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Preface

Overview

The present text was written for my course Schrödinger Operators held
at the University of Vienna in winter 1999, summer 2002, summer 2005,
and winter 2007. It gives a brief but rather self-contained introduction
to the mathematical methods of quantum mechanics with a view towards
applications to Schrödinger operators. The applications presented are highly
selective and many important and interesting items are not touched upon.

Part 1 is a stripped down introduction to spectral theory of unbounded
operators where I try to introduce only those topics which are needed for
the applications later on. This has the advantage that you will (hopefully)
not get drowned in results which are never used again before you get to
the applications. In particular, I am not trying to present an encyclopedic
reference. Nevertheless I still feel that the first part should provide a solid
background covering many important results which are usually taken for
granted in more advanced books and research papers.

My approach is built around the spectral theorem as the central object.
Hence I try to get to it as quickly as possible. Moreover, I do not take the
detour over bounded operators but I go straight for the unbounded case.
In addition, existence of spectral measures is established via the Herglotz
theorem rather than the Riesz representation theorem since this approach
paves the way for an investigation of spectral types via boundary values of
the resolvent as the spectral parameter approaches the real line.

xi



xii Preface

Part 2 starts with the free Schrödinger equation and computes the
free resolvent and time evolution. In addition, I discuss position, momen-
tum, and angular momentum operators via algebraic methods. This is
usually found in any physics textbook on quantum mechanics, with the
only di↵erence that I include some technical details which are typically
not found there. Then there is an introduction to one-dimensional mod-
els (Sturm–Liouville operators) including generalized eigenfunction expan-
sions (Weyl–Titchmarsh theory) and subordinacy theory from Gilbert and
Pearson. These results are applied to compute the spectrum of the hy-
drogen atom, where again I try to provide some mathematical details not
found in physics textbooks. Further topics are nondegeneracy of the ground
state, spectra of atoms (the HVZ theorem), and scattering theory (the Enß
method).

Prerequisites

I assume some previous experience with Hilbert spaces and bounded
linear operators which should be covered in any basic course on functional
analysis. However, while this assumption is reasonable for mathematics
students, it might not always be for physics students. For this reason there
is a preliminary chapter reviewing all necessary results (including proofs).
In addition, there is an appendix (again with proofs) providing all necessary
results from measure theory.

Literature

The present book is highly influenced by the four volumes of Reed and
Simon [40]–[43] (see also [14]) and by the book by Weidmann [60] (an
extended version of which has recently appeared in two volumes [62], [63],
however, only in German). Other books with a similar scope are for example
[14], [15], [21], [23], [39], [48], and [55]. For those who want to know more
about the physical aspects, I can recommend the classical book by Thirring
[58] and the visual guides by Thaller [56], [57]. Further information can be
found in the bibliographical notes at the end.

Reader’s guide

There is some intentional overlap between Chapter 0, Chapter 1, and
Chapter 2. Hence, provided you have the necessary background, you can
start reading in Chapter 1 or even Chapter 2. Chapters 2 and 3 are key
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chapters and you should study them in detail (except for Section 2.6 which
can be skipped on first reading). Chapter 4 should give you an idea of how
the spectral theorem is used. You should have a look at (e.g.) the first
section and you can come back to the remaining ones as needed. Chapter 5
contains two key results from quantum dynamics: Stone’s theorem and the
RAGE theorem. In particular the RAGE theorem shows the connections
between long time behavior and spectral types. Finally, Chapter 6 is again
of central importance and should be studied in detail.

The chapters in the second part are mostly independent of each other
except for Chapter 7, which is a prerequisite for all others except for Chap-
ter 9.

If you are interested in one-dimensional models (Sturm–Liouville equa-
tions), Chapter 9 is all you need.

If you are interested in atoms, read Chapter 7, Chapter 10, and Chap-
ter 11. In particular, you can skip the separation of variables (Sections 10.3
and 10.4, which require Chapter 9) method for computing the eigenvalues of
the hydrogen atom, if you are happy with the fact that there are countably
many which accumulate at the bottom of the continuous spectrum.

If you are interested in scattering theory, read Chapter 7, the first two
sections of Chapter 10, and Chapter 12. Chapter 5 is one of the key prereq-
uisites in this case.

Updates

The AMS is hosting a web page for this book at

http://www.ams.org/bookpages/gsm-99/

where updates, corrections, and other material may be found, including a
link to material on my own web site:

http://www.mat.univie.ac.at/~gerald/ftp/book-schroe/
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Chapter 0

A first look at Banach
and Hilbert spaces

I assume that the reader has some basic familiarity with measure theory and func-

tional analysis. For convenience, some facts needed from Banach and Lp spaces are

reviewed in this chapter. A crash course in measure theory can be found in the

Appendix A. If you feel comfortable with terms like Lebesgue Lp spaces, Banach

space, or bounded linear operator, you can skip this entire chapter. However, you

might want to at least browse through it to refresh your memory.

0.1. Warm up: Metric and topological spaces

Before we begin, I want to recall some basic facts from metric and topological
spaces. I presume that you are familiar with these topics from your calculus
course. As a general reference I can warmly recommend Kelly’s classical
book [26].

A metric space is a space X together with a distance function d :
X ⇥X ! R such that

(i) d(x, y) � 0,

(ii) d(x, y) = 0 if and only if x = y,

(iii) d(x, y) = d(y, x),

(iv) d(x, z)  d(x, y) + d(y, z) (triangle inequality).

If (ii) does not hold, d is called a semi-metric. Moreover, it is straight-
forward to see the inverse triangle inequality (Problem 0.1)

|d(x, y)� d(z, y)|  d(x, z). (0.1)

3



4 0. A first look at Banach and Hilbert spaces

Example. Euclidean space Rn together with d(x, y) = (
Pn

k=1(xk�yk)2)1/2

is a metric space and so is Cn together with d(x, y) = (
Pn

k=1 |xk�yk|2)1/2. ⇧

The set

Br(x) = {y 2 X|d(x, y) < r} (0.2)

is called an open ball around x with radius r > 0. A point x of some set
U is called an interior point of U if U contains some ball around x. If x is
an interior point of U , then U is also called a neighborhood of x. A point
x is called a limit point of U if (Br(x)\{x})\U 6= ; for every ball around
x. Note that a limit point x need not lie in U , but U must contain points
arbitrarily close to x.

Example. Consider R with the usual metric and let U = (�1, 1). Then
every point x 2 U is an interior point of U . The points ±1 are limit points
of U . ⇧

A set consisting only of interior points is called open. The family of
open sets O satisfies the properties

(i) ;, X 2 O,

(ii) O1, O2 2 O implies O1 \O2 2 O,

(iii) {O↵} ✓ O implies
S
↵O↵ 2 O.

That is, O is closed under finite intersections and arbitrary unions.

In general, a space X together with a family of sets O, the open sets,
satisfying (i)–(iii) is called a topological space. The notions of interior
point, limit point, and neighborhood carry over to topological spaces if we
replace open ball by open set.

There are usually di↵erent choices for the topology. Two usually not
very interesting examples are the trivial topology O = {;, X} and the
discrete topology O = P(X) (the powerset of X). Given two topologies
O1 and O2 on X, O1 is called weaker (or coarser) than O2 if and only if
O1 ✓ O2.

Example. Note that di↵erent metrics can give rise to the same topology.
For example, we can equip Rn (or Cn) with the Euclidean distance d(x, y)
as before or we could also use

d̃(x, y) =
nX

k=1

|xk � yk|. (0.3)

Then

1
p
n

nX

k=1

|xk| 

vuut
nX

k=1

|xk|2 
nX

k=1

|xk| (0.4)
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shows Br/
p
n(x) ✓ B̃r(x) ✓ Br(x), where B, B̃ are balls computed using d,

d̃, respectively. ⇧

Example. We can always replace a metric d by the bounded metric

d̃(x, y) =
d(x, y)

1 + d(x, y)
(0.5)

without changing the topology. ⇧

Every subspace Y of a topological space X becomes a topological space
of its own if we call O ✓ Y open if there is some open set Õ ✓ X such that
O = Õ \ Y (induced topology).

Example. The set (0, 1] ✓ R is not open in the topology of X = R, but it is
open in the induced topology when considered as a subset of Y = [�1, 1]. ⇧

A family of open sets B ✓ O is called a base for the topology if for each
x and each neighborhood U(x), there is some set O 2 B with x 2 O ✓ U(x).
Since an open set O is a neighborhood of every one of its points, it can be
written as O =

S
O◆Õ2B

Õ and we have

Lemma 0.1. If B ✓ O is a base for the topology, then every open set can
be written as a union of elements from B.

If there exists a countable base, then X is called second countable.

Example. By construction the open balls B1/n(x) are a base for the topol-
ogy in a metric space. In the case of Rn (or Cn) it even su�ces to take balls
with rational center and hence Rn (and Cn) is second countable. ⇧

A topological space is called a Hausdor↵ space if for two di↵erent
points there are always two disjoint neighborhoods.

Example. Any metric space is a Hausdor↵ space: Given two di↵erent
points x and y, the balls Bd/2(x) and Bd/2(y), where d = d(x, y) > 0, are
disjoint neighborhoods (a semi-metric space will not be Hausdor↵). ⇧

The complement of an open set is called a closed set. It follows from
de Morgan’s rules that the family of closed sets C satisfies

(i) ;, X 2 C,

(ii) C1, C2 2 C implies C1 [ C2 2 C,

(iii) {C↵} ✓ C implies
T
↵C↵ 2 C.

That is, closed sets are closed under finite unions and arbitrary intersections.

The smallest closed set containing a given set U is called the closure

U =
\

C2C,U✓C

C, (0.6)
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and the largest open set contained in a given set U is called the interior

U� =
[

O2O,O✓U

O. (0.7)

We can define interior and limit points as before by replacing the word
ball by open set. Then it is straightforward to check

Lemma 0.2. Let X be a topological space. Then the interior of U is the
set of all interior points of U and the closure of U is the union of U with
all limit points of U .

A sequence (xn)1n=1 ✓ X is said to converge to some point x 2 X if
d(x, xn) ! 0. We write limn!1 xn = x as usual in this case. Clearly the
limit is unique if it exists (this is not true for a semi-metric).

Every convergent sequence is a Cauchy sequence; that is, for every
" > 0 there is some N 2 N such that

d(xn, xm)  ", n,m � N. (0.8)

If the converse is also true, that is, if every Cauchy sequence has a limit,
then X is called complete.

Example. Both Rn and Cn are complete metric spaces. ⇧

A point x is clearly a limit point of U if and only if there is some sequence
xn 2 U\{x} converging to x. Hence

Lemma 0.3. A closed subset of a complete metric space is again a complete
metric space.

Note that convergence can also be equivalently formulated in terms of
topological terms: A sequence xn converges to x if and only if for every
neighborhood U of x there is some N 2 N such that xn 2 U for n � N . In
a Hausdor↵ space the limit is unique.

A set U is called dense if its closure is all of X, that is, if U = X. A
metric space is called separable if it contains a countable dense set. Note
that X is separable if and only if it is second countable as a topological
space.

Lemma 0.4. Let X be a separable metric space. Every subset of X is again
separable.

Proof. Let A = {xn}n2N be a dense set in X. The only problem is that
A\ Y might contain no elements at all. However, some elements of A must
be at least arbitrarily close: Let J ✓ N2 be the set of all pairs (n,m) for
which B1/m(xn) \ Y 6= ; and choose some yn,m 2 B1/m(xn) \ Y for all
(n,m) 2 J . Then B = {yn,m}(n,m)2J ✓ Y is countable. To see that B is
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dense, choose y 2 Y . Then there is some sequence xnk with d(xnk , y) < 1/k.
Hence (nk, k) 2 J and d(ynk,k, y)  d(ynk,k, xnk) + d(xnk , y)  2/k ! 0. ⇤

A function between metric spaces X and Y is called continuous at a
point x 2 X if for every " > 0 we can find a � > 0 such that

dY (f(x), f(y))  " if dX(x, y) < �. (0.9)

If f is continuous at every point, it is called continuous.

Lemma 0.5. Let X, Y be metric spaces and f : X ! Y . The following are
equivalent:

(i) f is continuous at x (i.e, (0.9) holds).

(ii) f(xn) ! f(x) whenever xn ! x.

(iii) For every neighborhood V of f(x), f�1(V ) is a neighborhood of x.

Proof. (i) ) (ii) is obvious. (ii) ) (iii): If (iii) does not hold, there is
a neighborhood V of f(x) such that B�(x) 6✓ f�1(V ) for every �. Hence
we can choose a sequence xn 2 B1/n(x) such that f(xn) 62 f�1(V ). Thus
xn ! x but f(xn) 6! f(x). (iii) ) (i): Choose V = B"(f(x)) and observe
that by (iii), B�(x) ✓ f�1(V ) for some �. ⇤

The last item implies that f is continuous if and only if the inverse image
of every open (closed) set is again open (closed).

Note: In a topological space, (iii) is used as the definition for continuity.
However, in general (ii) and (iii) will no longer be equivalent unless one uses
generalized sequences, so-called nets, where the index set N is replaced by
arbitrary directed sets.

The support of a function f : X ! Cn is the closure of all points x for
which f(x) does not vanish; that is,

supp(f) = {x 2 X|f(x) 6= 0}. (0.10)

If X and Y are metric spaces, then X ⇥ Y together with

d((x1, y1), (x2, y2)) = dX(x1, x2) + dY (y1, y2) (0.11)

is a metric space. A sequence (xn, yn) converges to (x, y) if and only if
xn ! x and yn ! y. In particular, the projections onto the first (x, y) 7! x,
respectively, onto the second (x, y) 7! y, coordinate are continuous.

In particular, by the inverse triangle inequality (0.1),

|d(xn, yn)� d(x, y)|  d(xn, x) + d(yn, y), (0.12)

we see that d : X ⇥X ! R is continuous.
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Example. If we consider R ⇥ R, we do not get the Euclidean distance of
R2 unless we modify (0.11) as follows:

d̃((x1, y1), (x2, y2)) =
p
dX(x1, x2)2 + dY (y1, y2)2. (0.13)

As noted in our previous example, the topology (and thus also conver-
gence/continuity) is independent of this choice. ⇧

If X and Y are just topological spaces, the product topology is defined
by calling O ✓ X ⇥ Y open if for every point (x, y) 2 O there are open
neighborhoods U of x and V of y such that U ⇥ V ✓ O. In the case of
metric spaces this clearly agrees with the topology defined via the product
metric (0.11).

A cover of a set Y ✓ X is a family of sets {U↵} such that Y ✓
S
↵ U↵.

A cover is called open if all U↵ are open. Any subset of {U↵} which still
covers Y is called a subcover.

Lemma 0.6 (Lindelöf). If X is second countable, then every open cover
has a countable subcover.

Proof. Let {U↵} be an open cover for Y and let B be a countable base.
Since every U↵ can be written as a union of elements from B, the set of all
B 2 B which satisfy B ✓ U↵ for some ↵ form a countable open cover for Y .
Moreover, for every Bn in this set we can find an ↵n such that Bn ✓ U↵n .
By construction {U↵n} is a countable subcover. ⇤

A subset K ⇢ X is called compact if every open cover has a finite
subcover.

Lemma 0.7. A topological space is compact if and only if it has the finite
intersection property: The intersection of a family of closed sets is empty
if and only if the intersection of some finite subfamily is empty.

Proof. By taking complements, to every family of open sets there is a cor-
responding family of closed sets and vice versa. Moreover, the open sets
are a cover if and only if the corresponding closed sets have empty intersec-
tion. ⇤

A subset K ⇢ X is called sequentially compact if every sequence has
a convergent subsequence.

Lemma 0.8. Let X be a topological space.

(i) The continuous image of a compact set is compact.

(ii) Every closed subset of a compact set is compact.

(iii) If X is Hausdor↵, any compact set is closed.
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(iv) The product of finitely many compact sets is compact.

(v) A compact set is also sequentially compact.

Proof. (i) Observe that if {O↵} is an open cover for f(Y ), then {f�1(O↵)}
is one for Y .

(ii) Let {O↵} be an open cover for the closed subset Y . Then {O↵} [

{X\Y } is an open cover for X.

(iii) Let Y ✓ X be compact. We show that X\Y is open. Fix x 2 X\Y
(if Y = X, there is nothing to do). By the definition of Hausdor↵, for
every y 2 Y there are disjoint neighborhoods V (y) of y and Uy(x) of x. By
compactness of Y , there are y1, . . . , yn such that the V (yj) cover Y . But
then U(x) =

Tn
j=1 Uyj (x) is a neighborhood of x which does not intersect

Y .

(iv) Let {O↵} be an open cover for X ⇥ Y . For every (x, y) 2 X ⇥ Y
there is some ↵(x, y) such that (x, y) 2 O↵(x,y). By definition of the product
topology there is some open rectangle U(x, y)⇥V (x, y) ✓ O↵(x,y). Hence for
fixed x, {V (x, y)}y2Y is an open cover of Y . Hence there are finitely many
points yk(x) such that the V (x, yk(x)) cover Y . Set U(x) =

T
k U(x, yk(x)).

Since finite intersections of open sets are open, {U(x)}x2X is an open cover
and there are finitely many points xj such that the U(xj) cover X. By
construction, the U(xj)⇥ V (xj , yk(xj)) ✓ O↵(xj ,yk(xj)) cover X ⇥ Y .

(v) Let xn be a sequence which has no convergent subsequence. Then
K = {xn} has no limit points and is hence compact by (ii). For every n
there is a ball B"n(xn) which contains only finitely many elements of K.
However, finitely many su�ce to cover K, a contradiction. ⇤

In a metric space compact and sequentially compact are equivalent.

Lemma 0.9. Let X be a metric space. Then a subset is compact if and only
if it is sequentially compact.

Proof. By item (v) of the previous lemma it su�ces to show that X is
compact if it is sequentially compact.

First of all note that every cover of open balls with fixed radius " > 0
has a finite subcover since if this were false we could construct a sequence
xn 2 X\

Sn�1
m=1B"(xm) such that d(xn, xm) > " for m < n.

In particular, we are done if we can show that for every open cover
{O↵} there is some " > 0 such that for every x we have B"(x) ✓ O↵ for
some ↵ = ↵(x). Indeed, choosing {xk}nk=1 such that B"(xk) is a cover, we
have that O↵(xk) is a cover as well.

So it remains to show that there is such an ". If there were none, for
every " > 0 there must be an x such that B"(x) 6✓ O↵ for every ↵. Choose
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" = 1
n and pick a corresponding xn. Since X is sequentially compact, it is no

restriction to assume xn converges (after maybe passing to a subsequence).
Let x = limxn. Then x lies in some O↵ and hence B"(x) ✓ O↵. But choosing
n so large that 1

n < "
2 and d(xn, x) <

"
2 , we have B1/n(xn) ✓ B"(x) ✓ O↵,

contradicting our assumption. ⇤

Please also recall the Heine–Borel theorem:

Theorem 0.10 (Heine–Borel). In Rn (or Cn) a set is compact if and only
if it is bounded and closed.

Proof. By Lemma 0.8 (ii) and (iii) it su�ces to show that a closed interval
in I ✓ R is compact. Moreover, by Lemma 0.9 it su�ces to show that
every sequence in I = [a, b] has a convergent subsequence. Let xn be our
sequence and divide I = [a, a+b

2 ] [ [a+b
2 , b]. Then at least one of these two

intervals, call it I1, contains infinitely many elements of our sequence. Let
y1 = xn1 be the first one. Subdivide I1 and pick y2 = xn2 , with n2 > n1 as
before. Proceeding like this, we obtain a Cauchy sequence yn (note that by
construction In+1 ✓ In and hence |yn � ym| 

b�a
n for m � n). ⇤

A topological space is called locally compact if every point has a com-
pact neighborhood.

Example. Rn is locally compact. ⇧

The distance between a point x 2 X and a subset Y ✓ X is

dist(x, Y ) = inf
y2Y

d(x, y). (0.14)

Note that x is a limit point of Y if and only if dist(x, Y ) = 0.

Lemma 0.11. Let X be a metric space. Then

| dist(x, Y )� dist(z, Y )|  d(x, z). (0.15)

In particular, x 7! dist(x, Y ) is continuous.

Proof. Taking the infimum in the triangle inequality d(x, y)  d(x, z) +
d(z, y) shows dist(x, Y )  d(x, z)+dist(z, Y ). Hence dist(x, Y )�dist(z, Y ) 
d(x, z). Interchanging x and z shows dist(z, Y )� dist(x, Y )  d(x, z). ⇤

Lemma 0.12 (Urysohn). Suppose C1 and C2 are disjoint closed subsets of
a metric space X. Then there is a continuous function f : X ! [0, 1] such
that f is zero on C1 and one on C2.

If X is locally compact and C1 is compact, one can choose f with compact
support.
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Proof. To prove the first claim, set f(x) = dist(x,C2)
dist(x,C1)+dist(x,C2)

. For the

second claim, observe that there is an open set O such that O is compact
and C1 ⇢ O ⇢ O ⇢ X\C2. In fact, for every x, there is a ball B"(x) such
that B"(x) is compact and B"(x) ⇢ X\C2. Since C1 is compact, finitely
many of them cover C1 and we can choose the union of those balls to be O.
Now replace C2 by X\O. ⇤

Note that Urysohn’s lemma implies that a metric space is normal; that
is, for any two disjoint closed sets C1 and C2, there are disjoint open sets
O1 and O2 such that Cj ✓ Oj , j = 1, 2. In fact, choose f as in Urysohn’s
lemma and set O1 = f�1([0, 1/2)), respectively, O2 = f�1((1/2, 1]).

Lemma 0.13. Let X be a locally compact metric space. Suppose K is
a compact set and {Oj}

n
j=1 an open cover. Then there is a partition of

unity for K subordinate to this cover; that is, there are continuous functions
hj : X ! [0, 1] such that hj has compact support contained in Oj and

nX

j=1

hj(x)  1 (0.16)

with equality for x 2 K.

Proof. For every x 2 K there is some " and some j such that B"(x) ✓ Oj .
By compactness of K, finitely many of these balls cover K. Let Kj be the
union of those balls which lie inside Oj . By Urysohn’s lemma there are
functions gj : X ! [0, 1] such that gj = 1 on Kj and gj = 0 on X\Oj . Now
set

hj = gj

j�1Y

k=1

(1� gk). (0.17)

Then hj : X ! [0, 1] has compact support contained in Oj and
nX

j=1

hj(x) = 1�
nY

j=1

(1� gj(x)) (0.18)

shows that the sum is one for x 2 K, since x 2 Kj for some j implies
gj(x) = 1 and causes the product to vanish. ⇤
Problem 0.1. Show that |d(x, y)� d(z, y)|  d(x, z).

Problem 0.2. Show the quadrangle inequality |d(x, y) � d(x0, y0)| 

d(x, x0) + d(y, y0).

Problem 0.3. Let X be some space together with a sequence of distance
functions dn, n 2 N. Show that

d(x, y) =
1X

n=1

1

2n
dn(x, y)

1 + dn(x, y)
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is again a distance function.

Problem 0.4. Show that the closure satisfies U = U .

Problem 0.5. Let U ✓ V be subsets of a metric space X. Show that if U
is dense in V and V is dense in X, then U is dense in X.

Problem 0.6. Show that any open set O ✓ R can be written as a countable
union of disjoint intervals. (Hint: Let {I↵} be the set of all maximal subin-
tervals of O; that is, I↵ ✓ O and there is no other subinterval of O which
contains I↵. Then this is a cover of disjoint intervals which has a countable
subcover.)

0.2. The Banach space of continuous functions

Now let us have a first look at Banach spaces by investigating the set of
continuous functions C(I) on a compact interval I = [a, b] ⇢ R. Since we
want to handle complex models, we will always consider complex-valued
functions!

One way of declaring a distance, well-known from calculus, is the max-
imum norm:

kf(x)� g(x)k1 = max
x2I

|f(x)� g(x)|. (0.19)

It is not hard to see that with this definition C(I) becomes a normed linear
space:

A normed linear space X is a vector space X over C (or R) with a
real-valued function (the norm) k.k such that

• kfk � 0 for all f 2 X and kfk = 0 if and only if f = 0,

• k↵ fk = |↵| kfk for all ↵ 2 C and f 2 X, and

• kf + gk  kfk+ kgk for all f, g 2 X (triangle inequality).

