

Definition 9.2. Define the learning error (or, error) of neuron j in
layer ` by

δ`j
def
==

∂C

∂z`j
. (9.17)

The back-propagation will give us a way of computing δ` = [δ`j] for every
layer `, and then relating those errors to the quantities of real interest,
∂C/∂w`

jk and ∂C/∂b`j.

Theorem 9.3. Suppose that the cost function C satisfies the two as-
sumptions in Section 9.3.2 so that it represents the cost for a single train-
ing example. Assume the network contains L layers, of which the feed-
forward model is given as in (9.10):

a`j = σ(z`j), z`j =
∑
k

w`
jka

`−1
k + b`j; ` = 2, 3, · · · , L.

Then,

(a) δLj =
∂C

∂aLj
σ′(zLj ),

(b) δ`j =
∑
k

w`+1
kj δ

`+1
k σ′(z`j), ` = L− 1, · · · , 2,

(c)
∂C

∂b`j
= δ`j, ` = 2, · · · , L,

(d)
∂C

∂w`
jk

= a`−1
k δ`j, ` = 2, · · · , L.

(9.18)
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Proof. Here, we will prove (b) only; see Exercise 1 for the others. Using the
definition (9.17) and the chain rule, we have

δ`j =
∂C

∂z`j
=
∑
k

∂C

∂z`+1
k

∂z`+1
k

∂z`j
=
∑
k

∂z`+1
k

∂z`j
δ`+1
k (9.19)

Note
z`+1
k =

∑
i

w`+1
ki a

`
i + b`+1

k =
∑
i

w`+1
ki σ(z`i ) + b`+1

k . (9.20)

Differentiating it, we obtain

∂z`+1
k

∂z`j
=
∑
i

w`+1
ki

∂σ(z`i )

∂z`j
= w`+1

kj σ
′(z`j). (9.21)

Substituting back into (9.19), we complete the proof.

The Hadamard product / Schur product

Definition 9.4. A frequently used algebraic operation is the element-
wise product of two vectors/matrices, which is called the Hadamard
product or the Schur product, and defined as

(c� d)j = cj dj. (9.22)

• For example, [
1
2

]
�
[
3
4

]
=

[
1 · 3
2 · 4

]
=

[
3
8

]
. (9.23)

• In Numpy, A*B denotes the Hadamard product of A and B, while A.dot(B)
or A@B produces the regular matrix-matrix multiplication.

Remark 9.5. The four fundamental equations (9.18) can be written in
a vector form as

(a) δL = ∇aLC � σ′(zL),

(b) δ` = ((W `+1)Tδ`+1)� σ′(z`), ` = L− 1, · · · , 2,
(c) ∇b`C = δ`, ` = 2, · · · , L,
(d) ∇W `C = δ`(a`−1)T , ` = 2, · · · , L.

(9.24)
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The Back-Propagation Algorithm

Algorithm 9.6. Let’s summarize the back-propagation algorithm:

1. Input x: Set the corresponding activation a1 for the input layer.
2. Feed-forward:

z` = W `a`−1 + b`; a` = σ(z`); ` = 2, 3, · · · , L

3. Output error δL:
δL = ∇aLC � σ′(zL);

4. Back-propagate the error:

δ` = ((W `+1)Tδ`+1)� σ′(z`); ` = L− 1, · · · , 2

5. The gradient of the cost function:

∇b`C = δ`; ∇W `C = δ`(a`−1)T ; ` = 2, · · · , L

An SDG Learning Step, Based on a Mini-batch

1. Input a set of training examples of size m;
2. Initialize: ∆W = 0 and ∆B = 0;
3. For each training example x:

(a) Apply the back-propagation algorithm to find

∇b`Cx = δx,`; ∇W `Cx = δx,`(ax,`−1)T ; ` = 2, · · · , L

(b) Update the gradient:
∆B = ∆B + [∇b2Cx| · · · |∇bLCx];
∆W = ∆W + [∇W 2Cx| · · · |∇WLCx];

4. Gradient descent: Update the biases and weights

B = B − η

m
∆B; W = W − η

m
∆W ;

See the method “update_mini_batch”, Lines 55–69 in network.py, p. 280.
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Remarks 9.7. Saturated Neurons

• The four fundamental equations satisfy independently of choices of
the cost function C and the activation σ.

• A consequence of (9.24.d) is that if a`−1 is small (in modulus), gradient
term ∂C/∂W ` will also tend to be small. In this case, we’ll say the
weight learns slowly, meaning that it’s not changing much during
gradient descent.

– In other words, a consequence of (9.24.d) is that weights output
from low-activation neurons learn slowly.

– The sigmoid function σ becomes very flat when σ(zLj ) is approxi-
mately 0 or 1. When this occurs we will have σ′(zLj ) ≈ 0. So, a weight
in the final layer will learn slowly if the output neuron is either low
activation (≈ 0) or high activation (≈ 1). In this case, we usually say
the output neuron has saturated and, as a result, the weight is
learning slowly (or stopped).

• Similar remarks hold also in other layers and for the biases as well.

• Summing up, weights and biases will learn slowly if
– either the in-neurons (upwind) are in low-activation
– or the out-neurons (downwind) have saturated.

Designing Activation Functions

The four fundamental equations can be used to design activation func-
tions which have particular desired learning properties.

• For example, suppose we were to choose a (non-sigmoid) acti-
vation function σ so that σ′ is always positive, and never gets
close to zero.

– That would prevent the slow-down of learning that occurs
when ordinary sigmoid neurons saturate.

• Learning accuracy and efficiency can be improved by finding
more effective cost and activation functions.
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