From the triangle inequality we also get the inverse triangle inequal-
ity (Problem 0.7)

|kfk � kgk|  kf � gk. (0.20)

Once we have a norm, we have a distance d(f, g) = kf�gk and hence we
know when a sequence of vectors fn converges to a vector f . We will write
fn ! f or limn!1 fn = f , as usual, in this case. Moreover, a mapping
F : X ! Y between two normed spaces is called continuous if fn ! f
implies F (fn) ! F (f). In fact, it is not hard to see that the norm, vector
addition, and multiplication by scalars are continuous (Problem 0.8).

In addition to the concept of convergence we have also the concept of
a Cauchy sequence and hence the concept of completeness: A normed
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space is called complete if every Cauchy sequence has a limit. A complete
normed space is called a Banach space.

Example. The space `1(N) of all sequences a = (aj)1j=1 for which the norm

kak1 =
1X

j=1

|aj | (0.21)

is finite is a Banach space.

To show this, we need to verify three things: (i) `1(N) is a vector space
that is closed under addition and scalar multiplication, (ii) k.k1 satisfies the
three requirements for a norm, and (iii) `1(N) is complete.

First of all observe
kX

j=1

|aj + bj | 
kX

j=1

|aj |+
kX

j=1

|bj |  kak1 + kbk1 (0.22)

for any finite k. Letting k ! 1, we conclude that `1(N) is closed under
addition and that the triangle inequality holds. That `1(N) is closed under
scalar multiplication and the two other properties of a norm are straight-
forward. It remains to show that `1(N) is complete. Let an = (anj )

1
j=1 be

a Cauchy sequence; that is, for given " > 0 we can find an N" such that
kam � ank1  " for m,n � N". This implies in particular |amj � anj |  " for
any fixed j. Thus anj is a Cauchy sequence for fixed j and by completeness
of C has a limit: limn!1 anj = aj . Now consider

kX

j=1

|amj � anj |  " (0.23)

and take m ! 1:
kX

j=1

|aj � anj |  ". (0.24)

Since this holds for any finite k, we even have ka�ank1  ". Hence (a�an) 2
`1(N) and since an 2 `1(N), we finally conclude a = an+(a�an) 2 `1(N). ⇧

Example. The space `1(N) of all bounded sequences a = (aj)1j=1 together
with the norm

kak1 = sup
j2N

|aj | (0.25)

is a Banach space (Problem 0.10). ⇧

Now what about convergence in the space C(I)? A sequence of functions
fn(x) converges to f if and only if

lim
n!1

kf � fnk = lim
n!1

sup
x2I

|fn(x)� f(x)| = 0. (0.26)
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That is, in the language of real analysis, fn converges uniformly to f . Now
let us look at the case where fn is only a Cauchy sequence. Then fn(x) is
clearly a Cauchy sequence of real numbers for any fixed x 2 I. In particular,
by completeness of C, there is a limit f(x) for each x. Thus we get a limiting
function f(x). Moreover, letting m ! 1 in

|fm(x)� fn(x)|  " 8m,n > N", x 2 I, (0.27)

we see
|f(x)� fn(x)|  " 8n > N", x 2 I; (0.28)

that is, fn(x) converges uniformly to f(x). However, up to this point we
do not know whether it is in our vector space C(I) or not, that is, whether
it is continuous or not. Fortunately, there is a well-known result from real
analysis which tells us that the uniform limit of continuous functions is again
continuous. Hence f(x) 2 C(I) and thus every Cauchy sequence in C(I)
converges. Or, in other words

Theorem 0.14. C(I) with the maximum norm is a Banach space.

Next we want to know if there is a countable basis for C(I). We will call
a set of vectors {un} ⇢ X linearly independent if every finite subset is and
we will call a countable set of linearly independent vectors {un}Nn=1 ⇢ X
a Schauder basis if every element f 2 X can be uniquely written as a
countable linear combination of the basis elements:

f =
NX

n=1

cnun, cn = cn(f) 2 C, (0.29)

where the sum has to be understood as a limit if N = 1. In this case the
span span{un} (the set of all finite linear combinations) of {un} is dense in
X. A set whose span is dense is called total and if we have a countable total
set, we also have a countable dense set (consider only linear combinations
with rational coe�cients — show this). A normed linear space containing a
countable dense set is called separable.

Example. The Banach space `1(N) is separable. In fact, the set of vectors
�n, with �nn = 1 and �nm = 0, n 6= m, is total: Let a = (aj)1j=1 2 `1(N) be

given and set an =
Pn

j=1 aj�
j . Then

ka� ank1 =
1X

j=n+1

|aj | ! 0 (0.30)

since anj = aj for 1  j  n and anj = 0 for j > n. ⇧

Luckily this is also the case for C(I):

Theorem 0.15 (Weierstraß). Let I be a compact interval. Then the set of
polynomials is dense in C(I).
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Proof. Let f(x) 2 C(I) be given. By considering f(x) � f(a) + (f(b) �
f(a))(x� b) it is no loss to assume that f vanishes at the boundary points.
Moreover, without restriction we only consider I = [�1

2 , 12 ] (why?).

Now the claim follows from the lemma below using

un(x) =
1

In
(1� x2)n,

where

In =

Z 1

�1
(1� x2)ndx =

n

n+ 1

Z 1

�1
(1� x)n�1(1 + x)n+1dx

= · · · =
n!

(n+ 1) · · · (2n+ 1)
22n+1 =

n!
1
2(

1
2 + 1) · · · (12 + n)

=
p
⇡
�(1 + n)

�(32 + n)
=

r
⇡

n
(1 +O(

1

n
)).

In the last step we have used �(12) =
p
⇡ [1, (6.1.8)] and the asymptotics

follow from Stirling’s formula [1, (6.1.37)]. ⇤

Lemma 0.16 (Smoothing). Let un(x) be a sequence of nonnegative contin-
uous functions on [�1, 1] such that

Z

|x|1
un(x)dx = 1 and

Z

�|x|1
un(x)dx ! 0, � > 0. (0.31)

(In other words, un has mass one and concentrates near x = 0 as n ! 1.)

Then for every f 2 C[�1
2 ,

1
2 ] which vanishes at the endpoints, f(�1

2) =
f(12) = 0, we have that

fn(x) =

Z 1/2

�1/2
un(x� y)f(y)dy (0.32)

converges uniformly to f(x).

Proof. Since f is uniformly continuous, for given " we can find a � (indepen-
dent of x) such that |f(x)�f(y)|  " whenever |x�y|  �. Moreover, we can
choose n such that

R
�|y|1 un(y)dy  ". Now abbreviate M = max{1, |f |}

and note

|f(x)�

Z 1/2

�1/2
un(x� y)f(x)dy| = |f(x)| |1�

Z 1/2

�1/2
un(x� y)dy|  M".

In fact, either the distance of x to one of the boundary points ±1
2 is smaller

than � and hence |f(x)|  " or otherwise the di↵erence between one and the
integral is smaller than ".
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Using this, we have

|fn(x)� f(x)| 

Z 1/2

�1/2
un(x� y)|f(y)� f(x)|dy +M"



Z

|y|1/2,|x�y|�
un(x� y)|f(y)� f(x)|dy

+

Z

|y|1/2,|x�y|��
un(x� y)|f(y)� f(x)|dy +M"

="+ 2M"+M" = (1 + 3M)", (0.33)

which proves the claim. ⇤

Note that fn will be as smooth as un, hence the title smoothing lemma.
The same idea is used to approximate noncontinuous functions by smooth
ones (of course the convergence will no longer be uniform in this case).

Corollary 0.17. C(I) is separable.

However, `1(N) is not separable (Problem 0.11)!

Problem 0.7. Show that |kfk � kgk|  kf � gk.

Problem 0.8. Let X be a Banach space. Show that the norm, vector ad-
dition, and multiplication by scalars are continuous. That is, if fn ! f ,
gn ! g, and ↵n ! ↵, then kfnk ! kfk, fn + gn ! f + g, and ↵ngn ! ↵g.

Problem 0.9. Let X be a Banach space. Show that
P

1

j=1 kfjk < 1 implies
that

1X

j=1

fj = lim
n!1

nX

j=1

fj

exists. The series is called absolutely convergent in this case.

Problem 0.10. Show that `1(N) is a Banach space.

Problem 0.11. Show that `1(N) is not separable. (Hint: Consider se-
quences which take only the value one and zero. How many are there? What
is the distance between two such sequences?)

0.3. The geometry of Hilbert spaces

So it looks like C(I) has all the properties we want. However, there is
still one thing missing: How should we define orthogonality in C(I)? In
Euclidean space, two vectors are called orthogonal if their scalar product
vanishes, so we would need a scalar product:
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Suppose H is a vector space. A map h., ..i : H ⇥ H ! C is called a
sesquilinear form if it is conjugate linear in the first argument and linear
in the second; that is,

h↵1f1 + ↵2f2, gi = ↵⇤
1hf1, gi+ ↵⇤

2hf2, gi,
hf,↵1g1 + ↵2g2i = ↵1hf, g1i+ ↵2hf, g2i,

↵1,↵2 2 C, (0.34)

where ‘⇤’ denotes complex conjugation. A sesquilinear form satisfying the
requirements

(i) hf, fi > 0 for f 6= 0 (positive definite),

(ii) hf, gi = hg, fi⇤ (symmetry)

is called an inner product or scalar product. Associated with every
scalar product is a norm

kfk =
p

hf, fi. (0.35)

The pair (H, h., ..i) is called an inner product space. If H is complete, it
is called a Hilbert space.

Example. Clearly Cn with the usual scalar product

ha, bi =
nX

j=1

a⇤jbj (0.36)

is a (finite dimensional) Hilbert space. ⇧

Example. A somewhat more interesting example is the Hilbert space `2(N),
that is, the set of all sequences

n
(aj)

1

j=1

���
1X

j=1

|aj |
2 < 1

o
(0.37)

with scalar product

ha, bi =
1X

j=1

a⇤jbj . (0.38)

(Show that this is in fact a separable Hilbert space — Problem 0.13.) ⇧

Of course I still owe you a proof for the claim that
p
hf, fi is indeed a

norm. Only the triangle inequality is nontrivial, which will follow from the
Cauchy–Schwarz inequality below.

A vector f 2 H is called normalized or a unit vector if kfk = 1.
Two vectors f, g 2 H are called orthogonal or perpendicular (f ? g) if
hf, gi = 0 and parallel if one is a multiple of the other.

If f and g are orthogonal, we have the Pythagorean theorem:

kf + gk2 = kfk2 + kgk2, f ? g, (0.39)

which is one line of computation.
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Suppose u is a unit vector. Then the projection of f in the direction of
u is given by

fk = hu, fiu (0.40)

and f? defined via
f? = f � hu, fiu (0.41)

is perpendicular to u since hu, f?i = hu, f�hu, fiui = hu, fi�hu, fihu, ui =
0.

f

fk

f?

u⇣⇣⇣1⇣⇣⇣⇣⇣⇣⇣⇣⇣1B
B
B
BBM

�
�

�
�

�
�
��✓

Taking any other vector parallel to u, it is easy to see

kf � ↵uk2 = kf? + (fk � ↵u)k2 = kf?k
2 + |hu, fi � ↵|2 (0.42)

and hence fk = hu, fiu is the unique vector parallel to u which is closest to
f .

As a first consequence we obtain the Cauchy–Schwarz–Bunjakowski
inequality:

Theorem 0.18 (Cauchy–Schwarz–Bunjakowski). Let H0 be an inner prod-
uct space. Then for every f, g 2 H0 we have

|hf, gi|  kfk kgk (0.43)

with equality if and only if f and g are parallel.

Proof. It su�ces to prove the case kgk = 1. But then the claim follows
from kfk2 = |hg, fi|2 + kf?k2. ⇤

Note that the Cauchy–Schwarz inequality entails that the scalar product
is continuous in both variables; that is, if fn ! f and gn ! g, we have
hfn, gni ! hf, gi.

As another consequence we infer that the map k.k is indeed a norm. In
fact,

kf + gk2 = kfk2 + hf, gi+ hg, fi+ kgk2  (kfk+ kgk)2. (0.44)

But let us return to C(I). Can we find a scalar product which has the
maximum norm as associated norm? Unfortunately the answer is no! The
reason is that the maximum norm does not satisfy the parallelogram law
(Problem 0.17).
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Theorem 0.19 (Jordan–von Neumann). A norm is associated with a scalar
product if and only if the parallelogram law

kf + gk2 + kf � gk2 = 2kfk2 + 2kgk2 (0.45)

holds.

In this case the scalar product can be recovered from its norm by virtue
of the polarization identity

hf, gi =
1

4

�
kf + gk2 � kf � gk2 + ikf � igk2 � ikf + igk2

�
. (0.46)

Proof. If an inner product space is given, verification of the parallelogram
law and the polarization identity is straightforward (Problem 0.14).

To show the converse, we define

s(f, g) =
1

4

�
kf + gk2 � kf � gk2 + ikf � igk2 � ikf + igk2

�
.

Then s(f, f) = kfk2 and s(f, g) = s(g, f)⇤ are straightforward to check.
Moreover, another straightforward computation using the parallelogram law
shows

s(f, g) + s(f, h) = 2s(f,
g + h

2
).

Now choosing h = 0 (and using s(f, 0) = 0) shows s(f, g) = 2s(f, g2) and
thus s(f, g) + s(f, h) = s(f, g + h). Furthermore, by induction we infer
m
2n s(f, g) = s(f, m

2n g); that is, ↵ s(f, g) = s(f,↵g) for every positive rational
↵. By continuity (check this!) this holds for all ↵ > 0 and s(f,�g) =
�s(f, g), respectively, s(f, ig) = i s(f, g), finishes the proof. ⇤

Note that the parallelogram law and the polarization identity even hold
for sesquilinear forms (Problem 0.14).

But how do we define a scalar product on C(I)? One possibility is

hf, gi =

Z b

a
f⇤(x)g(x)dx. (0.47)

The corresponding inner product space is denoted by L
2
cont(I). Note that

we have

kfk 

p
|b� a|kfk1 (0.48)

and hence the maximum norm is stronger than the L
2
cont norm.

Suppose we have two norms k.k1 and k.k2 on a space X. Then k.k2 is
said to be stronger than k.k1 if there is a constant m > 0 such that

kfk1  mkfk2. (0.49)

It is straightforward to check the following.
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Lemma 0.20. If k.k2 is stronger than k.k1, then any k.k2 Cauchy sequence
is also a k.k1 Cauchy sequence.

Hence if a function F : X ! Y is continuous in (X, k.k1), it is also
continuous in (X, k.k2) and if a set is dense in (X, k.k2), it is also dense in
(X, k.k1).

In particular, L2
cont is separable. But is it also complete? Unfortunately

the answer is no:

Example. Take I = [0, 2] and define

fn(x) =

8
><

>:

0, 0  x  1� 1
n ,

1 + n(x� 1), 1� 1
n  x  1,

1, 1  x  2.

(0.50)

Then fn(x) is a Cauchy sequence in L
2
cont, but there is no limit in L

2
cont!

Clearly the limit should be the step function which is 0 for 0  x < 1 and 1
for 1  x  2, but this step function is discontinuous (Problem 0.18)! ⇧

This shows that in infinite dimensional spaces di↵erent norms will give
rise to di↵erent convergent sequences! In fact, the key to solving problems in
infinite dimensional spaces is often finding the right norm! This is something
which cannot happen in the finite dimensional case.

Theorem 0.21. If X is a finite dimensional space, then all norms are equiv-
alent. That is, for any two given norms k.k1 and k.k2, there are constants
m1 and m2 such that

1

m2
kfk1  kfk2  m1kfk1. (0.51)

Proof. Clearly we can choose a basis uj , 1  j  n, and assume that k.k2
is the usual Euclidean norm, k

P
j ↵jujk22 =

P
j |↵j |

2. Let f =
P

j ↵juj .
Then by the triangle and Cauchy–Schwartz inequalities

kfk1 
X

j

|↵j |kujk1 

sX

j

kujk21kfk2

and we can choose m2 =
qP

j kujk1.

In particular, if fn is convergent with respect to k.k2, it is also convergent
with respect to k.k1. Thus k.k1 is continuous with respect to k.k2 and attains
its minimum m > 0 on the unit sphere (which is compact by the Heine-Borel
theorem). Now choose m1 = 1/m. ⇤

Problem 0.12. Show that the norm in a Hilbert space satisfies kf + gk =
kfk+ kgk if and only if f = ↵g, ↵ � 0, or g = 0.



0.3. The geometry of Hilbert spaces 21

Problem 0.13. Show that `2(N) is a separable Hilbert space.

Problem 0.14. Suppose Q is a vector space. Let s(f, g) be a sesquilinear
form on Q and q(f) = s(f, f) the associated quadratic form. Prove the
parallelogram law

q(f + g) + q(f � g) = 2q(f) + 2q(g) (0.52)

and the polarization identity

s(f, g) =
1

4
(q(f + g)� q(f � g) + i q(f � ig)� i q(f + ig)) . (0.53)

Conversely, show that any quadratic form q(f) : Q ! R satisfying
q(↵f) = |↵|2q(f) and the parallelogram law gives rise to a sesquilinear form
via the polarization identity.

Problem 0.15. A sesquilinear form is called bounded if

ksk = sup
kfk=kgk=1

|s(f, g)|

is finite. Similarly, the associated quadratic form q is bounded if

kqk = sup
kfk=1

|q(f)|

is finite. Show

kqk  ksk  2kqk.

(Hint: Use the parallelogram law and the polarization identity from the pre-
vious problem.)

Problem 0.16. Suppose Q is a vector space. Let s(f, g) be a sesquilinear
form on Q and q(f) = s(f, f) the associated quadratic form. Show that the
Cauchy–Schwarz inequality

|s(f, g)|  q(f)1/2q(g)1/2 (0.54)

holds if q(f) � 0.

(Hint: Consider 0  q(f + ↵g) = q(f) + 2Re(↵ s(f, g)) + |↵|2q(g) and
choose ↵ = t s(f, g)⇤/|s(f, g)| with t 2 R.)

Problem 0.17. Show that the maximum norm (on C[0, 1]) does not satisfy
the parallelogram law.

Problem 0.18. Prove the claims made about fn, defined in (0.50), in the
last example.
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0.4. Completeness

Since L
2
cont is not complete, how can we obtain a Hilbert space from it?

Well, the answer is simple: take the completion.

If X is an (incomplete) normed space, consider the set of all Cauchy
sequences X̃. Call two Cauchy sequences equivalent if their di↵erence con-
verges to zero and denote by X̄ the set of all equivalence classes. It is easy
to see that X̄ (and X̃) inherit the vector space structure from X. Moreover,

Lemma 0.22. If xn is a Cauchy sequence, then kxnk converges.

Consequently the norm of a Cauchy sequence (xn)1n=1 can be defined by
k(xn)1n=1k = limn!1 kxnk and is independent of the equivalence class (show
this!). Thus X̄ is a normed space (X̃ is not! Why?).

Theorem 0.23. X̄ is a Banach space containing X as a dense subspace if
we identify x 2 X with the equivalence class of all sequences converging to
x.

Proof. (Outline) It remains to show that X̄ is complete. Let ⇠n = [(xn,j)1j=1]

be a Cauchy sequence in X̄. Then it is not hard to see that ⇠ = [(xj,j)1j=1]
is its limit. ⇤

Let me remark that the completion X̄ is unique. More precisely any
other complete space which contains X as a dense subset is isomorphic to
X̄. This can for example be seen by showing that the identity map on X
has a unique extension to X̄ (compare Theorem 0.26 below).

In particular it is no restriction to assume that a normed linear space
or an inner product space is complete. However, in the important case
of L

2
cont it is somewhat inconvenient to work with equivalence classes of

Cauchy sequences and hence we will give a di↵erent characterization using
the Lebesgue integral later.

0.5. Bounded operators

A linear map A between two normed spaces X and Y will be called a (lin-
ear) operator

A : D(A) ✓ X ! Y. (0.55)

The linear subspace D(A) on which A is defined is called the domain of A
and is usually required to be dense. The kernel

Ker(A) = {f 2 D(A)|Af = 0} (0.56)

and range
Ran(A) = {Af |f 2 D(A)} = AD(A) (0.57)
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are defined as usual. The operator A is called bounded if the operator
norm

kAk = sup
kfkX=1

kAfkY (0.58)

is finite.

The set of all bounded linear operators from X to Y is denoted by
L(X,Y ). If X = Y , we write L(X,X) = L(X).

Theorem 0.24. The space L(X,Y ) together with the operator norm (0.58)
is a normed space. It is a Banach space if Y is.

Proof. That (0.58) is indeed a norm is straightforward. If Y is complete and
An is a Cauchy sequence of operators, then Anf converges to an element
g for every f . Define a new operator A via Af = g. By continuity of
the vector operations, A is linear and by continuity of the norm kAfk =
limn!1 kAnfk  (limn!1 kAnk)kfk, it is bounded. Furthermore, given
" > 0 there is some N such that kAn � Amk  " for n,m � N and thus
kAnf�Amfk  "kfk. Taking the limit m ! 1, we see kAnf�Afk  "kfk;
that is, An ! A. ⇤

By construction, a bounded operator is Lipschitz continuous,

kAfkY  kAkkfkX , (0.59)

and hence continuous. The converse is also true

Theorem 0.25. An operator A is bounded if and only if it is continuous.

Proof. Suppose A is continuous but not bounded. Then there is a sequence
of unit vectors un such that kAunk � n. Then fn = 1

nun converges to 0 but
kAfnk � 1 does not converge to 0. ⇤

Moreover, if A is bounded and densely defined, it is no restriction to
assume that it is defined on all of X.

Theorem 0.26 (B.L.T. theorem). Let A 2 L(X,Y ) and let Y be a Banach
space. If D(A) is dense, there is a unique (continuous) extension of A to X
which has the same norm.

Proof. Since a bounded operator maps Cauchy sequences to Cauchy se-
quences, this extension can only be given by

Af = lim
n!1

Afn, fn 2 D(A), f 2 X.

To show that this definition is independent of the sequence fn ! f , let
gn ! f be a second sequence and observe

kAfn �Agnk = kA(fn � gn)k  kAkkfn � gnk ! 0.
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From continuity of vector addition and scalar multiplication it follows that
our extension is linear. Finally, from continuity of the norm we conclude
that the norm does not increase. ⇤

An operator in L(X,C) is called a bounded linear functional and the
space X⇤ = L(X,C) is called the dual space of X. A sequence fn is said to
converge weakly, fn * f , if `(fn) ! `(f) for every ` 2 X⇤.

The Banach space of bounded linear operators L(X) even has a multi-
plication given by composition. Clearly this multiplication satisfies

(A+B)C = AC +BC, A(B+C) = AB+BC, A,B,C 2 L(X) (0.60)

and

(AB)C = A(BC), ↵ (AB) = (↵A)B = A (↵B), ↵ 2 C. (0.61)

Moreover, it is easy to see that we have

kABk  kAkkBk. (0.62)

However, note that our multiplication is not commutative (unless X is one-
dimensional). We even have an identity, the identity operator I satisfying
kIk = 1.

A Banach space together with a multiplication satisfying the above re-
quirements is called a Banach algebra. In particular, note that (0.62)
ensures that multiplication is continuous (Problem 0.22).

Problem 0.19. Show that the integral operator

(Kf)(x) =

Z 1

0
K(x, y)f(y)dy,

where K(x, y) 2 C([0, 1] ⇥ [0, 1]), defined on D(K) = C[0, 1] is a bounded
operator both in X = C[0, 1] (max norm) and X = L

2
cont(0, 1).

Problem 0.20. Show that the di↵erential operator A = d
dx defined on

D(A) = C1[0, 1] ⇢ C[0, 1] is an unbounded operator.

Problem 0.21. Show that kABk  kAkkBk for every A,B 2 L(X).

Problem 0.22. Show that the multiplication in a Banach algebra X is con-
tinuous: xn ! x and yn ! y imply xnyn ! xy.

Problem 0.23. Let

f(z) =
1X

j=0

fjz
j , |z| < R,
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be a convergent power series with convergence radius R > 0. Suppose A is
a bounded operator with kAk < R. Show that

f(A) =
1X

j=0

fjA
j

exists and defines a bounded linear operator (cf. Problem 0.9).

0.6. Lebesgue Lp spaces

For this section some basic facts about the Lebesgue integral are required.
The necessary background can be found in Appendix A. To begin with,
Sections A.1, A.3, and A.4 will be su�cient.

We fix some �-finite measure space (X,⌃, µ) and denote by L
p(X, dµ),

1  p, the set of all complex-valued measurable functions for which

kfkp =

✓Z

X
|f |p dµ

◆1/p

(0.63)

is finite. First of all note that L
p(X, dµ) is a linear space, since |f + g|p 

2pmax(|f |, |g|)p  2pmax(|f |p, |g|p)  2p(|f |p + |g|p). Of course our hope
is that L

p(X, dµ) is a Banach space. However, there is a small technical
problem (recall that a property is said to hold almost everywhere if the set
where it fails to hold is contained in a set of measure zero):

Lemma 0.27. Let f be measurable. Then
Z

X
|f |p dµ = 0 (0.64)

if and only if f(x) = 0 almost everywhere with respect to µ.

Proof. Observe that we have A = {x|f(x) 6= 0} =
T

nAn, where An =
{x| |f(x)| > 1

n}. If
R
|f |pdµ = 0, we must have µ(An) = 0 for every n and

hence µ(A) = limn!1 µ(An) = 0. The converse is obvious. ⇤

Note that the proof also shows that if f is not 0 almost everywhere,
there is an " > 0 such that µ({x| |f(x)| � "}) > 0.

Example. Let � be the Lebesgue measure on R. Then the characteristic
function of the rationals �Q is zero a.e. (with respect to �).

Let ⇥ be the Dirac measure centered at 0. Then f(x) = 0 a.e. (with
respect to ⇥) if and only if f(0) = 0. ⇧

Thus kfkp = 0 only implies f(x) = 0 for almost every x, but not for all!
Hence k.kp is not a norm on L

p(X, dµ). The way out of this misery is to
identify functions which are equal almost everywhere: Let

N (X, dµ) = {f |f(x) = 0 µ-almost everywhere}. (0.65)
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Then N (X, dµ) is a linear subspace of Lp(X, dµ) and we can consider the
quotient space

Lp(X, dµ) = L
p(X, dµ)/N (X, dµ). (0.66)

If dµ is the Lebesgue measure on X ✓ Rn, we simply write Lp(X). Observe
that kfkp is well-defined on Lp(X, dµ).

Even though the elements of Lp(X, dµ) are, strictly speaking, equiva-
lence classes of functions, we will still call them functions for notational
convenience. However, note that for f 2 Lp(X, dµ) the value f(x) is not
well-defined (unless there is a continuous representative and di↵erent con-
tinuous functions are in di↵erent equivalence classes, e.g., in the case of
Lebesgue measure).

With this modification we are back in business since Lp(X, dµ) turns
out to be a Banach space. We will show this in the following sections.

But before that let us also define L1(X, dµ). It should be the set of
bounded measurable functions B(X) together with the sup norm. The only
problem is that if we want to identify functions equal almost everywhere, the
supremum is no longer independent of the equivalence class. The solution
is the essential supremum

kfk1 = inf{C |µ({x| |f(x)| > C}) = 0}. (0.67)

That is, C is an essential bound if |f(x)|  C almost everywhere and the
essential supremum is the infimum over all essential bounds.

Example. If � is the Lebesgue measure, then the essential sup of �Q with
respect to � is 0. If ⇥ is the Dirac measure centered at 0, then the essential
sup of �Q with respect to ⇥ is 1 (since �Q(0) = 1, and x = 0 is the only
point which counts for ⇥). ⇧

As before we set

L1(X, dµ) = B(X)/N (X, dµ) (0.68)

and observe that kfk1 is independent of the equivalence class.

If you wonder where the 1 comes from, have a look at Problem 0.24.

As a preparation for proving that Lp is a Banach space, we will need
Hölder’s inequality, which plays a central role in the theory of Lp spaces.
In particular, it will imply Minkowski’s inequality, which is just the triangle
inequality for Lp.

Theorem 0.28 (Hölder’s inequality). Let p and q be dual indices; that is,

1

p
+

1

q
= 1 (0.69)
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with 1  p  1. If f 2 Lp(X, dµ) and g 2 Lq(X, dµ), then fg 2 L1(X, dµ)
and

kf gk1  kfkpkgkq. (0.70)

Proof. The case p = 1, q = 1 (respectively p = 1, q = 1) follows directly
from the properties of the integral and hence it remains to consider 1 <
p, q < 1.

First of all it is no restriction to assume kfkp = kgkq = 1. Then, using
the elementary inequality (Problem 0.25)

a1/pb1/q 
1

p
a+

1

q
b, a, b � 0, (0.71)

with a = |f |p and b = |g|q and integrating over X gives
Z

X
|f g|dµ 

1

p

Z

X
|f |pdµ+

1

q

Z

X
|g|qdµ = 1

and finishes the proof. ⇤

As a consequence we also get

Theorem 0.29 (Minkowski’s inequality). Let f, g 2 Lp(X, dµ). Then

kf + gkp  kfkp + kgkp. (0.72)

Proof. Since the cases p = 1,1 are straightforward, we only consider 1 <
p < 1. Using |f + g|p  |f | |f + g|p�1 + |g| |f + g|p�1, we obtain from
Hölder’s inequality (note (p� 1)q = p)

kf + gkpp  kfkpk(f + g)p�1
kq + kgkpk(f + g)p�1

kq

= (kfkp + kgkp)k(f + g)kp�1
p .

⇤

This shows that Lp(X, dµ) is a normed linear space. Finally it remains
to show that Lp(X, dµ) is complete.

Theorem 0.30. The space Lp(X, dµ) is a Banach space.

Proof. Suppose fn is a Cauchy sequence. It su�ces to show that some
subsequence converges (show this). Hence we can drop some terms such
that

kfn+1 � fnkp 
1

2n
.

Now consider gn = fn � fn�1 (set f0 = 0). Then

G(x) =
1X

k=1

|gk(x)|
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is in Lp. This follows from
���

nX

k=1

|gk|
���
p


nX

k=1

kgk(x)kp  kf1kp +
1

2

using the monotone convergence theorem. In particular, G(x) < 1 almost
everywhere and the sum

1X

n=1

gn(x) = lim
n!1

fn(x)

is absolutely convergent for those x. Now let f(x) be this limit. Since
|f(x) � fn(x)|p converges to zero almost everywhere and |f(x) � fn(x)|p 

2pG(x)p 2 L1, dominated convergence shows kf � fnkp ! 0. ⇤

In particular, in the proof of the last theorem we have seen:

Corollary 0.31. If kfn � fkp ! 0, then there is a subsequence which con-
verges pointwise almost everywhere.

Note that the statement is not true in general without passing to a
subsequence (Problem 0.28).

Using Hölder’s inequality, we can also identify a class of bounded oper-
ators in Lp.

Lemma 0.32 (Schur criterion). Consider Lp(X, dµ) and Lq(X, d⌫) with
1
p + 1

q = 1. Suppose that K(x, y) is measurable and there are measurable

functions K1(x, y), K2(x, y) such that |K(x, y)|  K1(x, y)K2(x, y) and

kK1(x, .)kq  C1, kK2(., y)kp  C2 (0.73)

for µ-almost every x, respectively, for ⌫-almost every y. Then the operator
K : Lp(X, dµ) ! Lp(X, dµ) defined by

(Kf)(x) =

Z

Y
K(x, y)f(y)d⌫(y) (0.74)

for µ-almost every x is bounded with kKk  C1C2.

Proof. Choose f 2 Lp(X, dµ). By Fubini’s theorem
R
Y |K(x, y)f(y)|d⌫(y)

is measurable and by Hölder’s inequality we have
Z

Y
|K(x, y)f(y)|d⌫(y) 

Z

Y
K1(x, y)K2(x, y)|f(y)|d⌫(y)



✓Z

Y
K1(x, y)

qd⌫(y)

◆1/q ✓Z

Y
|K2(x, y)f(y)|

pd⌫(y)

◆1/p

 C1

✓Z

Y
|K2(x, y)f(y)|

pd⌫(y)

◆1/p
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(if K2(x, .)f(.) 62 Lp(X, d⌫), the inequality is trivially true). Now take this
inequality to the p’th power and integrate with respect to x using Fubini
Z

X

✓Z

Y
|K(x, y)f(y)|d⌫(y)

◆p

dµ(x)  Cp
1

Z

X

Z

Y
|K2(x, y)f(y)|

pd⌫(y)dµ(x)

= Cp
1

Z

Y

Z

X
|K2(x, y)f(y)|

pdµ(x)dµ(y)  Cp
1C

p
2kfk

p
p.

Hence
R
Y |K(x, y)f(y)|d⌫(y) 2 Lp(X, dµ) and in particular it is finite for

µ-almost every x. Thus K(x, .)f(.) is ⌫ integrable for µ-almost every x andR
Y K(x, y)f(y)d⌫(y) is measurable. ⇤

It even turns out that Lp is separable.

Lemma 0.33. Suppose X is a second countable topological space (i.e., it
has a countable basis) and µ is a regular Borel measure. Then Lp(X, dµ),
1  p < 1, is separable.

Proof. The set of all characteristic functions �A(x) with A 2 ⌃ and µ(A) <
1 is total by construction of the integral. Now our strategy is as follows:
Using outer regularity, we can restrict A to open sets and using the existence
of a countable base, we can restrict A to open sets from this base.

Fix A. By outer regularity, there is a decreasing sequence of open sets
On such that µ(On) ! µ(A). Since µ(A) < 1, it is no restriction to assume
µ(On) < 1, and thus µ(On\A) = µ(On) � µ(A) ! 0. Now dominated
convergence implies k�A � �Onkp ! 0. Thus the set of all characteristic
functions �O(x) with O open and µ(O) < 1 is total. Finally let B be a
countable basis for the topology. Then, every open set O can be written as
O =

S
1

j=1 Õj with Õj 2 B. Moreover, by considering the set of all finite

unions of elements from B, it is no restriction to assume
Sn

j=1 Õj 2 B. Hence

there is an increasing sequence Õn % O with Õn 2 B. By monotone con-
vergence, k�O � �Õn

kp ! 0 and hence the set of all characteristic functions

�Õ with Õ 2 B is total. ⇤

To finish this chapter, let us show that continuous functions are dense
in Lp.

Theorem 0.34. Let X be a locally compact metric space and let µ be a
�-finite regular Borel measure. Then the set Cc(X) of continuous functions
with compact support is dense in Lp(X, dµ), 1  p < 1.

Proof. As in the previous proof the set of all characteristic functions �K(x)
with K compact is total (using inner regularity). Hence it su�ces to show
that �K(x) can be approximated by continuous functions. By outer regu-
larity there is an open set O � K such that µ(O\K)  ". By Urysohn’s



30 0. A first look at Banach and Hilbert spaces

lemma (Lemma 0.12) there is a continuous function f" which is 1 on K and
0 outside O. SinceZ

X
|�K � f"|

pdµ =

Z

O\K
|f"|

pdµ  µ(O\K)  ",

we have kf" � �Kk ! 0 and we are done. ⇤

IfX is some subset of Rn, we can do even better. A nonnegative function
u 2 C1

c (Rn) is called a mollifier if
Z

Rn
u(x)dx = 1. (0.75)

The standard mollifier is u(x) = exp( 1
|x|2�1) for |x| < 1 and u(x) = 0

otherwise.

If we scale a mollifier according to uk(x) = knu(k x) such that its mass is
preserved (kukk1 = 1) and it concentrates more and more around the origin,

-

6 uk

we have the following result (Problem 0.29):

Lemma 0.35. Let u be a mollifier in Rn and set uk(x) = knu(k x). Then
for any (uniformly) continuous function f : Rn

! C we have that

fk(x) =

Z

Rn
uk(x� y)f(y)dy (0.76)

is in C1(Rn) and converges to f (uniformly).

Now we are ready to prove

Theorem 0.36. If X ✓ Rn and µ is a regular Borel measure, then the set
C1
c (X) of all smooth functions with compact support is dense in Lp(X, dµ),

1  p < 1.

Proof. By our previous result it su�ces to show that any continuous func-
tion f(x) with compact support can be approximated by smooth ones. By
setting f(x) = 0 for x 62 X, it is no restriction to assume X = Rn. Now
choose a mollifier u and observe that fk has compact support (since f
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has). Moreover, since f has compact support, it is uniformly continuous
and fk ! f uniformly. But this implies fk ! f in Lp. ⇤

We say that f 2 Lp
loc(X) if f 2 Lp(K) for any compact subset K ⇢ X.

Lemma 0.37. Suppose f 2 L1
loc(Rn). Then

Z

Rn
'(x)f(x)dx = 0, 8' 2 C1

c (Rn), (0.77)

if and only if f(x) = 0 (a.e.).

Proof. First of all we claim that for any bounded function g with compact
support K, there is a sequence of functions 'n 2 C1

c (Rn) with support in
K which converges pointwise to g such that k'nk1  kgk1.

To see this, take a sequence of continuous functions 'n with support
in K which converges to g in L1. To make sure that k'nk1  kgk1, just
set it equal to kgk1 whenever 'n > kgk1 and equal to �kgk1 whenever
'n < kgk1 (show that the resulting sequence still converges). Finally use
(0.76) to make 'n smooth (note that this operation does not change the
range) and extract a pointwise convergent subsequence.

Now let K be some compact set and choose g = sign(f)�K . Then
Z

K
|f |dx =

Z

K
f sign(f)dx = lim

n!1

Z
f�ndx = 0,

which shows f = 0 for a.e. x 2 K. Since K is arbitrary, we are done. ⇤

Problem 0.24. Suppose µ(X) < 1. Show that

lim
p!1

kfkp = kfk1

for any bounded measurable function.

Problem 0.25. Prove (0.71). (Hint: Take logarithms on both sides.)

Problem 0.26. Show the following generalization of Hölder’s inequality:

kf gkr  kfkpkgkq, (0.78)

where 1
p + 1

q = 1
r .

Problem 0.27 (Lyapunov inequality). Let 0 < ✓ < 1. Show that if f 2

Lp1 \ Lp2, then f 2 Lp and

kfkp  kfk✓p1kfk
1�✓
p2 , (0.79)

where 1
p = ✓

p1
+ 1�✓

p2
.
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Problem 0.28. Find a sequence fn which converges to 0 in Lp([0, 1], dx) but
for which fn(x) ! 0 for a.e. x 2 [0, 1] does not hold. (Hint: Every n 2 N can
be uniquely written as n = 2m+k with 0  m and 0  k < 2m. Now consider
the characteristic functions of the intervals Im,k = [k2�m, (k + 1)2�m].)

Problem 0.29. Prove Lemma 0.35. (Hint: To show that fk is smooth, use
Problems A.7 and A.8.)

Problem 0.30. Construct a function f 2 Lp(0, 1) which has a singularity at
every rational number in [0, 1]. (Hint: Start with the function f0(x) = |x|�↵

which has a single pole at 0. Then fj(x) = f0(x� xj) has a pole at xj.)

0.7. Appendix: The uniform boundedness principle

Recall that the interior of a set is the largest open subset (that is, the union
of all open subsets). A set is called nowhere dense if its closure has empty
interior. The key to several important theorems about Banach spaces is the
observation that a Banach space cannot be the countable union of nowhere
dense sets.

Theorem 0.38 (Baire category theorem). Let X be a complete metric space.
Then X cannot be the countable union of nowhere dense sets.

Proof. Suppose X =
S

1

n=1Xn. We can assume that the sets Xn are closed
and none of them contains a ball; that is, X\Xn is open and nonempty for
every n. We will construct a Cauchy sequence xn which stays away from all
Xn.

Since X\X1 is open and nonempty, there is a closed ball Br1(x1) ✓

X\X1. Reducing r1 a little, we can even assume Br1(x1) ✓ X\X1. More-
over, since X2 cannot contain Br1(x1), there is some x2 2 Br1(x1) that is
not in X2. Since Br1(x1)\ (X\X2) is open, there is a closed ball Br2(x2) ✓
Br1(x1) \ (X\X2). Proceeding by induction, we obtain a sequence of balls
such that

Brn(xn) ✓ Brn�1(xn�1) \ (X\Xn).

Now observe that in every step we can choose rn as small as we please; hence
without loss of generality rn ! 0. Since by construction xn 2 BrN (xN ) for
n � N , we conclude that xn is Cauchy and converges to some point x 2 X.
But x 2 Brn(xn) ✓ X\Xn for every n, contradicting our assumption that
the Xn cover X. ⇤

(Sets which can be written as the countable union of nowhere dense sets
are said to be of first category. All other sets are second category. Hence
we have the name category theorem.)
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In other words, if Xn ✓ X is a sequence of closed subsets which cover
X, at least one Xn contains a ball of radius " > 0.

Now we come to the first important consequence, the uniform bound-
edness principle.

Theorem 0.39 (Banach–Steinhaus). Let X be a Banach space and Y some
normed linear space. Let {A↵} ✓ L(X,Y ) be a family of bounded operators.
Suppose kA↵xk  C(x) is bounded for fixed x 2 X. Then kA↵k  C is
uniformly bounded.

Proof. Let

Xn = {x| kA↵xk  n for all ↵} =
\

↵

{x| kA↵xk  n}.

Then
S

nXn = X by assumption. Moreover, by continuity of A↵ and the
norm, each Xn is an intersection of closed sets and hence closed. By Baire’s
theorem at least one contains a ball of positive radius: B"(x0) ⇢ Xn. Now
observe

kA↵yk  kA↵(y + x0)k+ kA↵x0k  n+ kA↵x0k

for kyk < ". Setting y = " x
kxk , we obtain

kA↵xk 
n+ C(x0)

"
kxk

for any x. ⇤
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Chapter 1

Hilbert spaces

The phase space in classical mechanics is the Euclidean space R2n (for the n
position and n momentum coordinates). In quantum mechanics the phase
space is always a Hilbert space H. Hence the geometry of Hilbert spaces
stands at the outset of our investigations.

1.1. Hilbert spaces

Suppose H is a vector space. A map h., ..i : H⇥H ! C is called a sesquilinear
form if it is conjugate linear in the first argument and linear in the second.
A positive definite sesquilinear form is called an inner product or scalar
product. Associated with every scalar product is a norm

k k =
p
h , i. (1.1)

The triangle inequality follows from the Cauchy–Schwarz–Bunjakowski
inequality:

|h ,'i|  k k k'k (1.2)

with equality if and only if  and ' are parallel.

If H is complete with respect to the above norm, it is called a Hilbert
space. It is no restriction to assume that H is complete since one can easily
replace it by its completion.

Example. The space L2(M,dµ) is a Hilbert space with scalar product given
by

hf, gi =

Z

M
f(x)⇤g(x)dµ(x). (1.3)

37



38 1. Hilbert spaces

Similarly, the set of all square summable sequences `2(N) is a Hilbert space
with scalar product

hf, gi =
X

j2N
f⇤

j gj . (1.4)

(Note that the second example is a special case of the first one; take M = R
and µ a sum of Dirac measures.) ⇧

A vector  2 H is called normalized or a unit vector if k k = 1.
Two vectors  ,' 2 H are called orthogonal or perpendicular ( ? ') if
h ,'i = 0 and parallel if one is a multiple of the other.

If  and ' are orthogonal, we have the Pythagorean theorem:

k + 'k2 = k k2 + k'k2,  ? ', (1.5)

which is one line of computation.

Suppose ' is a unit vector. Then the projection of  in the direction of
' is given by

 k = h', i' (1.6)

and  ? defined via

 ? =  � h', i' (1.7)

is perpendicular to '.

These results can also be generalized to more than one vector. A set of
vectors {'j} is called an orthonormal set (ONS) if h'j ,'ki = 0 for j 6= k
and h'j ,'ji = 1.

Lemma 1.1. Suppose {'j}
n
j=0 is an orthonormal set. Then every  2 H

can be written as

 =  k +  ?,  k =
nX

j=0

h'j , i'j , (1.8)

where  k and  ? are orthogonal. Moreover, h'j , ?i = 0 for all 1  j  n.
In particular,

k k2 =
nX

j=0

|h'j , i|
2 + k ?k

2. (1.9)

Moreover, every  ̂ in the span of {'j}
n
j=0 satisfies

k �  ̂k � k ?k (1.10)

with equality holding if and only if  ̂ =  k. In other words,  k is uniquely
characterized as the vector in the span of {'j}

n
j=0 closest to  .
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Proof. A straightforward calculation shows h'j , �  ki = 0 and hence  k

and  ? =  �  k are orthogonal. The formula for the norm follows by
applying (1.5) iteratively.

Now, fix a vector

 ̂ =
nX

j=0

cj'j

in the span of {'j}
n
j=0. Then one computes

k �  ̂k2 = k k +  ? �  ̂k2 = k ?k
2 + k k �  ̂k2

= k ?k
2 +

nX

j=0

|cj � h'j , i|
2

from which the last claim follows. ⇤

From (1.9) we obtain Bessel’s inequality

nX

j=0

|h'j , i|
2
 k k2 (1.11)

with equality holding if and only if  lies in the span of {'j}
n
j=0.

Recall that a scalar product can be recovered from its norm by virtue of
the polarization identity

h', i =
1

4

�
k'+  k2 � k'�  k2 + ik'� i k2 � ik'+ i k2

�
. (1.12)

A bijective linear operator U 2 L(H1,H2) is called unitary if U preserves
scalar products:

hU', U i2 = h', i1, ', 2 H1. (1.13)

By the polarization identity this is the case if and only if U preserves norms:
kU k2 = k k1 for all  2 H1. The two Hilbert space H1 and H2 are called
unitarily equivalent in this case.

Problem 1.1. The operator

S : `2(N) ! `2(N), (a1, a2, a3, . . . ) 7! (0, a1, a2, . . . )

satisfies kSak = kak. Is it unitary?

1.2. Orthonormal bases

Of course, since we cannot assume H to be a finite dimensional vector space,
we need to generalize Lemma 1.1 to arbitrary orthonormal sets {'j}j2J .
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We start by assuming that J is countable. Then Bessel’s inequality (1.11)
shows that X

j2J

|h'j , i|
2 (1.14)

converges absolutely. Moreover, for any finite subset K ⇢ J we have

k

X

j2K

h'j , i'jk
2 =

X

j2K

|h'j , i|
2 (1.15)

by the Pythagorean theorem and thus
P

j2Jh'j , i'j is Cauchy if and only

if
P

j2J |h'j , i|2 is. Now let J be arbitrary. Again, Bessel’s inequality
shows that for any given " > 0 there are at most finitely many j for which
|h'j , i| � ". Hence there are at most countably many j for which |h'j , i| >
0. Thus it follows that X

j2J

|h'j , i|
2 (1.16)

is well-defined and so is X

j2J

h'j , i'j . (1.17)

In particular, by continuity of the scalar product we see that Lemma 1.1
holds for arbitrary orthonormal sets without modifications.

Theorem 1.2. Suppose {'j}j2J is an orthonormal set. Then every  2 H

can be written as

 =  k +  ?,  k =
X

j2J

h'j , i'j , (1.18)

where  k and  ? are orthogonal. Moreover, h'j , ?i = 0 for all j 2 J . In
particular,

k k2 =
X

j2J

|h'j , i|
2 + k ?k

2. (1.19)

Moreover, every  ̂ in the span of {'j}j2J satisfies

k �  ̂k � k ?k (1.20)

with equality holding if and only if  ̂ =  k. In other words,  k is uniquely
characterized as the vector in the span of {'j}j2J closest to  .

Note that from Bessel’s inequality (which of course still holds) it follows
that the map  !  k is continuous.

An orthonormal set which is not a proper subset of any other orthonor-
mal set is called an orthonormal basis (ONB) due to the following result:

Theorem 1.3. For an orthonormal set {'j}j2J the following conditions are
equivalent:
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(i) {'j}j2J is a maximal orthonormal set.

(ii) For every vector  2 H we have

 =
X

j2J

h'j , i'j . (1.21)

(iii) For every vector  2 H we have

k k2 =
X

j2J

|h'j , i|
2. (1.22)

(iv) h'j , i = 0 for all j 2 J implies  = 0.

Proof. We will use the notation from Theorem 1.2.
(i) ) (ii): If  ? 6= 0, then we can normalize  ? to obtain a unit vector  ̃?

which is orthogonal to all vectors 'j . But then {'j}j2J [ { ̃?} would be a
larger orthonormal set, contradicting the maximality of {'j}j2J .
(ii) ) (iii): This follows since (ii) implies  ? = 0.
(iii) ) (iv): If h ,'ji = 0 for all j 2 J , we conclude k k2 = 0 and hence
 = 0.
(iv) ) (i): If {'j}j2J were not maximal, there would be a unit vector '
such that {'j}j2J [ {'} is a larger orthonormal set. But h'j ,'i = 0 for all
j 2 J implies ' = 0 by (iv), a contradiction. ⇤

Since  !  k is continuous, it su�ces to check conditions (ii) and (iii)
on a dense set.

Example. The set of functions

'n(x) =
1

p
2⇡

einx, n 2 Z, (1.23)

forms an orthonormal basis for H = L2(0, 2⇡). The corresponding orthogo-
nal expansion is just the ordinary Fourier series (Problem 1.20). ⇧

A Hilbert space is separable if and only if there is a countable orthonor-
mal basis. In fact, if H is separable, then there exists a countable total set
{ j}

N
j=0. Here N 2 N if H is finite dimensional and N = 1 otherwise. After

throwing away some vectors, we can assume that  n+1 cannot be expressed
as a linear combinations of the vectors  0, . . . ,  n. Now we can construct
an orthonormal basis as follows: We begin by normalizing  0,

'0 =
 0

k 0k
. (1.24)

Next we take  1 and remove the component parallel to '0 and normalize
again:

'1 =
 1 � h'0, 1i'0

k 1 � h'0, 1i'0k
. (1.25)
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Proceeding like this, we define recursively

'n =
 n �

Pn�1
j=0 h'j , ni'j

k n �
Pn�1

j=0 h'j , ni'jk
. (1.26)

This procedure is known as Gram–Schmidt orthogonalization. Hence
we obtain an orthonormal set {'j}

N
j=0 such that span{'j}

n
j=0 = span{ j}

n
j=0

for any finite n and thus also for N (if N = 1). Since { j}
N
j=0 is total, so

is {'j}
N
j=0. Now suppose there is some  =  k +  ? 2 H for which  ? 6= 0.

Since {'j}
N
j=1 is total, we can find a  ̂ in its span, such that k � ̂k < k ?k

contradicting (1.20). Hence we infer that {'j}
N
j=1 is an orthonormal basis.

Theorem 1.4. Every separable Hilbert space has a countable orthonormal
basis.

Example. In L2(�1, 1) we can orthogonalize the polynomial fn(x) = xn.
The resulting polynomials are up to a normalization equal to the Legendre
polynomials

P0(x) = 1, P1(x) = x, P2(x) =
3x2 � 1

2
, . . . (1.27)

(which are normalized such that Pn(1) = 1). ⇧

If fact, if there is one countable basis, then it follows that any other basis
is countable as well.

Theorem 1.5. If H is separable, then every orthonormal basis is countable.

Proof. We know that there is at least one countable orthonormal basis
{'j}j2J . Now let {�k}k2K be a second basis and consider the set Kj =
{k 2 K|h�k,'ji 6= 0}. Since these are the expansion coe�cients of 'j with
respect to {�k}k2K , this set is countable. Hence the set K̃ =

S
j2J Kj is

countable as well. But k 2 K\K̃ implies �k = 0 and hence K̃ = K. ⇤

We will assume all Hilbert spaces to be separable.

In particular, it can be shown that L2(M,dµ) is separable. Moreover, it
turns out that, up to unitary equivalence, there is only one (separable)
infinite dimensional Hilbert space:

Let H be an infinite dimensional Hilbert space and let {'j}j2N be any
orthogonal basis. Then the map U : H ! `2(N),  7! (h'j , i)j2N is unitary
(by Theorem 1.3 (iii)). In particular,

Theorem 1.6. Any separable infinite dimensional Hilbert space is unitarily
equivalent to `2(N).
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Let me remark that if H is not separable, there still exists an orthonor-
mal basis. However, the proof requires Zorn’s lemma: The collection of
all orthonormal sets in H can be partially ordered by inclusion. Moreover,
any linearly ordered chain has an upper bound (the union of all sets in the
chain). Hence Zorn’s lemma implies the existence of a maximal element,
that is, an orthonormal basis.

Problem 1.2. Let {'j} be some orthonormal basis. Show that a bounded
linear operator A is uniquely determined by its matrix elements Ajk =
h'j , A'ki with respect to this basis.

Problem 1.3. Show that L(H) is not separable if H is infinite dimensional.

1.3. The projection theorem and the Riesz lemma

Let M ✓ H be a subset. Then M? = { |h', i = 0, 8' 2 M} is called
the orthogonal complement of M . By continuity of the scalar prod-
uct it follows that M? is a closed linear subspace and by linearity that
(span(M))? = M?. For example we have H

? = {0} since any vector in H
?

must be in particular orthogonal to all vectors in some orthonormal basis.

Theorem 1.7 (Projection theorem). Let M be a closed linear subspace of a
Hilbert space H. Then every  2 H can be uniquely written as  =  k +  ?

with  k 2 M and  ? 2 M?. One writes

M �M? = H (1.28)

in this situation.

Proof. Since M is closed, it is a Hilbert space and has an orthonormal basis
{'j}j2J . Hence the result follows from Theorem 1.2. ⇤

In other words, to every  2 H we can assign a unique vector  k which

is the vector in M closest to  . The rest,  �  k, lies in M?. The operator
PM =  k is called the orthogonal projection corresponding to M . Note
that we have

P 2
M = PM and hPM ,'i = h , PM'i (1.29)

since hPM ,'i = h k,'ki = h , PM'i. Clearly we have PM? =  �

PM =  ?. Furthermore, (1.29) uniquely characterizes orthogonal projec-
tions (Problem 1.6).

Moreover, we see that the vectors in a closed subspace M are precisely
those which are orthogonal to all vectors in M?; that is, M?? = M . If M
is an arbitrary subset, we have at least

M?? = span(M). (1.30)
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Note that by H
? = {0} we see that M? = {0} if and only if M is total.

Finally we turn to linear functionals, that is, to operators ` : H !

C. By the Cauchy–Schwarz inequality we know that `' :  7! h', i is a
bounded linear functional (with norm k'k). It turns out that in a Hilbert
space every bounded linear functional can be written in this way.

Theorem 1.8 (Riesz lemma). Suppose ` is a bounded linear functional on a
Hilbert space H. Then there is a unique vector ' 2 H such that `( ) = h', i
for all  2 H. In other words, a Hilbert space is equivalent to its own dual
space H

⇤ = H.

Proof. If ` ⌘ 0, we can choose ' = 0. Otherwise Ker(`) = { |`( ) = 0}
is a proper subspace and we can find a unit vector '̃ 2 Ker(`)?. For every
 2 H we have `( )'̃� `('̃) 2 Ker(`) and hence

0 = h'̃, `( )'̃� `('̃) i = `( )� `('̃)h'̃, i.

In other words, we can choose ' = `('̃)⇤'̃. To see uniqueness, let '1, '2 be
two such vectors. Then h'1 � '2, i = h'1, i � h'2, i = `( ) � `( ) = 0
for any  2 H, which shows '1 � '2 2 H

? = {0}. ⇤

The following easy consequence is left as an exercise.

Corollary 1.9. Suppose s is a bounded sesquilinear form; that is,

|s( ,')|  Ck k k'k. (1.31)

Then there is a unique bounded operator A such that

s( ,') = hA ,'i. (1.32)

Moreover, kAk  C.

Note that by the polarization identity (Problem 0.14), A is already
uniquely determined by its quadratic form qA( ) = h , A i.

Problem 1.4. Suppose U : H ! H is unitary and M ✓ H. Show that
UM? = (UM)?.

Problem 1.5. Show that an orthogonal projection PM 6= 0 has norm one.

Problem 1.6. Suppose P 2 L satisfies

P 2 = P and hP ,'i = h , P'i

and set M = Ran(P ). Show

• P =  for  2 M and M is closed,

• ' 2 M? implies P' 2 M? and thus P' = 0,

and conclude P = PM .
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Problem 1.7. Let P1, P2 be two orthogonal projections. Show that P1  P2

(that is, h , P1 i  h , P2 i) if and only if Ran(P1) ✓ Ran(P2). Show in
this case that the two projections commute (that is, P1P2 = P2P1) and that
P2 � P1 is also a projection. (Hints: kPj k = k k if and only if Pj =  
and Ran(P1) ✓ Ran(P2) if and only if P2P1 = P1.)

Problem 1.8. Show P : L2(R) ! L2(R), f(x) 7!
1
2(f(x) + f(�x)) is a

projection. Compute its range and kernel.

Problem 1.9. Prove Corollary 1.9.

Problem 1.10. Consider the sesquilinear form

B(f, g) =

Z 1

0

✓Z x

0
f(t)⇤dt

◆✓Z x

0
g(t)dt

◆
dx

in L2(0, 1). Show that it is bounded and find the corresponding operator A.
(Hint: Partial integration.)

1.4. Orthogonal sums and tensor products

Given two Hilbert spaces H1 and H2, we define their orthogonal sum
H1�H2 to be the set of all pairs ( 1, 2) 2 H1⇥H2 together with the scalar
product

h('1,'2), ( 1, 2)i = h'1, 1i1 + h'2, 2i2. (1.33)

It is left as an exercise to verify that H1 � H2 is again a Hilbert space.
Moreover, H1 can be identified with {( 1, 0)| 1 2 H1} and we can regard
H1 as a subspace of H1 � H2, and similarly for H2. It is also customary to
write  1 +  2 instead of ( 1, 2).

More generally, let Hj , j 2 N, be a countable collection of Hilbert spaces
and define

1M

j=1

Hj = {

1X

j=1

 j | j 2 Hj ,
1X

j=1

k jk
2
j < 1}, (1.34)

which becomes a Hilbert space with the scalar product

h

1X

j=1

'j ,
1X

j=1

 ji =
1X

j=1

h'j , jij . (1.35)

Example.
L

1

j=1C = `2(N). ⇧

Similarly, if H and H̃ are two Hilbert spaces, we define their tensor
product as follows: The elements should be products  ⌦ ̃ of elements  2 H
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and  ̃ 2 H̃. Hence we start with the set of all finite linear combinations of
elements of H⇥ H̃:

F(H, H̃) = {

nX

j=1

↵j( j ,  ̃j)|( j ,  ̃j) 2 H⇥ H̃, ↵j 2 C}. (1.36)

Since we want ( 1+ 2)⌦ ̃ =  1⌦ ̃+ 2⌦ ̃,  ⌦( ̃1+ ̃2) =  ⌦ ̃1+ ⌦ ̃2,
and (↵ )⌦  ̃ =  ⌦ (↵ ̃), we consider F(H, H̃)/N (H, H̃), where

N (H, H̃) = span{
nX

j,k=1

↵j�k( j ,  ̃k)� (
nX

j=1

↵j j ,
nX

k=1

�k ̃k)} (1.37)

and write  ⌦  ̃ for the equivalence class of ( ,  ̃).

Next we define
h ⌦  ̃,�⌦ �̃i = h ,�ih ̃, �̃i (1.38)

which extends to a sesquilinear form on F(H, H̃)/N (H, H̃). To show that we
obtain a scalar product, we need to ensure positivity. Let  =

P
i ↵i i⌦ ̃i 6=

0 and pick orthonormal bases 'j , '̃k for span{ i}, span{ ̃i}, respectively.
Then

 =
X

j,k

↵jk'j ⌦ '̃k, ↵jk =
X

i

↵ih'j , iih'̃k,  ̃ii (1.39)

and we compute

h , i =
X

j,k

|↵jk|
2 > 0. (1.40)

The completion of F(H, H̃)/N (H, H̃) with respect to the induced norm is
called the tensor product H⌦ H̃ of H and H̃.

Lemma 1.10. If 'j, '̃k are orthonormal bases for H, H̃, respectively, then
'j ⌦ '̃k is an orthonormal basis for H⌦ H̃.

Proof. That 'j⌦ '̃k is an orthonormal set is immediate from (1.38). More-
over, since span{'j}, span{'̃k} are dense in H, H̃, respectively, it is easy to
see that 'j ⌦ '̃k is dense in F(H, H̃)/N (H, H̃). But the latter is dense in
H⌦ H̃. ⇤

Example. We have H⌦ Cn = H
n. ⇧

Example. Let (M,dµ) and (M̃, dµ̃) be two measure spaces. Then we have
L2(M,dµ)⌦ L2(M̃, dµ̃) = L2(M ⇥ M̃, dµ⇥ dµ̃).

Clearly we have L2(M,dµ) ⌦ L2(M̃, dµ̃) ✓ L2(M ⇥ M̃, dµ ⇥ dµ̃). Now
take an orthonormal basis 'j ⌦ '̃k for L2(M,dµ) ⌦ L2(M̃, dµ̃) as in our
previous lemma. Then

Z

M

Z

M̃
('j(x)'̃k(y))

⇤f(x, y)dµ(x)dµ̃(y) = 0 (1.41)
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implies
Z

M
'j(x)

⇤fk(x)dµ(x) = 0, fk(x) =

Z

M̃
'̃k(y)

⇤f(x, y)dµ̃(y) (1.42)

and hence fk(x) = 0 µ-a.e. x. But this implies f(x, y) = 0 for µ-a.e. x and
µ̃-a.e. y and thus f = 0. Hence 'j ⌦ '̃k is a basis for L2(M ⇥ M̃, dµ⇥ dµ̃)
and equality follows. ⇧

It is straightforward to extend the tensor product to any finite number
of Hilbert spaces. We even note

(
1M

j=1

Hj)⌦ H =
1M

j=1

(Hj ⌦ H), (1.43)

where equality has to be understood in the sense that both spaces are uni-
tarily equivalent by virtue of the identification

(
1X

j=1

 j)⌦  =
1X

j=1

 j ⌦  . (1.44)

Problem 1.11. Show that  ⌦  ̃ = 0 if and only if  = 0 or  ̃ = 0.

Problem 1.12. We have  ⌦  ̃ = � ⌦ �̃ 6= 0 if and only if there is some
↵ 2 C\{0} such that  = ↵� and  ̃ = ↵�1�̃.

Problem 1.13. Show (1.43)

1.5. The C⇤ algebra of bounded linear operators

We start by introducing a conjugation for operators on a Hilbert space H.
Let A 2 L(H). Then the adjoint operator is defined via

h', A⇤ i = hA', i (1.45)

(compare Corollary 1.9).

Example. If H = Cn and A = (ajk)1j,kn, then A⇤ = (a⇤kj)1j,kn. ⇧

Lemma 1.11. Let A,B 2 L(H). Then

(i) (A+B)⇤ = A⇤ +B⇤, (↵A)⇤ = ↵⇤A⇤,

(ii) A⇤⇤ = A,

(iii) (AB)⇤ = B⇤A⇤,

(iv) kAk = kA⇤
k and kAk2 = kA⇤Ak = kAA⇤

k.

Proof. (i) and (ii) are obvious. (iii) follows from h', (AB) i = hA⇤', B i =
hB⇤A⇤', i. (iv) follows from

kA⇤
k = sup

k'k=k k=1
|h , A⇤'i| = sup

k'k=k k=1
|hA ,'i| = kAk
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and

kA⇤Ak = sup
k'k=k k=1

|h', A⇤A i| = sup
k'k=k k=1

|hA', A i|

= sup
k'k=1

kA'k2 = kAk
2,

where we have used k'k = supk k=1 |h ,'i|. ⇤

As a consequence of kA⇤
k = kAk observe that taking the adjoint is

continuous.

In general, a Banach algebra A together with an involution

(a+ b)⇤ = a⇤ + b⇤, (↵a)⇤ = ↵⇤a⇤, a⇤⇤ = a, (ab)⇤ = b⇤a⇤ (1.46)

satisfying

kak2 = ka⇤ak (1.47)

is called a C⇤ algebra. The element a⇤ is called the adjoint of a. Note that
ka⇤k = kak follows from (1.47) and kaa⇤k  kakka⇤k.

Any subalgebra which is also closed under involution is called a ⇤-
subalgebra. An ideal is a subspace I ✓ A such that a 2 I, b 2 A imply
ab 2 I and ba 2 I. If it is closed under the adjoint map, it is called a ⇤-ideal.
Note that if there is an identity e, we have e⇤ = e and hence (a�1)⇤ = (a⇤)�1

(show this).

Example. The continuous functions C(I) together with complex conjuga-
tion form a commutative C⇤ algebra. ⇧

An element a 2 A is called normal if aa⇤ = a⇤a, self-adjoint if a = a⇤,
unitary if aa⇤ = a⇤a = I, an (orthogonal) projection if a = a⇤ = a2, and
positive if a = bb⇤ for some b 2 A. Clearly both self-adjoint and unitary
elements are normal.

Problem 1.14. Let A 2 L(H). Show that A is normal if and only if

kA k = kA⇤ k, 8 2 H.

(Hint: Problem 0.14.)

Problem 1.15. Show that U : H ! H is unitary if and only if U�1 = U⇤.

Problem 1.16. Compute the adjoint of

S : `2(N) ! `2(N), (a1, a2, a3, . . . ) 7! (0, a1, a2, . . . ).
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1.6. Weak and strong convergence

Sometimes a weaker notion of convergence is useful: We say that  n con-
verges weakly to  and write

w-lim
n!1

 n =  or  n *  (1.48)

if h', ni ! h', i for every ' 2 H (show that a weak limit is unique).

Example. Let 'n be an (infinite) orthonormal set. Then h ,'ni ! 0 for
every  since these are just the expansion coe�cients of  . ('n does not
converge to 0, since k'nk = 1.) ⇧

Clearly  n !  implies  n *  and hence this notion of convergence is
indeed weaker. Moreover, the weak limit is unique, since h', ni ! h', i
and h', ni ! h',  ̃i imply h', ( �  ̃)i = 0. A sequence  n is called a
weak Cauchy sequence if h', ni is Cauchy for every ' 2 H.

Lemma 1.12. Let H be a Hilbert space.

(i)  n *  implies k k  lim inf k nk.

(ii) Every weak Cauchy sequence  n is bounded: k nk  C.

(iii) Every weak Cauchy sequence converges weakly.

(iv) For a weakly convergent sequence  n *  we have  n !  if and
only if lim sup k nk  k k.

Proof. (i) Observe

k k2 = h , i = lim infh , ni  k k lim inf k nk.

(ii) For every ' we have that |h', ni|  C(') is bounded. Hence by the
uniform boundedness principle we have k nk = kh n, .ik  C.
(iii) Let 'm be an orthonormal basis and define cm = limn!1h'm, ni.
Then  =

P
m cm'm is the desired limit.

(iv) By (i) we have lim k nk = k k and hence

k �  nk
2 = k k2 � 2Re(h , ni) + k nk

2
! 0.

The converse is straightforward. ⇤

Clearly an orthonormal basis does not have a norm convergent subse-
quence. Hence the unit ball in an infinite dimensional Hilbert space is never
compact. However, we can at least extract weakly convergent subsequences:

Lemma 1.13. Let H be a Hilbert space. Every bounded sequence  n has a
weakly convergent subsequence.
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Proof. Let 'k be an orthonormal basis. Then by the usual diagonal se-
quence argument we can find a subsequence  nm such that h'k, nmi con-
verges for all k. Since  n is bounded, h', nmi converges for every ' 2 H

and hence  nm is a weak Cauchy sequence. ⇤

Finally, let me remark that similar concepts can be introduced for oper-
ators. This is of particular importance for the case of unbounded operators,
where convergence in the operator norm makes no sense at all.

A sequence of operators An is said to converge strongly to A,

s-lim
n!1

An = A :, An ! A 8x 2 D(A) ✓ D(An). (1.49)

It is said to converge weakly to A,

w-lim
n!1

An = A :, An * A 8 2 D(A) ✓ D(An). (1.50)

Clearly norm convergence implies strong convergence and strong conver-
gence implies weak convergence.

Example. Consider the operator Sn 2 L(`2(N)) which shifts a sequence n
places to the left, that is,

Sn (x1, x2, . . . ) = (xn+1, xn+2, . . . ), (1.51)

and the operator S⇤
n 2 L(`2(N)) which shifts a sequence n places to the right

and fills up the first n places with zeros, that is,

S⇤

n (x1, x2, . . . ) = (0, . . . , 0| {z }
n places

, x1, x2, . . . ). (1.52)

Then Sn converges to zero strongly but not in norm (since kSnk = 1) and
S⇤
n converges weakly to zero (since h', S⇤

n i = hSn', i) but not strongly
(since kS⇤

n k = k k) . ⇧

Note that this example also shows that taking adjoints is not continuous
with respect to strong convergence! If An

s
! A, we only have

h', A⇤

n i = hAn', i ! hA', i = h', A⇤ i (1.53)

and hence A⇤
n * A⇤ in general. However, if An and A are normal, we have

k(An �A)⇤ k = k(An �A) k (1.54)

and hence A⇤
n

s
! A⇤ in this case. Thus at least for normal operators taking

adjoints is continuous with respect to strong convergence.

Lemma 1.14. Suppose An is a sequence of bounded operators.

(i) s-limn!1An = A implies kAk  lim infn!1 kAnk.

(ii) Every strong Cauchy sequence An is bounded: kAnk  C.
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(iii) If An ! A for  in some dense set and kAnk  C, then
s-limn!1An = A.

The same result holds if strong convergence is replaced by weak convergence.

Proof. (i) follows from

kA k = lim
n!1

kAn k  lim inf
n!1

kAnk

for every  with k k = 1.
(ii) follows as in Lemma 1.12 (i).
(iii) Just use

kAn �A k  kAn �An'k+ kAn'�A'k+ kA'�A k

 2Ck � 'k+ kAn'�A'k

and choose ' in the dense subspace such that k � 'k 
"
4C and n large

such that kAn'�A'k 
"
2 .

The case of weak convergence is left as an exercise. (Hint: (2.14).) ⇤
Problem 1.17. Suppose  n !  and 'n * '. Then h n,'ni ! h ,'i.

Problem 1.18. Let {'j}
1

j=1 be some orthonormal basis. Show that  n *  
if and only if  n is bounded and h'j , ni ! h'j , i for every j. Show that
this is wrong without the boundedness assumption.

Problem 1.19. A subspace M ✓ H is closed if and only if every weak
Cauchy sequence in M has a limit in M . (Hint: M = M??.)

1.7. Appendix: The Stone–Weierstraß theorem

In case of a self-adjoint operator, the spectral theorem will show that the
closed ⇤-subalgebra generated by this operator is isomorphic to the C⇤ al-
gebra of continuous functions C(K) over some compact set. Hence it is
important to be able to identify dense sets:

Theorem 1.15 (Stone–Weierstraß, real version). Suppose K is a compact
set and let C(K,R) be the Banach algebra of continuous functions (with the
sup norm).

If F ⇢ C(K,R) contains the identity 1 and separates points (i.e., for
every x1 6= x2 there is some function f 2 F such that f(x1) 6= f(x2)), then
the algebra generated by F is dense.

Proof. Denote by A the algebra generated by F . Note that if f 2 A, we
have |f | 2 A: By the Weierstraß approximation theorem (Theorem 0.15)
there is a polynomial pn(t) such that

��|t| � pn(t)
�� < 1

n for t 2 f(K) and
hence pn(f) ! |f |.



52 1. Hilbert spaces

In particular, if f, g are in A, we also have

max{f, g} =
(f + g) + |f � g|

2
, min{f, g} =

(f + g)� |f � g|

2

in A.

Now fix f 2 C(K,R). We need to find some f" 2 A with kf � f"k1 < ".

First of all, since A separates points, observe that for given y, z 2 K
there is a function fy,z 2 A such that fy,z(y) = f(y) and fy,z(z) = f(z)
(show this). Next, for every y 2 K there is a neighborhood U(y) such that

fy,z(x) > f(x)� ", x 2 U(y),

and since K is compact, finitely many, say U(y1), . . . , U(yj), cover K. Then

fz = max{fy1,z, . . . , fyj ,z} 2 A

and satisfies fz > f�" by construction. Since fz(z) = f(z) for every z 2 K,
there is a neighborhood V (z) such that

fz(x) < f(x) + ", x 2 V (z),

and a corresponding finite cover V (z1), . . . , V (zk). Now

f" = min{fz1 , . . . , fzk} 2 A

satisfies f" < f + ". Since f � " < fzl < f", we have found a required
function. ⇤

Theorem 1.16 (Stone–Weierstraß). Suppose K is a compact set and let
C(K) be the C⇤ algebra of continuous functions (with the sup norm).

If F ⇢ C(K) contains the identity 1 and separates points, then the ⇤-
subalgebra generated by F is dense.

Proof. Just observe that F̃ = {Re(f), Im(f)|f 2 F} satisfies the assump-
tion of the real version. Hence any real-valued continuous functions can be
approximated by elements from F̃ , in particular this holds for the real and
imaginary parts for any given complex-valued function. ⇤

Note that the additional requirement of being closed under complex
conjugation is crucial: The functions holomorphic on the unit ball and con-
tinuous on the boundary separate points, but they are not dense (since the
uniform limit of holomorphic functions is again holomorphic).

Corollary 1.17. Suppose K is a compact set and let C(K) be the C⇤ algebra
of continuous functions (with the sup norm).

If F ⇢ C(K) separates points, then the closure of the ⇤-subalgebra gen-
erated by F is either C(K) or {f 2 C(K)|f(t0) = 0} for some t0 2 K.
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Proof. There are two possibilities: either all f 2 F vanish at one point
t0 2 K (there can be at most one such point since F separates points)
or there is no such point. If there is no such point, we can proceed as in
the proof of the Stone–Weierstraß theorem to show that the identity can
be approximated by elements in A (note that to show |f | 2 A if f 2 A,
we do not need the identity, since pn can be chosen to contain no constant
term). If there is such a t0, the identity is clearly missing from A. However,
adding the identity to A, we get A + C = C(K) and it is easy to see that
A = {f 2 C(K)|f(t0) = 0}. ⇤
Problem 1.20. Show that the functions 'n(x) =

1
p
2⇡
einx, n 2 Z, form an

orthonormal basis for H = L2(0, 2⇡).

Problem 1.21. Let k 2 N and I ✓ R. Show that the ⇤-subalgebra generated
by fz0(t) = 1

(t�z0)k
for one z0 2 C is dense in the C⇤ algebra C1(I) of

continuous functions vanishing at infinity

• for I = R if z0 2 C\R and k = 1, 2,

• for I = [a,1) if z0 2 (�1, a) and any k,

• for I = (�1, a] [ [b,1) if z0 2 (a, b) and k odd.

(Hint: Add 1 to R to make it compact.)





Chapter 2

Self-adjointness and
spectrum

2.1. Some quantum mechanics

In quantum mechanics, a single particle living in R3 is described by a
complex-valued function (the wave function)

 (x, t), (x, t) 2 R3
⇥ R, (2.1)

where x corresponds to a point in space and t corresponds to time. The
quantity ⇢t(x) = | (x, t)|2 is interpreted as the probability density of the
particle at the time t. In particular,  must be normalized according to

Z

R3
| (x, t)|2d3x = 1, t 2 R. (2.2)

The location x of the particle is a quantity which can be observed (i.e.,
measured) and is hence called observable. Due to our probabilistic inter-
pretation, it is also a random variable whose expectation is given by

E (x) =
Z

R3
x| (x, t)|2d3x. (2.3)

In a real life setting, it will not be possible to measure x directly and one will
only be able to measure certain functions of x. For example, it is possible to
check whether the particle is inside a certain area ⌦ of space (e.g., inside a
detector). The corresponding observable is the characteristic function �⌦(x)
of this set. In particular, the number

E (�⌦) =

Z

R3
�⌦(x)| (x, t)|

2d3x =

Z

⌦
| (x, t)|2d3x (2.4)

55
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corresponds to the probability of finding the particle inside ⌦ ✓ R3. An
important point to observe is that, in contradistinction to classical mechan-
ics, the particle is no longer localized at a certain point. In particular,
the mean-square deviation (or variance) � (x)2 = E (x2) � E (x)2 is
always nonzero.

In general, the configuration space (or phase space) of a quantum
system is a (complex) Hilbert space H and the possible states of this system
are represented by the elements  having norm one, k k = 1.

An observable a corresponds to a linear operator A in this Hilbert space
and its expectation, if the system is in the state  , is given by the real
number

E (A) = h , A i = hA , i, (2.5)

where h., ..i denotes the scalar product of H. Similarly, the mean-square
deviation is given by

� (A)2 = E (A2)� E (A)2 = k(A� E (A)) k2. (2.6)

Note that � (A) vanishes if and only if  is an eigenstate corresponding to
the eigenvalue E (A); that is, A = E (A) .

From a physical point of view, (2.5) should make sense for any  2 H.
However, this is not in the cards as our simple example of one particle already
shows. In fact, the reader is invited to find a square integrable function  (x)
for which x (x) is no longer square integrable. The deeper reason behind
this nuisance is that E (x) can attain arbitrarily large values if the particle
is not confined to a finite domain, which renders the corresponding opera-
tor unbounded. But unbounded operators cannot be defined on the entire
Hilbert space in a natural way by the closed graph theorem (Theorem 2.8
below).

Hence, A will only be defined on a subset D(A) ✓ H called the domain
of A. Since we want A to be defined for at least most states, we require
D(A) to be dense.

However, it should be noted that there is no general prescription for how
to find the operator corresponding to a given observable.

Now let us turn to the time evolution of such a quantum mechanical
system. Given an initial state  (0) of the system, there should be a unique
 (t) representing the state of the system at time t 2 R. We will write

 (t) = U(t) (0). (2.7)

Moreover, it follows from physical experiments that superposition of states
holds; that is, U(t)(↵1 1(0)+↵2 2(0)) = ↵1 1(t)+↵2 2(t) (|↵1|

2+ |↵2|
2 =

1). In other words, U(t) should be a linear operator. Moreover, since  (t)
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is a state (i.e., k (t)k = 1), we have

kU(t) k = k k. (2.8)

Such operators are called unitary. Next, since we have assumed uniqueness
of solutions to the initial value problem, we must have

U(0) = I, U(t+ s) = U(t)U(s). (2.9)

A family of unitary operators U(t) having this property is called a one-
parameter unitary group. In addition, it is natural to assume that this
group is strongly continuous; that is,

lim
t!t0

U(t) = U(t0) ,  2 H. (2.10)

Each such group has an infinitesimal generator defined by

H = lim
t!0

i

t
(U(t) �  ), D(H) = { 2 H| lim

t!0

1

t
(U(t) �  ) exists}.

(2.11)
This operator is called the Hamiltonian and corresponds to the energy of
the system. If  (0) 2 D(H), then  (t) is a solution of the Schrödinger
equation (in suitable units)

i
d

dt
 (t) = H (t). (2.12)

This equation will be the main subject of our course.

In summary, we have the following axioms of quantum mechanics.

Axiom 1. The configuration space of a quantum system is a complex
separable Hilbert space H and the possible states of this system are repre-
sented by the elements of H which have norm one.

Axiom 2. Each observable a corresponds to a linear operator A defined
maximally on a dense subset D(A). Moreover, the operator correspond-
ing to a polynomial Pn(a) =

Pn
j=0 ↵jaj , ↵j 2 R, is Pn(A) =

Pn
j=0 ↵jAj ,

D(Pn(A)) = D(An) = { 2 D(A)|A 2 D(An�1)} (A0 = I).
Axiom 3. The expectation value for a measurement of a, when the

system is in the state  2 D(A), is given by (2.5), which must be real for
all  2 D(A).

Axiom 4. The time evolution is given by a strongly continuous one-
parameter unitary group U(t). The generator of this group corresponds to
the energy of the system.

In the following sections we will try to draw some mathematical conse-
quences from these assumptions:

First we will see that Axioms 2 and 3 imply that observables corre-
spond to self-adjoint operators. Hence these operators play a central role
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in quantum mechanics and we will derive some of their basic properties.
Another crucial role is played by the set of all possible expectation values
for the measurement of a, which is connected with the spectrum �(A) of the
corresponding operator A.

The problem of defining functions of an observable will lead us to the
spectral theorem (in the next chapter), which generalizes the diagonalization
of symmetric matrices.

Axiom 4 will be the topic of Chapter 5.

2.2. Self-adjoint operators

Let H be a (complex separable) Hilbert space. A linear operator is a linear
mapping

A : D(A) ! H, (2.13)

where D(A) is a linear subspace of H, called the domain of A. It is called
bounded if the operator norm

kAk = sup
k k=1

kA k = sup
k'k=k k=1

|h , A'i| (2.14)

is finite. The second equality follows since equality in |h , A'i|  k k kA'k
is attained when A' = z for some z 2 C. If A is bounded, it is no
restriction to assume D(A) = H and we will always do so. The Banach space
of all bounded linear operators is denoted by L(H). Products of (unbounded)
operators are defined naturally; that is, AB = A(B ) for  2 D(AB) =
{ 2 D(B)|B 2 D(A)}.

The expression h , A i encountered in the previous section is called the
quadratic form,

qA( ) = h , A i,  2 D(A), (2.15)

associated to A. An operator can be reconstructed from its quadratic form
via the polarization identity

h', A i =
1

4
(qA('+  )� qA('�  ) + iqA('� i )� iqA('+ i )) . (2.16)

A densely defined linear operator A is called symmetric (or hermitian) if

h', A i = hA', i,  ,' 2 D(A). (2.17)

The justification for this definition is provided by the following

Lemma 2.1. A densely defined operator A is symmetric if and only if the
corresponding quadratic form is real-valued.
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Proof. Clearly (2.17) implies that Im(qA( )) = 0. Conversely, taking the
imaginary part of the identity

qA( + i') = qA( ) + qA(') + i(h , A'i � h', A i)

shows RehA', i = Reh', A i. Replacing ' by i' in this last equation
shows ImhA', i = Imh', A i and finishes the proof. ⇤

In other words, a densely defined operator A is symmetric if and only if

h , A i = hA , i,  2 D(A). (2.18)

This already narrows the class of admissible operators to the class of
symmetric operators by Axiom 3. Next, let us tackle the issue of the correct
domain.

By Axiom 2, A should be defined maximally; that is, if Ã is another
symmetric operator such that A ✓ Ã, then A = Ã. Here we write A ✓ Ã
if D(A) ✓ D(Ã) and A = Ã for all  2 D(A). The operator Ã is called
an extension of A in this case. In addition, we write A = Ã if both Ã ✓ A
and A ✓ Ã hold.

The adjoint operator A⇤ of a densely defined linear operator A is
defined by

D(A⇤) = { 2 H|9 ̃ 2 H : h , A'i = h ̃,'i, 8' 2 D(A)},
A⇤ =  ̃.

(2.19)

The requirement that D(A) be dense implies that A⇤ is well-defined. How-
ever, note that D(A⇤) might not be dense in general. In fact, it might
contain no vectors other than 0.

Clearly we have (↵A)⇤ = ↵⇤A⇤ for ↵ 2 C and (A + B)⇤ ◆ A⇤ + B⇤

provided D(A + B) = D(A) \ D(B) is dense. However, equality will not
hold in general unless one operator is bounded (Problem 2.2).

For later use, note that (Problem 2.4)

Ker(A⇤) = Ran(A)?. (2.20)

For symmetric operators we clearly have A ✓ A⇤. If, in addition, A = A⇤

holds, then A is called self-adjoint. Our goal is to show that observables
correspond to self-adjoint operators. This is for example true in the case of
the position operator x, which is a special case of a multiplication operator.

Example. (Multiplication operator) Consider the multiplication operator

(Af)(x) = A(x)f(x), D(A) = {f 2 L2(Rn, dµ) |Af 2 L2(Rn, dµ)}
(2.21)

given by multiplication with the measurable function A : Rn
! C. First

of all note that D(A) is dense. In fact, consider ⌦n = {x 2 Rn
| |A(x)| 
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n} % Rn. Then, for every f 2 L2(Rn, dµ) the function fn = �⌦nf 2 D(A)
converges to f as n ! 1 by dominated convergence.

Next, let us compute the adjoint of A. Performing a formal computation,
we have for h, f 2 D(A) that

hh,Afi =

Z
h(x)⇤A(x)f(x)dµ(x) =

Z
(A(x)⇤h(x))⇤f(x)dµ(x) = hÃh, fi,

(2.22)
where Ã is multiplication by A(x)⇤,

(Ãf)(x) = A(x)⇤f(x), D(Ã) = {f 2 L2(Rn, dµ) | Ãf 2 L2(Rn, dµ)}.
(2.23)

Note D(Ã) = D(A). At first sight this seems to show that the adjoint of
A is Ã. But for our calculation we had to assume h 2 D(A) and there
might be some functions in D(A⇤) which do not satisfy this requirement! In
particular, our calculation only shows Ã ✓ A⇤. To show that equality holds,
we need to work a little harder:

If h 2 D(A⇤), there is some g 2 L2(Rn, dµ) such that
Z

h(x)⇤A(x)f(x)dµ(x) =

Z
g(x)⇤f(x)dµ(x), f 2 D(A), (2.24)

and thusZ
(h(x)A(x)⇤ � g(x))⇤f(x)dµ(x) = 0, f 2 D(A). (2.25)

In particular,
Z
�⌦n(x)(h(x)A(x)⇤ � g(x))⇤f(x)dµ(x) = 0, f 2 L2(Rn, dµ), (2.26)

which shows that �⌦n(h(x)A(x)⇤ � g(x))⇤ 2 L2(Rn, dµ) vanishes. Since n
is arbitrary, we even have h(x)A(x)⇤ = g(x) 2 L2(Rn, dµ) and thus A⇤ is
multiplication by A(x)⇤ and D(A⇤) = D(A).

In particular, A is self-adjoint if A is real-valued. In the general case we
have at least kAfk = kA⇤fk for all f 2 D(A) = D(A⇤). Such operators are
called normal. ⇧

Now note that
A ✓ B ) B⇤

✓ A⇤; (2.27)

that is, increasing the domain of A implies decreasing the domain of A⇤.
Thus there is no point in trying to extend the domain of a self-adjoint
operator further. In fact, if A is self-adjoint and B is a symmetric extension,
we infer A ✓ B ✓ B⇤

✓ A⇤ = A implying A = B.

Corollary 2.2. Self-adjoint operators are maximal; that is, they do not have
any symmetric extensions.
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Furthermore, if A⇤ is densely defined (which is the case if A is symmet-
ric), we can consider A⇤⇤. From the definition (2.19) it is clear that A ✓ A⇤⇤

and thus A⇤⇤ is an extension of A. This extension is closely related to ex-
tending a linear subspace M via M?? = M (as we will see a bit later) and
thus is called the closure A = A⇤⇤ of A.

If A is symmetric, we have A ✓ A⇤ and hence A = A⇤⇤
✓ A⇤; that is,

A lies between A and A⇤. Moreover, h , A⇤'i = hA ,'i for all  2 D(A),
' 2 D(A⇤) implies that A is symmetric since A⇤' = A' for ' 2 D(A).

Example. (Di↵erential operator) Take H = L2(0, 2⇡).

(i) Consider the operator

A0f = �i
d

dx
f, D(A0) = {f 2 C1[0, 2⇡] | f(0) = f(2⇡) = 0}. (2.28)

That A0 is symmetric can be shown by a simple integration by parts (do
this). Note that the boundary conditions f(0) = f(2⇡) = 0 are chosen
such that the boundary terms occurring from integration by parts vanish.
However, this will also follow once we have computed A⇤

0. If g 2 D(A⇤
0), we

must have Z 2⇡

0
g(x)⇤(�if 0(x))dx =

Z 2⇡

0
g̃(x)⇤f(x)dx (2.29)

for some g̃ 2 L2(0, 2⇡). Integration by parts (cf. (2.116)) shows
Z 2⇡

0
f 0(x)

✓
g(x)� i

Z x

0
g̃(t)dt

◆⇤

dx = 0. (2.30)

In fact, this formula holds for g̃ 2 C[0, 2⇡]. Since the set of continuous
functions is dense, the general case g̃ 2 L2(0, 2⇡) follows by approximating
g̃ with continuous functions and taking limits on both sides using dominated
convergence.

Hence g(x) � i
R x
0 g̃(t)dt 2 {f 0

|f 2 D(A0)}?. But {f 0
|f 2 D(A0)} =

{h 2 C[0, 2⇡]|
R 2⇡
0 h(t)dt = 0} (show this) implying g(x) = g(0) + i

R x
0 g̃(t)dt

since {f 0|f 2 D(A0)} = {h 2 H|h1, hi = 0} = {1}? and {1}?? = span{1}.
Thus g 2 AC[0, 2⇡], where

AC[a, b] = {f 2 C[a, b]|f(x) = f(a) +

Z x

a
g(t)dt, g 2 L1(a, b)} (2.31)

denotes the set of all absolutely continuous functions (see Section 2.7). In
summary, g 2 D(A⇤

0) implies g 2 AC[0, 2⇡] and A⇤
0g = g̃ = �ig0. Conversely,

for every g 2 H1(0, 2⇡) = {f 2 AC[0, 2⇡]|f 0
2 L2(0, 2⇡)}, (2.29) holds with

g̃ = �ig0 and we conclude

A⇤

0f = �i
d

dx
f, D(A⇤

0) = H1(0, 2⇡). (2.32)
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In particular, A0 is symmetric but not self-adjoint. Since A0 = A⇤⇤
0 ✓ A⇤

0,
we can use integration by parts to compute

0 = hg,A0fi � hA⇤

0g, fi = i(f(0)g(0)⇤ � f(2⇡)g(2⇡)⇤) (2.33)

and since the boundary values of g 2 D(A⇤
0) can be prescribed arbitrarily,

we must have f(0) = f(2⇡) = 0. Thus

A0f = �i
d

dx
f, D(A0) = {f 2 D(A⇤

0) | f(0) = f(2⇡) = 0}. (2.34)

(ii) Now let us take

Af = �i
d

dx
f, D(A) = {f 2 C1[0, 2⇡] | f(0) = f(2⇡)}, (2.35)

which is clearly an extension of A0. Thus A⇤
✓ A⇤

0 and we compute

0 = hg,Afi � hA⇤g, fi = if(0)(g(0)⇤ � g(2⇡)⇤). (2.36)

Since this must hold for all f 2 D(A), we conclude g(0) = g(2⇡) and

A⇤f = �i
d

dx
f, D(A⇤) = {f 2 H1(0, 2⇡) | f(0) = f(2⇡)}. (2.37)

Similarly, as before, A = A⇤ and thus A is self-adjoint. ⇧

One might suspect that there is no big di↵erence between the two sym-
metric operators A0 and A from the previous example, since they coincide
on a dense set of vectors. However, the converse is true: For example, the
first operator A0 has no eigenvectors at all (i.e., solutions of the equation
A0 = z , z 2 C) whereas the second one has an orthonormal basis of
eigenvectors!

Example. Compute the eigenvectors of A0 and A from the previous exam-
ple.

(i) By definition, an eigenvector is a (nonzero) solution of A0u = zu,
z 2 C, that is, a solution of the ordinary di↵erential equation

� iu0(x) = zu(x) (2.38)

satisfying the boundary conditions u(0) = u(2⇡) = 0 (since we must have
u 2 D(A0)). The general solution of the di↵erential equation is u(x) =
u(0)eizx and the boundary conditions imply u(x) = 0. Hence there are no
eigenvectors.

(ii) Now we look for solutions of Au = zu, that is, the same di↵erential
equation as before, but now subject to the boundary condition u(0) = u(2⇡).
Again the general solution is u(x) = u(0)eizx and the boundary condition
requires u(0) = u(0)e2⇡iz. Thus there are two possibilities. Either u(0) = 0
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(which is of no use for us) or z 2 Z. In particular, we see that all eigenvectors
are given by

un(x) =
1

p
2⇡

einx, n 2 Z, (2.39)

which are well known to form an orthonormal basis. ⇧

We will see a bit later that this is a consequence of self-adjointness of
A. Hence it will be important to know whether a given operator is self-
adjoint or not. Our example shows that symmetry is easy to check (in case
of di↵erential operators it usually boils down to integration by parts), but
computing the adjoint of an operator is a nontrivial job even in simple situ-
ations. However, we will learn soon that self-adjointness is a much stronger
property than symmetry, justifying the additional e↵ort needed to prove it.

On the other hand, if a given symmetric operator A turns out not to
be self-adjoint, this raises the question of self-adjoint extensions. Two cases
need to be distinguished. If A is self-adjoint, then there is only one self-
adjoint extension (if B is another one, we have A ✓ B and hence A = B
by Corollary 2.2). In this case A is called essentially self-adjoint and
D(A) is called a core for A. Otherwise there might be more than one self-
adjoint extension or none at all. This situation is more delicate and will be
investigated in Section 2.6.

Since we have seen that computing A⇤ is not always easy, a criterion for
self-adjointness not involving A⇤ will be useful.

Lemma 2.3. Let A be symmetric such that Ran(A+ z) = Ran(A+ z⇤) = H

for one z 2 C. Then A is self-adjoint.

Proof. Let  2 D(A⇤) and A⇤ =  ̃. Since Ran(A + z⇤) = H, there is a
# 2 D(A) such that (A+ z⇤)# =  ̃ + z⇤ . Now we compute

h , (A+ z)'i = h ̃+ z⇤ ,'i = h(A+ z⇤)#,'i = h#, (A+ z)'i, ' 2 D(A),

and hence  = # 2 D(A) since Ran(A+ z) = H. ⇤

To proceed further, we will need more information on the closure of
an operator. We will use a di↵erent approach which avoids the use of the
adjoint operator. We will establish equivalence with our original definition
in Lemma 2.4.

The simplest way of extending an operator A is to take the closure of its
graph �(A) = {( , A )| 2 D(A)} ⇢ H

2. That is, if ( n, A n) ! ( ,  ̃),
we might try to define A =  ̃. For A to be well-defined, we need that
( n, A n) ! (0,  ̃) implies  ̃ = 0. In this case A is called closable and
the unique operator A which satisfies �(A) = �(A) is called the closure of
A. Clearly, A is called closed if A = A, which is the case if and only if the
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graph of A is closed. Equivalently, A is closed if and only if �(A) equipped
with the graph norm k( , A )k2�(A) = k k2 + kA k2 is a Hilbert space

(i.e., closed). By construction, A is the smallest closed extension of A.

Example. Suppose A is bounded. Then the closure was already computed
in Theorem 0.26. In particular, D(A) = D(A) and a bounded operator is
closed if and only if its domain is closed. ⇧

Example. Consider again the di↵erential operator A0 from (2.28) and let
us compute the closure without the use of the adjoint operator.

Let f 2 D(A0) and let fn 2 D(A0) be a sequence such that fn ! f ,
A0fn ! �ig. Then f 0

n ! g and hence f(x) =
R x
0 g(t)dt. Thus f 2 AC[0, 2⇡]

and f(0) = 0. Moreover f(2⇡) = limn!0
R 2⇡
0 f 0

n(t)dt = 0. Conversely, any
such f can be approximated by functions in D(A0) (show this). ⇧

Example. Consider again the multiplication operator byA(x) in L2(Rn, dµ)
but now defined on functions with compact support, that is,

D(A0) = {f 2 D(A) | supp(f) is compact}. (2.40)

Then its closure is given by A0 = A. In particular, A0 is essentially self-
adjoint and D(A0) is a core for A.

To prove A0 = A, let some f 2 D(A) be given and consider fn =
�{x| |x|n}f . Then fn 2 D(A0) and fn(x) ! f(x) as well as A(x)fn(x) !

A(x)f(x) in L2(Rn, dµ) by dominated convergence. Thus D(A0) ✓ D(A)
and since A is closed, we even get equality. ⇧

Example. Consider the multiplication A(x) = x in L2(R) defined on

D(A0) = {f 2 D(A) |

Z

R
f(x)dx = 0}. (2.41)

Then A0 is closed. Hence D(A0) is not a core for A.

To show that A0 is closed, suppose there is a sequence fn(x) ! f(x)
such that xfn(x) ! g(x). Since A is closed, we necessarily have f 2 D(A)
and g(x) = xf(x). But then

0 = lim
n!1

Z

R
fn(x)dx = lim

n!1

Z

R

1

1 + |x|
(fn(x) + sign(x)xfn(x))dx

=

Z

R

1

1 + |x|
(f(x) + sign(x)g(x))dx =

Z

R
f(x)dx (2.42)

which shows f 2 D(A0). ⇧

Next, let us collect a few important results.
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Lemma 2.4. Suppose A is a densely defined operator.

(i) A⇤ is closed.

(ii) A is closable if and only if D(A⇤) is dense and A = A⇤⇤, respec-
tively, (A)⇤ = A⇤, in this case.

(iii) If A is injective and Ran(A) is dense, then (A⇤)�1 = (A�1)⇤. If

A is closable and A is injective, then A
�1

= A�1.

Proof. Let us consider the following two unitary operators from H
2 to itself

U(', ) = ( ,�'), V (', ) = ( ,').

(i) From

�(A⇤) = {(', '̃) 2 H
2
|h', A i = h'̃, i, 8 2 D(A)}

= {(', '̃) 2 H
2
|h(', '̃), ( ̃,� )iH2 = 0, 8( ,  ̃) 2 �(A)}

= (U�(A))? (2.43)

we conclude that A⇤ is closed.

(ii) Similarly, using U�? = (U�)? (Problem 1.4), by

�(A) = �(A)?? = (U�(A⇤))?

= {( ,  ̃)| h , A⇤'i � h ̃,'i = 0, 8' 2 D(A⇤)}

we see that (0,  ̃) 2 �(A) if and only if  ̃ 2 D(A⇤)?. Hence A is closable if
and only if D(A⇤) is dense. In this case, equation (2.43) also shows A

⇤
= A⇤.

Moreover, replacing A by A⇤ in (2.43) and comparing with the last formula
shows A⇤⇤ = A.

(iii) Next note that (provided A is injective)

�(A�1) = V �(A).

Hence if Ran(A) is dense, then Ker(A⇤) = Ran(A)? = {0} and

�((A⇤)�1) = V �(A⇤) = V U�(A)? = UV �(A)? = U(V �(A))?

shows that (A⇤)�1 = (A�1)⇤. Similarly, if A is closable and A is injective,

then A
�1

= A�1 by

�(A
�1

) = V �(A) = V �(A) = �(A�1).

⇤
Corollary 2.5. If A is self-adjoint and injective, then A�1 is also self-
adjoint.

Proof. Equation (2.20) in the case A = A⇤ implies Ran(A)? = Ker(A) =
{0} and hence (iii) is applicable. ⇤
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If A is densely defined and bounded, we clearly have D(A⇤) = H and by
Corollary 1.9, A⇤

2 L(H). In particular, since A = A⇤⇤, we obtain

Theorem 2.6. We have A 2 L(H) if and only if A⇤
2 L(H).

Now we can also generalize Lemma 2.3 to the case of essential self-adjoint
operators.

Lemma 2.7. A symmetric operator A is essentially self-adjoint if and only
if one of the following conditions holds for one z 2 C\R:

• Ran(A+ z) = Ran(A+ z⇤) = H,

• Ker(A⇤ + z) = Ker(A⇤ + z⇤) = {0}.

If A is nonnegative, that is, h , A i � 0 for all  2 D(A), we can also
admit z 2 (�1, 0).

Proof. First of all note that by (2.20) the two conditions are equivalent.
By taking the closure of A, it is no restriction to assume that A is closed.
Let z = x+ iy. From

k(A+ z) k2 = k(A+ x) + iy k2

= k(A+ x) k2 + y2k k2 � y2k k2, (2.44)

we infer that Ker(A+z) = {0} and hence (A+z)�1 exists. Moreover, setting
 = (A + z)�1' (y 6= 0) shows k(A + z)�1

k  |y|�1. Hence (A + z)�1 is
bounded and closed. Since it is densely defined by assumption, its domain
Ran(A+ z) must be equal to H. Replacing z by z⇤, we see Ran(A+ z⇤) = H

and applying Lemma 2.3 shows that A is self-adjoint. Conversely, if A = A⇤,
the above calculation shows Ker(A⇤ + z) = {0}, which finishes the case
z 2 C\R.

The argument for the nonnegative case with z < 0 is similar using
"k k2  h , (A + ") i  k kk(A + ") k which shows (A + ")�1

 "�1,
" > 0. ⇤

In addition, we can also prove the closed graph theorem which shows
that an unbounded closed operator cannot be defined on the entire Hilbert
space.

Theorem 2.8 (Closed graph). Let H1 and H2 be two Hilbert spaces and
A : H1 ! H2 an operator defined on all of H1. Then A is bounded if and
only if �(A) is closed.

Proof. If A is bounded, then it is easy to see that �(A) is closed. So let us
assume that �(A) is closed. Then A⇤ is well-defined and for all unit vectors
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' 2 D(A⇤) we have that the linear functional `'( ) = hA⇤', i is pointwise
bounded, that is,

k`'( )k = |h', A i|  kA k.

Hence by the uniform boundedness principle there is a constant C such that
k`'k = kA⇤'k  C. That is, A⇤ is bounded and so is A = A⇤⇤. ⇤

Note that since symmetric operators are closable, they are automatically
closed if they are defined on the entire Hilbert space.

Theorem 2.9 (Hellinger-Toeplitz). A symmetric operator defined on the
entire Hilbert space is bounded.

Problem 2.1 (Jacobi operator). Let a and b be some real-valued sequences
in `1(Z). Consider the operator

Jfn = anfn+1 + an�1fn�1 + bnfn, f 2 `2(Z).
Show that J is a bounded self-adjoint operator.

Problem 2.2. Show that (↵A)⇤ = ↵⇤A⇤ and (A + B)⇤ ◆ A⇤ + B⇤ (where
D(A⇤ + B⇤) = D(A⇤) \ D(B⇤)) with equality if one operator is bounded.
Give an example where equality does not hold.

Problem 2.3. Suppose AB is densely defined. Show that (AB)⇤ ◆ B⇤A⇤.
Moreover, if B is bounded, then (BA)⇤ = A⇤B⇤.

Problem 2.4. Show (2.20).

Problem 2.5. An operator is called normal if kA k = kA⇤ k for all
 2 D(A) = D(A⇤).

Show that if A is normal, so is A+ z for any z 2 C.

Problem 2.6. Show that normal operators are closed. (Hint: A⇤ is closed.)

Problem 2.7. Show that a bounded operator A is normal if and only if
AA⇤ = A⇤A.

Problem 2.8. Show that the kernel of a closed operator is closed.

Problem 2.9. Show that if A is closed and B bounded, then AB is closed.

2.3. Quadratic forms and the Friedrichs extension

Finally we want to draw some further consequences of Axiom 2 and show
that observables correspond to self-adjoint operators. Since self-adjoint op-
erators are already maximal, the di�cult part remaining is to show that an
observable has at least one self-adjoint extension. There is a good way of
doing this for nonnegative operators and hence we will consider this case
first.
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An operator is called nonnegative (resp. positive) if h , A i � 0 (resp.
> 0 for  6= 0) for all  2 D(A). If A is positive, the map (', ) 7! h', A i
is a scalar product. However, there might be sequences which are Cauchy
with respect to this scalar product but not with respect to our original one.
To avoid this, we introduce the scalar product

h', iA = h', (A+ 1) i, A � 0, (2.45)

defined on D(A), which satisfies k k  k kA. Let HA be the completion of
D(A) with respect to the above scalar product. We claim that HA can be
regarded as a subspace of H; that is, D(A) ✓ HA ✓ H.

If ( n) is a Cauchy sequence in D(A), then it is also Cauchy in H (since
k k  k kA by assumption) and hence we can identify the limit in HA with
the limit of ( n) regarded as a sequence in H. For this identification to be
unique, we need to show that if ( n) ⇢ D(A) is a Cauchy sequence in HA

such that k nk ! 0, then k nkA ! 0. This follows from

k nk
2
A = h n, n �  miA + h n, miA

 k nkAk n �  mkA + k nkk(A+ 1) mk (2.46)

since the right-hand side can be made arbitrarily small choosing m,n large.

Clearly the quadratic form qA can be extended to every  2 HA by
setting

qA( ) = h , iA � k k2,  2 Q(A) = HA. (2.47)

The set Q(A) is also called the form domain of A.

Example. (Multiplication operator) Let A be multiplication by A(x) � 0
in L2(Rn, dµ). Then

Q(A) = D(A1/2) = {f 2 L2(Rn, dµ) |A1/2f 2 L2(Rn, dµ)} (2.48)

and

qA(x) =

Z

Rn
A(x)|f(x)|2dµ(x) (2.49)

(show this). ⇧

Now we come to our extension result. Note that A + 1 is injective and
the best we can hope for is that for a nonnegative extension Ã, the operator
Ã+ 1 is a bijection from D(Ã) onto H.

Lemma 2.10. Suppose A is a nonnegative operator. Then there is a non-
negative extension Ã such that Ran(Ã+ 1) = H.

Proof. Let us define an operator Ã by

D(Ã) = { 2 HA|9 ̃ 2 H : h', iA = h',  ̃i, 8' 2 HA},
Ã =  ̃ �  .
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Since HA is dense,  ̃ is well-defined. Moreover, it is straightforward to see
that Ã is a nonnegative extension of A.

It is also not hard to see that Ran(Ã+ 1) = H. Indeed, for any  ̃ 2 H,
' 7! h ̃,'i is a bounded linear functional on HA. Hence there is an element
 2 HA such that h ̃,'i = h ,'iA for all ' 2 HA. By the definition of Ã,
(Ã+ 1) =  ̃ and hence Ã+ 1 is onto. ⇤

Example. Let us take H = L2(0,⇡) and consider the operator

Af = �
d2

dx2
f, D(A) = {f 2 C2[0,⇡] | f(0) = f(⇡) = 0}, (2.50)

which corresponds to the one-dimensional model of a particle confined to a
box.

(i) First of all, using integration by parts twice, it is straightforward to
check that A is symmetric:
Z ⇡

0
g(x)⇤(�f 00)(x)dx =

Z ⇡

0
g0(x)⇤f 0(x)dx =

Z ⇡

0
(�g00)(x)⇤f(x)dx. (2.51)

Note that the boundary conditions f(0) = f(⇡) = 0 are chosen such that
the boundary terms occurring from integration by parts vanish. Moreover,
the same calculation also shows that A is positive:

Z ⇡

0
f(x)⇤(�f 00)(x)dx =

Z ⇡

0
|f 0(x)|2dx > 0, f 6= 0. (2.52)

(ii) Next let us show HA = {f 2 H1(0,⇡) | f(0) = f(⇡) = 0}. In fact,
since

hg, fiA =

Z ⇡

0

�
g0(x)⇤f 0(x) + g(x)⇤f(x)

�
dx, (2.53)

we see that fn is Cauchy in HA if and only if both fn and f 0
n are Cauchy

in L2(0,⇡). Thus fn ! f and f 0
n ! g in L2(0,⇡) and fn(x) =

R x
0 f 0

n(t)dt
implies f(x) =

R x
0 g(t)dt. Thus f 2 AC[0,⇡]. Moreover, f(0) = 0 is obvious

and from 0 = fn(⇡) =
R ⇡
0 f 0

n(t)dt we have f(⇡) = limn!1

R ⇡
0 f 0

n(t)dt = 0.
So we have HA ✓ {f 2 H1(0,⇡) | f(0) = f(⇡) = 0}. To see the converse,
approximate f 0 by smooth functions gn. Using gn �

1
⇡

R ⇡
0 gn(t)dt instead

of gn, it is no restriction to assume
R ⇡
0 gn(t)dt = 0. Now define fn(x) =R x

0 gn(t)dt and note fn 2 D(A) ! f .

(iii) Finally, let us compute the extension Ã. We have f 2 D(Ã) if for
all g 2 HA there is an f̃ such that hg, fiA = hg, f̃i. That is,

Z ⇡

0
g0(x)⇤f 0(x)dx =

Z ⇡

0
g(x)⇤(f̃(x)� f(x))dx. (2.54)
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Integration by parts on the right-hand side shows
Z ⇡

0
g0(x)⇤f 0(x)dx = �

Z ⇡

0
g0(x)⇤

Z x

0
(f̃(t)� f(t))dt dx (2.55)

or equivalently
Z ⇡

0
g0(x)⇤

✓
f 0(x) +

Z x

0
(f̃(t)� f(t))dt

◆
dx = 0. (2.56)

Now observe {g0 2 H|g 2 HA} = {h 2 H|
R ⇡
0 h(t)dt = 0} = {1}? and thus

f 0(x) +
R x
0 (f̃(t) � f(t))dt 2 {1}?? = span{1}. So we see f 2 H2(0,⇡) =

{f 2 AC[0,⇡]|f 0
2 H1(0,⇡)} and Ãf = �f 00. The converse is easy and

hence

Ãf = �
d2

dx2
f, D(Ã) = {f 2 H2[0,⇡] | f(0) = f(⇡) = 0}. (2.57)

⇧

Now let us apply this result to operators A corresponding to observables.
Since A will, in general, not satisfy the assumptions of our lemma, we will
consider A2 instead, which has a symmetric extension Ã2 with Ran(Ã2+1) =
H. By our requirement for observables, A2 is maximally defined and hence
is equal to this extension. In other words, Ran(A2 + 1) = H. Moreover, for
any ' 2 H there is a  2 D(A2) such that

(A� i)(A+ i) = (A+ i)(A� i) = ' (2.58)

and since (A ± i) 2 D(A), we infer Ran(A ± i) = H. As an immediate
consequence we obtain

Corollary 2.11. Observables correspond to self-adjoint operators.

But there is another important consequence of the results which is worth-
while mentioning. A symmetric operator is called semi-bounded, respec-
tively, bounded from below, if

qA( ) = h , A i � �k k2, � 2 R. (2.59)

We will write A � � for short.

Theorem 2.12 (Friedrichs extension). Let A be a symmetric operator which
is bounded from below by �. Then there is a self-adjoint extension Ã which
is also bounded from below by � and which satisfies D(Ã) ✓ HA��.

Moreover, Ã is the only self-adjoint extension with D(Ã) ✓ HA��.

Proof. If we replace A by A� �, then existence follows from Lemma 2.10.
To see uniqueness, let Â be another self-adjoint extension with D(Â) ✓ HA.
Choose ' 2 D(A) and  2 D(Â). Then

h', (Â+ 1) i = h(A+ 1)', i = h , (A+ 1)'i⇤ = h ,'i⇤A = h', iA
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and by continuity we even get h', (Â + 1) i = h', iA for every ' 2 HA.
Hence by the definition of Ã we have  2 D(Ã) and Ã = Â ; that is,
Â ✓ Ã. But self-adjoint operators are maximal by Corollary 2.2 and thus
Â = Ã. ⇤

Clearly Q(A) = HA and qA can be defined for semi-bounded operators
as before by using k kA = h , (A� �) i+ k k2.

In many physical applications, the converse of this result is also of im-
portance: given a quadratic form q, when is there a corresponding operator
A such that q = qA?

So let q : Q ! C be a densely defined quadratic form corresponding
to a sesquilinear form s : Q ⇥ Q ! C; that is, q( ) = s( , ). As with
a scalar product, s can be recovered from q via the polarization identity
(cf. Problem 0.14). Furthermore, as in Lemma 2.1 one can show that s is
symmetric, s(', ) = s( ,')⇤, if and only if q is real-valued. In this case q
will be called hermitian.

A hermitian form q is called nonnegative if q( ) � 0 and semi-
bounded if q( ) � �k k2 for some � 2 R. As before we can associate
a norm k kq = q( )+(1��)k k2 with any semi-bounded q and look at the
completion Hq of Q with respect to this norm. However, since we are not
assuming that q is steaming from a semi-bounded operator, we do not know
whether Hq can be regarded as a subspace of H! Hence we will call q clos-
able if for every Cauchy sequence  n 2 Q with respect to k.kq, k nk ! 0
implies k nkq ! 0. In this case we have Hq ✓ H and we call the extension
of q to Hq the closure of q. In particular, we will call q closed if Q = Hq.

Example. Let H = L2(0, 1). Then

q(f) = |f(c)|2, f 2 C[0, 1], c 2 [0, 1],

is a well-defined nonnegative form. However, let fn(x) = max(0, 1�n|x�c|).
Then fn is a Cauchy sequence with respect to k.kq such that kfnk ! 0 but
kfnkq ! 1. Hence q is not closable and hence also not associated with a
nonnegative operator. Formally, one can interpret q as the quadratic form
of the multiplication operator with the delta distribution at x = c. Exercise:
Show Hq = H� C. ⇧

From our previous considerations we already know that the quadratic
form qA of a semi-bounded operator A is closable and its closure is associated
with a self-adjoint operator. It turns out that the converse is also true
(compare also Corollary 1.9 for the case of bounded operators):

Theorem 2.13. To every closed semi-bounded quadratic form q there cor-
responds a unique self-adjoint operator A such that Q = Q(A) and q = qA.
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If s is the sesquilinear form corresponding to q, then A is given by

D(A) = { 2 Hq|9 ̃ 2 H : s(', ) = h',  ̃i, 8' 2 Hq},
A =  ̃ � (1� �) .

(2.60)

Proof. Since Hq is dense,  ̃ and henceA is well-defined. Moreover, replacing
q by q(.) � �k.k and A by A � �, it is no restriction to assume � = 0. As
in the proof of Lemma 2.10 it follows that A is a nonnegative operator,
kA k2 � k k2, with Ran(A+1) = H. In particular, (A+1)�1 exists and is
bounded. Furthermore, for every 'j 2 H we can find  j 2 D(A) such that
'j = (A+ 1) j . Finally,

h(A+ 1)�1'1,'2i = h 1, (A+ 1) 2i = s( 1, 2) = s( 2, 1)
⇤

= h 2, (A+ 1) 1i
⇤ = h(A+ 1) 1, 2i

= h'1, (A+ 1)�1'2i

shows that (A+ 1)�1 is self-adjoint and so is A+ 1 by Corollary 2.5. ⇤

Any subspace Q̃ ✓ Q(A) which is dense with respect to k.kA is called a
form core of A and uniquely determines A.

Example. We have already seen that the operator

Af = �
d2

dx2
f, D(A) = {f 2 H2[0,⇡] | f(0) = f(⇡) = 0} (2.61)

is associated with the closed form

qA(f) =

Z ⇡

0
|f 0(x)|2dx, Q(A) = {f 2 H1[0,⇡] | f(0) = f(⇡) = 0}. (2.62)

However, this quadratic form even makes sense on the larger form domain
Q = H1[0,⇡]. What is the corresponding self-adjoint operator? (See Prob-
lem 2.13.) ⇧

A hermitian form q is called bounded if |q( )|  Ck k2 and we call

kqk = sup
k k=1

|q( )| (2.63)

the norm of q. In this case the norm k.kq is equivalent to k.k. Hence
Hq = H and the corresponding operator is bounded by the Hellinger–Toeplitz
theorem (Theorem 2.9). In fact, the operator norm is equal to the norm of
q (see also Problem 0.15):

Lemma 2.14. A semi-bounded form q is bounded if and only if the associ-
ated operator A is. Moreover, in this case

kqk = kAk. (2.64)
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Proof. Using the polarization identity and the parallelogram law (Prob-
lem 0.14), we infer 2Reh', A i  (k k2+k'k2) sup |h , A i| and choosing
' = kA k�1A shows kAk  kq|. The converse is easy. ⇤

As a consequence we see that for symmetric operators we have

kAk = sup
k k=1

|h , A i| (2.65)

generalizing (2.14) in this case.

Problem 2.10. Let A be invertible. Show A > 0 if and only if A�1 > 0.

Problem 2.11. Let A = �
d2

dx2 , D(A) = {f 2 H2(0,⇡) | f(0) = f(⇡) = 0}
and let  (x) = 1

2
p
⇡
x(⇡�x). Find the error in the following argument: Since

A is symmetric, we have 1 = hA , A i = h , A2 i = 0.

Problem 2.12. Suppose A is a closed operator. Show that A⇤A (with
D(A⇤A) = { 2 D(A)|A 2 D(A⇤)}) is self-adjoint. Show Q(A⇤A) =
D(A). (Hint: A⇤A � 0.)

Problem 2.13. Suppose A0 can be written as A0 = S⇤S. Show that the
Friedrichs extension is given by A = S⇤S.

Use this to compute the Friedrichs extension of A = �
d2

dx2 , D(A) = {f 2

C2(0,⇡)|f(0) = f(⇡) = 0}. Compute also the self-adjoint operator SS⇤ and
its form domain.

Problem 2.14. Use the previous problem to compute the Friedrichs exten-
sion A of A0 = �

d2

dx2 , D(A0) = C1
c (R). Show that Q(A) = H1(R) and

D(A) = H2(R). (Hint: Section 2.7.)

Problem 2.15. Let A be self-adjoint. Suppose D ✓ D(A) is a core. Then
D is also a form core.

Problem 2.16. Show that (2.65) is wrong if A is not symmetric.

2.4. Resolvents and spectra

Let A be a (densely defined) closed operator. The resolvent set of A is
defined by

⇢(A) = {z 2 C|(A� z)�1
2 L(H)}. (2.66)

More precisely, z 2 ⇢(A) if and only if (A � z) : D(A) ! H is bijective
and its inverse is bounded. By the closed graph theorem (Theorem 2.8), it
su�ces to check that A � z is bijective. The complement of the resolvent
set is called the spectrum

�(A) = C\⇢(A) (2.67)
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of A. In particular, z 2 �(A) if A � z has a nontrivial kernel. A vector
 2 Ker(A� z) is called an eigenvector and z is called an eigenvalue in
this case.

The function
RA : ⇢(A) ! L(H)

z 7! (A� z)�1
(2.68)

is called the resolvent of A. Note the convenient formula

RA(z)
⇤ = ((A� z)�1)⇤ = ((A� z)⇤)�1 = (A⇤

� z⇤)�1 = RA⇤(z⇤). (2.69)

In particular,
⇢(A⇤) = ⇢(A)⇤. (2.70)

Example. (Multiplication operator) Consider again the multiplication op-
erator

(Af)(x) = A(x)f(x), D(A) = {f 2 L2(Rn, dµ) |Af 2 L2(Rn, dµ)},
(2.71)

given by multiplication with the measurable function A : Rn
! C. Clearly

(A� z)�1 is given by the multiplication operator

(A� z)�1f(x) =
1

A(x)� z
f(x),

D((A� z)�1) = {f 2 L2(Rn, dµ) |
1

A� z
f 2 L2(Rn, dµ)} (2.72)

whenever this operator is bounded. But k(A � z)�1
k = k

1
A�zk1 

1
" is

equivalent to µ({x| |A(x)� z| < "}) = 0 and hence

⇢(A) = {z 2 C|9" > 0 : µ({x| |A(x)� z| < "}) = 0}. (2.73)

The spectrum

�(A) = {z 2 C|8" > 0 : µ({x| |A(x)� z| < "}) > 0} (2.74)

is also known as the essential range of A(x). Moreover, z is an eigenvalue
of A if µ(A�1({z})) > 0 and �A�1({z}) is a corresponding eigenfunction in
this case. ⇧

Example. (Di↵erential operator) Consider again the di↵erential operator

Af = �i
d

dx
f, D(A) = {f 2 AC[0, 2⇡] | f 0

2 L2, f(0) = f(2⇡)} (2.75)

in L2(0, 2⇡). We already know that the eigenvalues of A are the integers
and that the corresponding normalized eigenfunctions

un(x) =
1

p
2⇡

einx (2.76)

form an orthonormal basis.
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To compute the resolvent, we must find the solution of the correspond-
ing inhomogeneous equation �if 0(x) � z f(x) = g(x). By the variation of
constants formula the solution is given by (this can also be easily verified
directly)

f(x) = f(0)eizx + i

Z x

0
eiz(x�t)g(t)dt. (2.77)

Since f must lie in the domain of A, we must have f(0) = f(2⇡) which gives

f(0) =
i

e�2⇡iz � 1

Z 2⇡

0
e�iztg(t)dt, z 2 C\Z. (2.78)

(Since z 2 Z are the eigenvalues, the inverse cannot exist in this case.) Hence

(A� z)�1g(x) =

Z 2⇡

0
G(z, x, t)g(t)dt, (2.79)

where

G(z, x, t) = eiz(x�t)

(
�i

1�e�2⇡iz , t > x,
i

1�e2⇡iz
, t < x,

z 2 C\Z. (2.80)

In particular �(A) = Z. ⇧

If z, z0 2 ⇢(A), we have the first resolvent formula

RA(z)�RA(z
0) = (z � z0)RA(z)RA(z

0) = (z � z0)RA(z
0)RA(z). (2.81)

In fact,

(A� z)�1
� (z � z0)(A� z)�1(A� z0)�1

= (A� z)�1(1� (z �A+A� z0)(A� z0)�1) = (A� z0)�1, (2.82)

which proves the first equality. The second follows after interchanging z and
z0. Now fix z0 = z0 and use (2.81) recursively to obtain

RA(z) =
nX

j=0

(z � z0)
jRA(z0)

j+1 + (z � z0)
n+1RA(z0)

n+1RA(z). (2.83)

The sequence of bounded operators

Rn =
nX

j=0

(z � z0)
jRA(z0)

j+1 (2.84)

converges to a bounded operator if |z � z0| < kRA(z0)k�1 and clearly we
expect z 2 ⇢(A) and Rn ! RA(z) in this case. Let R1 = limn!1Rn and
set 'n = Rn , ' = R1 for some  2 H. Then a quick calculation shows

ARn = (A� z0)Rn + z0'n =  + (z � z0)'n�1 + z0'n. (2.85)

Hence ('n, A'n) ! (', + z') shows ' 2 D(A) (since A is closed) and
(A� z)R1 =  . Similarly, for  2 D(A),

RnA =  + (z � z0)'n�1 + z0'n (2.86)
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and hence R1(A � z) =  after taking the limit. Thus R1 = RA(z) as
anticipated.

If A is bounded, a similar argument verifies the Neumann series for
the resolvent

RA(z) = �

n�1X

j=0

Aj

zj+1
+

1

zn
AnRA(z)

= �

1X

j=0

Aj

zj+1
, |z| > kAk. (2.87)

In summary we have proved the following:

Theorem 2.15. The resolvent set ⇢(A) is open and RA : ⇢(A) ! L(H) is
holomorphic; that is, it has an absolutely convergent power series expansion
around every point z0 2 ⇢(A). In addition,

kRA(z)k � dist(z,�(A))�1 (2.88)

and if A is bounded, we have {z 2 C| |z| > kAk} ✓ ⇢(A).

As a consequence we obtain the useful

Lemma 2.16. We have z 2 �(A) if there is a sequence  n 2 D(A) such
that k nk = 1 and k(A� z) nk ! 0. If z is a boundary point of ⇢(A), then
the converse is also true. Such a sequence is called a Weyl sequence.

Proof. Let  n be a Weyl sequence. Then z 2 ⇢(A) is impossible by 1 =
k nk = kRA(z)(A � z) nk  kRA(z)kk(A � z) nk ! 0. Conversely, by
(2.88) there is a sequence zn ! z and corresponding vectors 'n 2 H such
that kRA(z)'nkk'nk

�1
! 1. Let  n = RA(zn)'n and rescale 'n such that

k nk = 1. Then k'nk ! 0 and hence

k(A� z) nk = k'n + (zn � z) nk  k'nk+ |z � zn| ! 0

shows that  n is a Weyl sequence. ⇤

Let us also note the following spectral mapping result.

Lemma 2.17. Suppose A is injective. Then

�(A�1)\{0} = (�(A)\{0})�1. (2.89)

In addition, we have A = z if and only if A�1 = z�1 .

Proof. Suppose z 2 ⇢(A)\{0}. Then we claim

RA�1(z�1) = �zARA(z) = �z � z2RA(z).
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In fact, the right-hand side is a bounded operator from H ! Ran(A) =
D(A�1) and

(A�1
� z�1)(�zARA(z))' = (�z +A)RA(z)' = ', ' 2 H.

Conversely, if  2 D(A�1) = Ran(A), we have  = A' and hence

(�zARA(z))(A
�1

� z�1) = ARA(z)((A� z)') = A' =  .

Thus z�1
2 ⇢(A�1). The rest follows after interchanging the roles of A and

A�1. ⇤

Next, let us characterize the spectra of self-adjoint operators.

Theorem 2.18. Let A be symmetric. Then A is self-adjoint if and only if
�(A) ✓ R and (A�E) � 0, E 2 R, if and only if �(A) ✓ [E,1). Moreover,
kRA(z)k  | Im(z)|�1 and, if (A� E) � 0, kRA(�)k  |�� E|

�1, � < E.

Proof. If �(A) ✓ R, then Ran(A + z) = H, z 2 C\R, and hence A is
self-adjoint by Lemma 2.7. Conversely, if A is self-adjoint (resp. A � E),
then RA(z) exists for z 2 C\R (resp. z 2 C\[E,1)) and satisfies the given
estimates as has been shown in the proof of Lemma 2.7. ⇤

In particular, we obtain (show this!)

Theorem 2.19. Let A be self-adjoint. Then

inf �(A) = inf
 2D(A), k k=1

h , A i (2.90)

and
sup�(A) = sup

 2D(A), k k=1
h , A i. (2.91)

For the eigenvalues and corresponding eigenfunctions we have

Lemma 2.20. Let A be symmetric. Then all eigenvalues are real and eigen-
vectors corresponding to di↵erent eigenvalues are orthogonal.

Proof. If A j = �j j , j = 1, 2, we have

�1k 1k
2 = h 1,�1 1i = h 1, A 1i = h 1, A 1i = h�1 1, 1i = �⇤1k 1k

2

and
(�1 � �2)h 1, 2i = hA 1, 2i � hA 1, 2i = 0,

finishing the proof. ⇤

The result does not imply that two linearly independent eigenfunctions
to the same eigenvalue are orthogonal. However, it is no restriction to
assume that they are since we can use Gram–Schmidt to find an orthonormal
basis for Ker(A � �). If H is finite dimensional, we can always find an
orthonormal basis of eigenvectors. In the infinite dimensional case this is
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no longer true in general. However, if there is an orthonormal basis of
eigenvectors, then A is essentially self-adjoint.

Theorem 2.21. Suppose A is a symmetric operator which has an orthonor-
mal basis of eigenfunctions {'j}. Then A is essentially self-adjoint. In
particular, it is essentially self-adjoint on span{'j}.

Proof. Consider the set of all finite linear combinations  =
Pn

j=0 cj'j

which is dense in H. Then � =
Pn

j=0
cj
�j±i'j 2 D(A) and (A ± i)� =  

shows that Ran(A± i) is dense. ⇤

Similarly, we can characterize the spectra of unitary operators. Recall
that a bijection U is called unitary if hU , U i = h , U⇤U i = h , i. Thus
U is unitary if and only if

U⇤ = U�1. (2.92)

Theorem 2.22. Let U be unitary. Then �(U) ✓ {z 2 C| |z| = 1}. All
eigenvalues have modulus one and eigenvectors corresponding to di↵erent
eigenvalues are orthogonal.

Proof. Since kUk  1, we have �(U) ✓ {z 2 C| |z|  1}. Moreover, U�1

is also unitary and hence �(U) ✓ {z 2 C| |z| � 1} by Lemma 2.17. If
U j = zj j , j = 1, 2, we have

(z1 � z2)h 1, 2i = hU⇤ 1, 2i � h 1, U 2i = 0

since U = z implies U⇤ = U�1 = z�1 = z⇤ . ⇤

Problem 2.17. Suppose A is closed and B bounded:

• Show that I+B has a bounded inverse if kBk < 1.

• Suppose A has a bounded inverse. Then so does A + B if kBk 

kA�1
k
�1.

Problem 2.18. What is the spectrum of an orthogonal projection?

Problem 2.19. Compute the resolvent of

Af = f 0, D(A) = {f 2 H1[0, 1] | f(0) = 0}

and show that unbounded operators can have empty spectrum.

Problem 2.20. Compute the eigenvalues and eigenvectors of A = �
d2

dx2 ,
D(A) = {f 2 H2(0,⇡)|f(0) = f(⇡) = 0}. Compute the resolvent of A.

Problem 2.21. Find a Weyl sequence for the self-adjoint operator A =
�

d2

dx2 , D(A) = H2(R) for z 2 (0,1). What is �(A)? (Hint: Cut o↵ the
solutions of �u00(x) = z u(x) outside a finite ball.)
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Problem 2.22. Suppose A = A0. If  n 2 D(A) is a Weyl sequence for
z 2 �(A), then there is also one with  ̃n 2 D(A0).

Problem 2.23. Suppose A is bounded. Show that the spectra of AA⇤ and
A⇤A coincide away from 0 by showing

RAA⇤(z) =
1

z
(ARA⇤A(z)A

⇤
� 1) , RA⇤A(z) =

1

z
(A⇤RAA⇤(z)A� 1) .

(2.93)

2.5. Orthogonal sums of operators

Let Hj , j = 1, 2, be two given Hilbert spaces and let Aj : D(Aj) ! Hj be
two given operators. Setting H = H1 � H2, we can define an operator

A = A1 �A2, D(A) = D(A1)�D(A2) (2.94)

by setting A( 1 +  2) = A1 1 + A2 2 for  j 2 D(Aj). Clearly A is closed,
(essentially) self-adjoint, etc., if and only if both A1 and A2 are. The same
considerations apply to countable orthogonal sums. Let H =

L
j Hj and set

A =
M

j

Aj , D(A) = { 2

M

j

D(Aj)|A 2 H}. (2.95)

Then we have

Theorem 2.23. Suppose Aj are self-adjoint operators on Hj. Then A =L
j Aj is self-adjoint and

RA(z) =
M

j

RAj (z), z 2 ⇢(A) = C\�(A) (2.96)

where

�(A) =
[

j

�(Aj) (2.97)

(the closure can be omitted if there are only finitely many terms).

Proof. Fix z 62
S

j �(Aj) and let " = Im(z). Then, by Theorem 2.18,

kRAj (z)k  "�1 and so R(z) =
L

j RAj (z) is a bounded operator with

kR(z)k  "�1 (cf. Problem 2.26). It is straightforward to check that R(z)
is in fact the resolvent of A and thus �(A) ✓ R. In particular, A is self-
adjoint by Theorem 2.18. To see that �(A) ✓

S
j �(Aj), note that the

above argument can be repeated with " = dist(z,
S

j �(Aj)) > 0, which will
follow from the spectral theorem (Problem 3.5) to be proven in the next
chapter. Conversely, if z 2 �(Aj), there is a corresponding Weyl sequence
 n 2 D(Aj) ✓ D(A) and hence z 2 �(A). ⇤
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Conversely, given an operator A, it might be useful to write A as an
orthogonal sum and investigate each part separately.

Let H1 ✓ H be a closed subspace and let P1 be the corresponding pro-
jector. We say that H1 reduces the operator A if P1A ✓ AP1. Note that
this is equivalent to P1D(A) ✓ D(A) and P1A = AP1 for  2 D(A).
Moreover, if we set H2 = H

?
1 , we have H = H1�H2 and P2 = 1�P1 reduces

A as well.

Lemma 2.24. Suppose H =
L

j Hj where each Hj reduces A. Then A =L
j Aj, where

Aj = A , D(Aj) = PjD(A) ✓ D(A). (2.98)

If A is closable, then Hj also reduces A and

A =
M

j

Aj . (2.99)

Proof. As already noted, PjD(A) ✓ D(A) and thus every  2 D(A) can be
written as  =

P
j Pj ; that is, D(A) =

L
j D(Aj). Moreover, if  2 D(Aj),

we have A = APj = PjA 2 Hj and thus Aj : D(Aj) ! Hj which proves
the first claim.

Now let us turn to the second claim. Suppose  2 D(A). Then there
is a sequence  n 2 D(A) such that  n !  and A n ! ' = A . Thus
Pj n ! Pj and APj n = PjA n ! Pj' which shows Pj 2 D(A) and
PjA = APj ; that is, Hj reduces A. Moreover, this argument also shows
PjD(A) ✓ D(Aj) and the converse follows analogously. ⇤

If A is self-adjoint, then H1 reduces A if P1D(A) ✓ D(A) and AP1 2 H1

for every  2 D(A). In fact, if  2 D(A), we can write  =  1 �  2, with
P2 = 1 � P1 and  j = Pj 2 D(A). Since AP1 = A 1 and P1A =
P1A 1 + P1A 2 = A 1 + P1A 2, we need to show P1A 2 = 0. But this
follows since

h', P1A 2i = hAP1', 2i = 0 (2.100)

for every ' 2 D(A).

Problem 2.24. Show (
L

j Aj)⇤ =
L

j A
⇤

j .

Problem 2.25. Show that A defined in (2.95) is closed if and only if all Aj

are.

Problem 2.26. Show that for A defined in (2.95), we have kAk = supj kAjk.
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2.6. Self-adjoint extensions

It is safe to skip this entire section on first reading.

In many physical applications a symmetric operator is given. If this
operator turns out to be essentially self-adjoint, there is a unique self-adjoint
extension and everything is fine. However, if it is not, it is important to find
out if there are self-adjoint extensions at all (for physical problems there
better be) and to classify them.

In Section 2.2 we saw that A is essentially self-adjoint if Ker(A⇤
� z) =

Ker(A⇤
� z⇤) = {0} for one z 2 C\R. Hence self-adjointness is related to

the dimension of these spaces and one calls the numbers

d±(A) = dimK±, K± = Ran(A± i)? = Ker(A⇤
⌥ i), (2.101)

defect indices of A (we have chosen z = i for simplicity; any other z 2 C\R
would be as good). If d�(A) = d+(A) = 0, there is one self-adjoint extension
of A, namely A. But what happens in the general case? Is there more than
one extension, or maybe none at all? These questions can be answered by
virtue of the Cayley transform

V = (A� i)(A+ i)�1 : Ran(A+ i) ! Ran(A� i). (2.102)

Theorem 2.25. The Cayley transform is a bijection from the set of all
symmetric operators A to the set of all isometric operators V (i.e., kV 'k =
k'k for all ' 2 D(V )) for which Ran(1� V ) is dense.

Proof. Since A is symmetric, we have k(A± i) k2 = kA k2 + k k2 for all
 2 D(A) by a straightforward computation. Thus for every ' = (A+i) 2

D(V ) = Ran(A+ i) we have

kV 'k = k(A� i) k = k(A+ i) k = k'k.

Next observe

1± V = ((A� i)± (A+ i))(A+ i)�1 =

⇢
2A(A+ i)�1,
2i(A+ i)�1,

which shows that Ran(1� V ) = D(A) is dense and

A = i(1 + V )(1� V )�1.

Conversely, let V be given and use the last equation to define A.

Since V is isometric, we have h(1 ± V )', (1 ⌥ V )'i = ±2i ImhV ','i
for all ' 2 D(V ) by a straightforward computation. Thus for every  =
(1� V )' 2 D(A) = Ran(1� V ) we have

hA , i = �ih(1 + V )', (1� V )'i = ih(1� V )', (1 + V )'i = h , A i;
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that is, A is symmetric. Finally observe

A± i = ((1 + V )± (1� V ))(1� V )�1 =

⇢
2i(1� V )�1,
2iV (1� V )�1,

which shows that A is the Cayley transform of V and finishes the proof. ⇤

Thus A is self-adjoint if and only if its Cayley transform V is unitary.
Moreover, finding a self-adjoint extension of A is equivalent to finding a
unitary extensions of V and this in turn is equivalent to (taking the closure
and) finding a unitary operator from D(V )? to Ran(V )?. This is possible
if and only if both spaces have the same dimension, that is, if and only if
d+(A) = d�(A).

Theorem 2.26. A symmetric operator has self-adjoint extensions if and
only if its defect indices are equal.

In this case let A1 be a self-adjoint extension and V1 its Cayley trans-
form. Then

D(A1) = D(A) + (1� V1)K+ = { + '+ � V1'+| 2 D(A), '+ 2 K+}

(2.103)
and

A1( + '+ � V1'+) = A + i'+ + iV1'+. (2.104)

Moreover,

(A1 ± i)�1 = (A± i)�1
�

⌥i

2

X

j

h'±

j , .i('
±

j � '⌥

j ), (2.105)

where {'+
j } is an orthonormal basis for K+ and '�

j = V1'
+
j .

Proof. From the proof of the previous theorem we know that D(A1) =
Ran(1� V1) = Ran(1 + V ) + (1� V1)K+ = D(A) + (1� V1)K+. Moreover,
A1( +'+�V1'+) = A +i(1+V1)(1�V1)�1(1�V1)'+ = A +i(1+V1)'+.

Similarly, Ran(A1± i) = Ran(A± i)�K± and (A1+ i)�1 = �
i
2(1�V1),

respectively, (A1 + i)�1 = �
i
2(1� V �1

1 ). ⇤

Note that instead of z = i we could use V (z) = (A + z⇤)(A + z)�1 for
any z 2 C\R. We remark that in this case one can show that the defect
indices are independent of z 2 C+ = {z 2 C| Im(z) > 0}.

Example. Recall the operator A = �i d
dx , D(A) = {f 2 H1(0, 2⇡)|f(0) =

f(2⇡) = 0} with adjoint A⇤ = �i d
dx , D(A⇤) = H1(0, 2⇡).

Clearly
K± = span{e⌥x

} (2.106)

is one-dimensional and hence all unitary maps are of the form

V✓e
2⇡�x = ei✓ex, ✓ 2 [0, 2⇡). (2.107)
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The functions in the domain of the corresponding operator A✓ are given by

f✓(x) = f(x) + ↵(e2⇡�x
� ei✓ex), f 2 D(A), ↵ 2 C. (2.108)

In particular, f✓ satisfies

f✓(2⇡) = ei✓̃f✓(0), ei✓̃ =
1� ei✓e2⇡

e2⇡ � ei✓
, (2.109)

and thus we have

D(A✓) = {f 2 H1(0, 2⇡)|f(2⇡) = ei✓̃f(0)}. (2.110)

⇧

Concerning closures, we can combine the fact that a bounded operator
is closed if and only if its domain is closed with item (iii) from Lemma 2.4
to obtain

Lemma 2.27. The following items are equivalent.

• A is closed.

• D(V ) = Ran(A+ i) is closed.

• Ran(V ) = Ran(A� i) is closed.

• V is closed.

Next, we give a useful criterion for the existence of self-adjoint exten-
sions. A conjugate linear map C : H ! H is called a conjugation if it
satisfies C2 = I and hC , C'i = h ,'i. The prototypical example is, of
course, complex conjugation C =  ⇤. An operator A is called C-real if

CD(A) ✓ D(A), and AC = CA ,  2 D(A). (2.111)

Note that in this case CD(A) = D(A), since D(A) = C2
D(A) ✓ CD(A).

Theorem 2.28. Suppose the symmetric operator A is C-real. Then its
defect indices are equal.

Proof. Let {'j} be an orthonormal set in Ran(A+ i)?. Then {C'j} is an
orthonormal set in Ran(A � i)?. Hence {'j} is an orthonormal basis for
Ran(A+ i)? if and only if {C'j} is an orthonormal basis for Ran(A� i)?.
Hence the two spaces have the same dimension. ⇤

Finally, we note the following useful formula for the di↵erence of resol-
vents of self-adjoint extensions.

Lemma 2.29. If Aj, j = 1, 2, are self-adjoint extensions of A and if {'j(z)}
is an orthonormal basis for Ker(A⇤

� z), then

(A1 � z)�1
� (A2 � z)�1 =

X

j,k

(↵1
jk(z)� ↵2

jk(z))h'j(z
⇤), .i'k(z), (2.112)
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where

↵l
jk(z) = h'k(z), (Al � z)�1'j(z

⇤)i. (2.113)

Proof. First observe that ((A1 � z)�1
� (A2 � z)�1)' is zero for every

' 2 Ran(A � z). Hence it su�ces to consider vectors of the form ' =P
jh'j(z⇤),'i'j(z⇤) 2 Ran(A� z)? = Ker(A⇤

� z⇤). Hence we have

(A1 � z)�1
� (A2 � z)�1 =

X

j

h'j(z
⇤), .i j(z),

where

 j(z) = ((A1 � z)�1
� (A2 � z)�1)'j(z

⇤).

Now computing the adjoint once using ((Al�z)�1)⇤ = (Al�z⇤)�1 and once
using (

P
jh'j , .i j)⇤ =

P
jh j , .i'j , we obtain

X

j

h'j(z), .i j(z
⇤) =

X

j

h j(z), .i'k(z
⇤).

Evaluating at 'k(z) implies

 k(z) =
X

j

h j(z
⇤),'k(z

⇤)i'j(z) =
X

j

(↵1
kj(z)� ↵2

kj(z))'j(z)

and finishes the proof. ⇤

Problem 2.27. Compute the defect indices of

A0 = i
d

dx
, D(A0) = C1

c ((0,1)).

Can you give a self-adjoint extension of A0?

Problem 2.28. Let A1 be a self-adjoint extension of A and suppose ' 2

Ker(A⇤
� z0). Show that '(z) = '+ (z � z0)(A1 � z)�1' 2 Ker(A⇤

� z).

2.7. Appendix: Absolutely continuous functions

Let (a, b) ✓ R be some interval. We denote by

AC(a, b) = {f 2 C(a, b)|f(x) = f(c) +

Z x

c
g(t)dt, c 2 (a, b), g 2 L1

loc(a, b)}

(2.114)
the set of all absolutely continuous functions. That is, f is absolutely
continuous if and only if it can be written as the integral of some locally
integrable function. Note that AC(a, b) is a vector space.

By Corollary A.36, f(x) = f(c)+
R x
c g(t)dt is di↵erentiable a.e. (with re-

spect to Lebesgue measure) and f 0(x) = g(x). In particular, g is determined
uniquely a.e.
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If [a, b] is a compact interval, we set

AC[a, b] = {f 2 AC(a, b)|g 2 L1(a, b)} ✓ C[a, b]. (2.115)

If f, g 2 AC[a, b], we have the formula of partial integration (Problem 2.29)
Z b

a
f(x)g0(x)dx = f(b)g(b)� f(a)g(a)�

Z b

a
f 0(x)g(x)dx (2.116)

which also implies that the product rule holds for absolutely continuous
functions.

We set

Hm(a, b) = {f 2 L2(a, b)|f (j)
2 AC(a, b), f (j+1)

2 L2(a, b), 0  j  m� 1}.
(2.117)

Then we have

Lemma 2.30. Suppose f 2 Hm(a, b), m � 1. Then f is bounded and
limx#a f (j)(x), respectively, limx"b f (j)(x), exists for 0  j  m � 1. More-
over, the limit is zero if the endpoint is infinite.

Proof. If the endpoint is finite, then f (j+1) is integrable near this endpoint
and hence the claim follows. If the endpoint is infinite, note that

|f (j)(x)|2 = |f (j)(c)|2 + 2

Z x

c
Re(f (j)(t)⇤f (j+1)(t))dt

shows that the limit exists (dominated convergence). Since f (j) is square
integrable, the limit must be zero. ⇤

Let me remark that it su�ces to check that the function plus the highest
derivative are in L2; the lower derivatives are then automatically in L2. That
is,

Hm(a, b) = {f 2 L2(a, b)|f (j)
2 AC(a, b), 0  j  m� 1, f (m)

2 L2(a, b)}.
(2.118)

For a finite endpoint this is straightforward. For an infinite endpoint this
can also be shown directly, but it is much easier to use the Fourier transform
(compare Section 7.1).

Problem 2.29. Show (2.116). (Hint: Fubini.)

Problem 2.30. A function u 2 L1(0, 1) is called weakly di↵erentiable if for
some v 2 L1(0, 1) we have

Z 1

0
v(x)'(x)dx = �

Z 1

0
u(x)'0(x)dx

for all test functions ' 2 C1
c (0, 1). Show that u is weakly di↵erentiable if

and only if u is absolutely continuous and u0 = v in this case. (Hint: You will
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need that
R 1
0 u(t)'0(t)dt = 0 for all ' 2 C1

c (0, 1) if and only if f is constant.

To see this choose some '0 2 C1
c (0, 1) with I('0) =

R 1
0 '0(t)dt = 1. Then

invoke Lemma 0.37 and use that every ' 2 C1
c (0, 1) can be written as

'(t) = �0(t) + I(')'0(t) with �(t) =
R t
0 '(s)ds� I(')

R t
0 '0(s)ds.)

Problem 2.31. Show that H1(a, b) together with the norm

kfk22,1 =

Z b

a
|f(t)|2dt+

Z b

a
|f 0(t)|2dt

is a Hilbert space.

Problem 2.32. What is the closure of C1
0 (a, b) in H1(a, b)? (Hint: Start

with the case where (a, b) is finite.)

Problem 2.33. Show that if f 2 AC(a, b) and f 0
2 Lp(a, b), then f is

Hölder continuous:

|f(x)� f(y)|  kf 0
kp|x� y|1�

1
p .



Chapter 3

The spectral theorem

The time evolution of a quantum mechanical system is governed by the
Schrödinger equation

i
d

dt
 (t) = H (t). (3.1)

If H = Cn and H is hence a matrix, this system of ordinary di↵erential
equations is solved by the matrix exponential

 (t) = exp(�itH) (0). (3.2)

This matrix exponential can be defined by a convergent power series

exp(�itH) =
1X

n=0

(�it)n

n!
Hn. (3.3)

For this approach the boundedness of H is crucial, which might not be the
case for a quantum system. However, the best way to compute the matrix
exponential and to understand the underlying dynamics is to diagonalize H.
But how do we diagonalize a self-adjoint operator? The answer is known as
the spectral theorem.

3.1. The spectral theorem

In this section we want to address the problem of defining functions of a
self-adjoint operator A in a natural way, that is, such that

(f+g)(A) = f(A)+g(A), (fg)(A) = f(A)g(A), (f⇤)(A) = f(A)⇤. (3.4)

As long as f and g are polynomials, no problems arise. If we want to extend
this definition to a larger class of functions, we will need to perform some
limiting procedure. Hence we could consider convergent power series or
equip the space of polynomials on the spectrum with the sup norm. In both

87
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cases this only works if the operator A is bounded. To overcome this limita-
tion, we will use characteristic functions �⌦(A) instead of powers Aj . Since
�⌦(�)2 = �⌦(�), the corresponding operators should be orthogonal projec-
tions. Moreover, we should also have �R(A) = I and �⌦(A) =

Pn
j=1 �⌦j (A)

for any finite union ⌦ =
Sn

j=1⌦j of disjoint sets. The only remaining prob-
lem is of course the definition of �⌦(A). However, we will defer this problem
and begin by developing a functional calculus for a family of characteristic
functions �⌦(A).

Denote the Borel sigma algebra of R by B. A projection-valued mea-
sure is a map

P : B ! L(H), ⌦ 7! P (⌦), (3.5)

from the Borel sets to the set of orthogonal projections, that is, P (⌦)⇤ =
P (⌦) and P (⌦)2 = P (⌦), such that the following two conditions hold:

(i) P (R) = I.
(ii) If ⌦ =

S
n⌦n with ⌦n \ ⌦m = ; for n 6= m, then

P
n P (⌦n) =

P (⌦) for every  2 H (strong �-additivity).

Note that we require strong convergence,
P

n P (⌦n) = P (⌦) , rather
than norm convergence,

P
n P (⌦n) = P (⌦). In fact, norm convergence

does not even hold in the simplest case where H = L2(I) and P (⌦) = �⌦

(multiplication operator), since for a multiplication operator the norm is just
the sup norm of the function. Furthermore, it even su�ces to require weak
convergence, since w-limPn = P for some orthogonal projections implies
s-limPn = P by h , Pn i = h , P 2

n i = hPn , Pn i = kPn k2 together
with Lemma 1.12 (iv).

Example. Let H = Cn and let A 2 GL(n) be some symmetric matrix. Let
�1, . . . ,�m be its (distinct) eigenvalues and let Pj be the projections onto
the corresponding eigenspaces. Then

PA(⌦) =
X

{j|�j2⌦}

Pj (3.6)

is a projection-valued measure. ⇧

Example. Let H = L2(R) and let f be a real-valued measurable function.
Then

P (⌦) = �f�1(⌦) (3.7)

is a projection-valued measure (Problem 3.3). ⇧

It is straightforward to verify that any projection-valued measure satis-
fies

P (;) = 0, P (R\⌦) = I� P (⌦), (3.8)
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and
P (⌦1 [ ⌦2) + P (⌦1 \ ⌦2) = P (⌦1) + P (⌦2). (3.9)

Moreover, we also have

P (⌦1)P (⌦2) = P (⌦1 \ ⌦2). (3.10)

Indeed, first suppose ⌦1\⌦2 = ;. Then, taking the square of (3.9), we infer

P (⌦1)P (⌦2) + P (⌦2)P (⌦1) = 0. (3.11)

Multiplying this equation from the right by P (⌦2) shows that P (⌦1)P (⌦2) =
�P (⌦2)P (⌦1)P (⌦2) is self-adjoint and thus P (⌦1)P (⌦2) = P (⌦2)P (⌦1) =
0. For the general case ⌦1 \ ⌦2 6= ; we now have

P (⌦1)P (⌦2) = (P (⌦1 � ⌦2) + P (⌦1 \ ⌦2))(P (⌦2 � ⌦1) + P (⌦1 \ ⌦2))

= P (⌦1 \ ⌦2) (3.12)

as stated.

Moreover, a projection-valued measure is monotone, that is,

⌦1 ✓ ⌦2 ) P (⌦1)  P (⌦2), (3.13)

in the sense that h , P (⌦1) i  h , P (⌦2) i or equivalently Ran(P (⌦1)) ✓
Ran(P (⌦2)) (cf. Problem 1.7). As a useful consequence note that P (⌦2) = 0
implies P (⌦1) = 0 for every subset ⌦1 ✓ ⌦2.

To every projection-valued measure there corresponds a resolution of
the identity

P (�) = P ((�1,�]) (3.14)

which has the properties (Problem 3.4):

(i) P (�) is an orthogonal projection.

(ii) P (�1)  P (�2) for �1  �2.

(iii) s-lim�n#� P (�n) = P (�) (strong right continuity).

(iv) s-lim�!�1 P (�) = 0 and s-lim�!+1 P (�) = I.
As before, strong right continuity is equivalent to weak right continuity.

Picking  2 H, we obtain a finite Borel measure µ (⌦) = h , P (⌦) i =
kP (⌦) k2 with µ (R) = k k2 < 1. The corresponding distribution func-
tion is given by µ (�) = h , P (�) i and since for every distribution function
there is a unique Borel measure (Theorem A.2), for every resolution of the
identity there is a unique projection-valued measure.

Using the polarization identity (2.16), we also have the complex Borel
measures

µ', (⌦) = h', P (⌦) i =
1

4
(µ'+ (⌦)� µ'� (⌦) + iµ'�i (⌦)� iµ'+i (⌦)).

(3.15)
Note also that, by Cauchy–Schwarz, |µ', (⌦)|  k'k k k.
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Now let us turn to integration with respect to our projection-valued
measure. For any simple function f =

Pn
j=1 ↵j�⌦j (where ⌦j = f�1(↵j))

we set

P (f) ⌘

Z

R
f(�)dP (�) =

nX

j=1

↵jP (⌦j). (3.16)

In particular, P (�⌦) = P (⌦). Then h', P (f) i =
P

j ↵jµ', (⌦j) shows

h', P (f) i =

Z

R
f(�)dµ', (�) (3.17)

and, by linearity of the integral, the operator P is a linear map from the set
of simple functions into the set of bounded linear operators on H. Moreover,
kP (f) k2 =

P
j |↵j |

2µ (⌦j) (the sets ⌦j are disjoint) shows

kP (f) k2 =

Z

R
|f(�)|2dµ (�). (3.18)

Equipping the set of simple functions with the sup norm, we infer

kP (f) k  kfk1k k, (3.19)

which implies that P has norm one. Since the simple functions are dense
in the Banach space of bounded Borel functions B(R), there is a unique
extension of P to a bounded linear operator P : B(R) ! L(H) (whose norm
is one) from the bounded Borel functions on R (with sup norm) to the set
of bounded linear operators on H. In particular, (3.17) and (3.18) remain
true.

There is some additional structure behind this extension. Recall that
the set L(H) of all bounded linear mappings on H forms a C⇤ algebra. A C⇤

algebra homomorphism � is a linear map between two C⇤ algebras which
respects both the multiplication and the adjoint; that is, �(ab) = �(a)�(b)
and �(a⇤) = �(a)⇤.

Theorem 3.1. Let P (⌦) be a projection-valued measure on H. Then the
operator

P : B(R) ! L(H)
f 7!

R
R f(�)dP (�)

(3.20)

is a C⇤ algebra homomorphism with norm one such that

hP (g)', P (f) i =

Z

R
g⇤(�)f(�)dµ', (�). (3.21)

In addition, if fn(x) ! f(x) pointwise and if the sequence sup�2R |fn(�)| is

bounded, then P (fn)
s
! P (f) strongly.

Proof. The properties P (1) = I, P (f⇤) = P (f)⇤, and P (fg) = P (f)P (g)
are straightforward for simple functions f . For general f they follow from
continuity. Hence P is a C⇤ algebra homomorphism.
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Equation (3.21) is a consequence of hP (g)', P (f) i = h', P (g⇤f) i.

The last claim follows from the dominated convergence theorem and
(3.18). ⇤

As a consequence of (3.21), observe

µP (g)',P (f) (⌦) = hP (g)', P (⌦)P (f) i =

Z

⌦
g⇤(�)f(�)dµ', (�), (3.22)

which implies
dµP (g)',P (f) = g⇤fdµ', . (3.23)

Example. Let H = Cn and A = A⇤
2 GL(n), respectively, PA, as in the

previous example. Then

PA(f) =
mX

j=1

f(�j)Pj . (3.24)

In particular, PA(f) = A for f(�) = �. ⇧

Next we want to define this operator for unbounded Borel functions.
Since we expect the resulting operator to be unbounded, we need a suitable
domain first. Motivated by (3.18), we set

Df = { 2 H|

Z

R
|f(�)|2dµ (�) < 1}. (3.25)

This is clearly a linear subspace of H since µ↵ (⌦) = |↵|2µ (⌦) and since
µ'+ (⌦) = kP (⌦)('+ )k2  2(kP (⌦)'k2+kP (⌦) k2) = 2(µ'(⌦)+µ (⌦))
(by the triangle inequality).

For every  2 Df , the sequence of bounded Borel functions

fn = �⌦nf, ⌦n = {�| |f(�)|  n}, (3.26)

is a Cauchy sequence converging to f in the sense of L2(R, dµ ). Hence, by
virtue of (3.18), the vectors  n = P (fn) form a Cauchy sequence in H and
we can define

P (f) = lim
n!1

P (fn) ,  2 Df . (3.27)

By construction, P (f) is a linear operator such that (3.18) holds. Since
f 2 L1(R, dµ ) (µ is finite), (3.17) also remains true at least for ' =  .

In addition, Df is dense. Indeed, let ⌦n be defined as in (3.26) and
abbreviate  n = P (⌦n) . Now observe that dµ n = �⌦ndµ and hence
 n 2 Df . Moreover,  n !  by (3.18) since �⌦n ! 1 in L2(R, dµ ).

The operator P (f) has some additional properties. One calls an un-
bounded operator A normal if D(A) = D(A⇤) and kA k = kA⇤ k for all
 2 D(A). Note that normal operators are closed since the graph norms on
D(A) = D(A⇤) are identical.
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Theorem 3.2. For any Borel function f , the operator

P (f) ⌘

Z

R
f(�)dP (�), D(P (f)) = Df , (3.28)

is normal and satisfies

P (f)⇤ = P (f⇤). (3.29)

Proof. Let f be given and define fn, ⌦n as above. Since (3.29) holds for
fn by our previous theorem, we get

h', P (f) i = hP (f⇤)', i

for any ', 2 Df = Df⇤ by continuity. Thus it remains to show that

D(P (f)⇤) ✓ Df . If  2 D(P (f)⇤), we have h , P (f)'i = h ̃,'i for all
' 2 Df by definition. By construction of P (f) we have P (fn) = P (f)P (⌦n)
and thus

hP (f⇤

n) ,'i = h , P (fn)'i = h , P (f)P (⌦n)'i = hP (⌦n) ̃,'i

for any ' 2 H shows P (f⇤
n) = P (⌦n) ̃. This proves existence of the limit

lim
n!1

Z

R
|fn|

2dµ = lim
n!1

kP (f⇤

n) k
2 = lim

n!1
kP (⌦n) ̃k

2 = k ̃k2,

which by monotone convergence implies f 2 L2(R, dµ ); that is,  2 Df .

That P (f) is normal follows from (3.18), which implies kP (f) k2 =
kP (f⇤) k2 =

R
R |f(�)|2dµ . ⇤

These considerations seem to indicate some kind of correspondence be-
tween the operators P (f) in H and f in L2(R, dµ ). Recall that U : H ! H̃

is called unitary if it is a bijection which preserves norms kU k = k k (and
hence scalar products). The operators A in H and Ã in H̃ are said to be
unitarily equivalent if

UA = ÃU, UD(A) = D(Ã). (3.30)

Clearly, A is self-adjoint if and only if Ã is and �(A) = �(Ã).

Now let us return to our original problem and consider the subspace

H = {P (g) |g 2 L2(R, dµ )} ✓ H. (3.31)

Note that H is closed since L2 is and  n = P (gn) converges in H if and
only if gn converges in L2. It even turns out that we can restrict P (f) to
H (see Section 2.5).

Lemma 3.3. The subspace H reduces P (f); that is, P P (f) ✓ P (f)P .
Here P is the projection onto H .
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Proof. First suppose f is bounded. Any ' 2 H can be decomposed as
' = P (g) + '?. Moreover, hP (h) , P (f)'?

i = hP (f⇤h) ,'?
i = 0

for every bounded function h implies P (f)'?
2 H

?

 . Hence P P (f)' =
P P (f)P (g) = P (f)P ' which by definition says that H reduces P (f).

If f is unbounded, we consider fn = f�⌦n as before. Then, for every
' 2 Df , P (fn)P ' = P P (fn)'. Letting n ! 1, we have P (⌦n)P ' !

P ' and P (fn)P ' = P (f)P (⌦n)P ' ! P P (f)'. Finally, closedness of
P (f) implies P ' 2 Df and P (f)P ' = P P (f)'. ⇤

In particular we can decompose P (f) = P (f)
��
H 

� P (f)
��
H
?
 
. Note that

P Df = Df \ H = {P (g) |g, fg 2 L2(R, dµ )} (3.32)

and P (f)P (g) = P (fg) 2 H in this case.

By (3.18), the relation

U (P (f) ) = f (3.33)

defines a unique unitary operator U : H ! L2(R, dµ ) such that

U P (f)
��
H 

= fU , (3.34)

where f is identified with its corresponding multiplication operator. More-
over, if f is unbounded, we have U (Df\H ) = D(f) = {g 2 L2(R, dµ )|fg 2

L2(R, dµ )} (since ' = P (f) implies dµ' = |f |2dµ ) and the above equa-
tion still holds.

The vector  is called cyclic if H = H and in this case our picture is
complete. Otherwise we need to extend this approach. A set { j}j2J (J
some index set) is called a set of spectral vectors if k jk = 1 and H i ? H j

for all i 6= j. A set of spectral vectors is called a spectral basis if
L

j H j =
H. Luckily a spectral basis always exists:

Lemma 3.4. For every projection-valued measure P , there is an (at most
countable) spectral basis { n} such that

H =
M

n

H n (3.35)

and a corresponding unitary operator

U =
M

n

U n : H !

M

n

L2(R, dµ n) (3.36)

such that for any Borel function f ,

UP (f) = fU, UDf = D(f). (3.37)

Proof. It su�ces to show that a spectral basis exists. This can be easily
done using a Gram–Schmidt type construction. First of all observe that if
{ j}j2J is a spectral set and  ? H j for all j, we have H ? H j for all j.
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Indeed,  ? H j implies P (g) ? H j for every bounded function g since
hP (g) , P (f) ji = h , P (g⇤f) ji = 0. But P (g) with g bounded is dense
in H implying H ? H j .

Now start with some total set { ̃j}. Normalize  ̃1 and choose this to
be  1. Move to the first  ̃j which is not in H 1 , project to the orthogonal
complement of H 1 and normalize it. Choose the result to be  2. Proceeding

like this, we get a set of spectral vectors { j} such that span{ ̃j} ✓
L

j H j .

Hence H = span{ ̃j} ✓
L

j H j . ⇤

It is important to observe that the cardinality of a spectral basis is not
well-defined (in contradistinction to the cardinality of an ordinary basis of
the Hilbert space). However, it can be at most equal to the cardinality of
an ordinary basis. In particular, since H is separable, it is at most count-
able. The minimal cardinality of a spectral basis is called the spectral
multiplicity of P . If the spectral multiplicity is one, the spectrum is called
simple.

Example. Let H = C2 andA =
�
0 0
0 1

�
and consider the associated projection-

valued measure PA(⌦) as before. Then  1 = (1, 0) and  2 = (0, 1) are a
spectral basis. However,  = (1, 1) is cyclic and hence the spectrum of A is
simple. If A =

�
1 0
0 1

�
, there is no cyclic vector (why?) and hence the spectral

multiplicity is two. ⇧

Using this canonical form of projection-valued measures, it is straight-
forward to prove

Lemma 3.5. Let f, g be Borel functions and ↵,� 2 C. Then we have

↵P (f) + �P (g) ✓ P (↵f + �g), D(↵P (f) + �P (g)) = D|f |+|g| (3.38)

and
P (f)P (g) ✓ P (f g), D(P (f)P (g)) = Dg \Df g. (3.39)

Now observe that to every projection-valued measure P we can assign a
self-adjoint operator A =

R
R �dP (�). The question is whether we can invert

this map. To do this, we consider the resolvent RA(z) =
R
R(�� z)�1dP (�).

From (3.17) the corresponding quadratic form is given by

F (z) = h , RA(z) i =

Z

R

1

�� z
dµ (�), (3.40)

which is know as the Borel transform of the measure µ . By

Im(F (z)) = Im(z)

Z

R

1

|�� z|2
dµ (�), (3.41)

we infer that F (z) is a holomorphic map from the upper half plane into
itself. Such functions are called Herglotz or Nevanlinna functions (see
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Section 3.4). Moreover, the measure µ can be reconstructed from F (z)
by the Stieltjes inversion formula

µ (�) = lim
�#0

lim
"#0

1

⇡

Z �+�

�1

Im(F (t+ i"))dt. (3.42)

(The limit with respect to � is only here to ensure right continuity of µ (�).)
Conversely, if F (z) is a Herglotz function satisfying |F (z)| 

M
Im(z) , then

it is the Borel transform of a unique measure µ (given by the Stieltjes
inversion formula) satisfying µ (R)  M .

So let A be a given self-adjoint operator and consider the expectation of
the resolvent of A,

F (z) = h , RA(z) i. (3.43)

This function is holomorphic for z 2 ⇢(A) and satisfies

F (z
⇤) = F (z)

⇤ and |F (z)| 
k k2

Im(z)
(3.44)

(see (2.69) and Theorem 2.18). Moreover, the first resolvent formula (2.81)
shows that it maps the upper half plane to itself:

Im(F (z)) = Im(z)kRA(z) k
2; (3.45)

that is, it is a Herglotz function. So by our above remarks, there is a
corresponding measure µ (�) given by the Stieltjes inversion formula. It is
called the spectral measure corresponding to  .

More generally, by polarization, for each ', 2 H we can find a corre-
sponding complex measure µ', such that

h', RA(z) i =

Z

R

1

�� z
dµ', (�). (3.46)

The measure µ', is conjugate linear in ' and linear in  . Moreover, a
comparison with our previous considerations begs us to define a family of
operators via the sesquilinear forms

s⌦(', ) =

Z

R
�⌦(�)dµ', (�). (3.47)

Since the associated quadratic form is nonnegative, q⌦( ) = s⌦( , ) =
µ (⌦) � 0, the Cauchy–Schwarz inequality for sesquilinear forms (Prob-
lem 0.16) implies |s⌦(', )|  q⌦(')1/2q⌦( )1/2 = µ'(⌦)1/2µ (⌦)1/2 

µ'(R)1/2µ (R)1/2  k'k k k. Hence Corollary 1.9 implies that there is in-
deed a family of nonnegative (0  h , PA(⌦) i  1) and hence self-adjoint
operators PA(⌦) such that

h', PA(⌦) i =

Z

R
�⌦(�)dµ', (�). (3.48)
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Lemma 3.6. The family of operators PA(⌦) forms a projection-valued mea-
sure.

Proof. We first show PA(⌦1)PA(⌦2) = PA(⌦1 \ ⌦2) in two steps. First
observe (using the first resolvent formula (2.81))

Z

R

1

�� z̃
dµRA(z⇤)', (�) = hRA(z

⇤)', RA(z̃) i = h', RA(z)RA(z̃) i

=
1

z � z̃
(h', RA(z) i � h', RA(z̃) i)

=
1

z � z̃

Z

R

✓
1

�� z
�

1

�� z̃

◆
dµ', (�) =

Z

R

1

�� z̃

dµ', (�)

�� z

implying dµRA(z⇤)', (�) = (��z)�1dµ', (�) by Problem 3.21. Secondly we
compute

Z

R

1

�� z
dµ',PA(⌦) (�) = h', RA(z)PA(⌦) i = hRA(z

⇤)', PA(⌦) i

=

Z

R
�⌦(�)dµRA(z⇤)', (�) =

Z

R

1

�� z
�⌦(�)dµ', (�)

implying dµ',PA(⌦) (�) = �⌦(�)dµ', (�). Equivalently we have

h', PA(⌦1)PA(⌦2) i = h', PA(⌦1 \ ⌦2) i

since �⌦1�⌦2 = �⌦1\⌦2 . In particular, choosing ⌦1 = ⌦2, we see that
PA(⌦1) is a projector.

To see PA(R) = I, let  2 Ker(PA(R)). Then 0 = h , PA(R) i = µ (R)
implies h , RA(z) i = 0 which implies  = 0.

Now let ⌦ =
S

1

n=1⌦n with ⌦n \ ⌦m = ; for n 6= m. Then
nX

j=1

h , PA(⌦j) i =
nX

j=1

µ (⌦j) ! h , PA(⌦) i = µ (⌦)

by �-additivity of µ . Hence PA is weakly �-additive which implies strong
�-additivity, as pointed out earlier. ⇤

Now we can prove the spectral theorem for self-adjoint operators.

Theorem 3.7 (Spectral theorem). To every self-adjoint operator A there
corresponds a unique projection-valued measure PA such that

A =

Z

R
�dPA(�). (3.49)

Proof. Existence has already been established. Moreover, Lemma 3.5 shows
that PA((��z)�1) = RA(z), z 2 C\R. Since the measures µ', are uniquely
determined by the resolvent and the projection-valued measure is uniquely
determined by the measures µ', , we are done. ⇤
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The quadratic form of A is given by

qA( ) =

Z

R
�dµ (�) (3.50)

and can be defined for every  in the form domain

Q(A) = D(|A|
1/2) = { 2 H|

Z

R
|�|dµ (�) < 1} (3.51)

(which is larger than the domain D(A) = { 2 H|
R
R �

2dµ (�) < 1}). This
extends our previous definition for nonnegative operators.

Note that if A and Ã are unitarily equivalent as in (3.30), then URA(z) =
RÃ(z)U and hence

dµ = dµ̃U . (3.52)

In particular, we have UPA(f) = PÃ(f)U , UD(PA(f)) = D(PÃ(f)).

Finally, let us give a characterization of the spectrum of A in terms of
the associated projectors.

Theorem 3.8. The spectrum of A is given by

�(A) = {� 2 R|PA((�� ",�+ ")) 6= 0 for all " > 0}. (3.53)

Proof. Let ⌦n = (�0 �
1
n ,�0 +

1
n). Suppose PA(⌦n) 6= 0. Then we can find

a  n 2 PA(⌦n)H with k nk = 1. Since

k(A� �0) nk
2 = k(A� �0)PA(⌦n) nk

2

=

Z

R
(�� �0)

2�⌦n(�)dµ n(�) 
1

n2
,

we conclude �0 2 �(A) by Lemma 2.16.

Conversely, if PA((�0 � ",�0 + ")) = 0, set

f"(�) = �R\(�0�",�0+")(�)(�� �0)
�1.

Then

(A� �0)PA(f") = PA((�� �0)f"(�)) = PA(R\(�0 � ",�0 + ")) = I.
Similarly PA(f")(A� �0) = I|D(A) and hence �0 2 ⇢(A). ⇤

In particular, PA((�1,�2)) = 0 if and only if (�1,�2) ✓ ⇢(A).

Corollary 3.9. We have

PA(�(A)) = I and PA(R \ ⇢(A)) = 0. (3.54)

Proof. For every � 2 R\⇢(A) there is some open interval I� with PA(I�) =
0. These intervals form an open cover for R\ ⇢(A) and there is a countable
subcover Jn. Setting ⌦n = Jn\

S
m<n Jm, we have disjoint Borel sets which

cover R \ ⇢(A) and satisfy PA(⌦n) = 0. Finally, strong �-additivity shows
PA(R \ ⇢(A)) =

P
n PA(⌦n) = 0. ⇤
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Consequently,

PA(f) = PA(�(A))PA(f) = PA(��(A)f). (3.55)

In other words, PA(f) is not a↵ected by the values of f on R\�(A)!

It is clearly more intuitive to write PA(f) = f(A) and we will do so from
now on. This notation is justified by the elementary observation

PA(
nX

j=0

↵j�
j) =

nX

j=0

↵jA
j . (3.56)

Moreover, this also shows that if A is bounded and f(A) can be defined via
a convergent power series, then this agrees with our present definition by
Theorem 3.1.

Problem 3.1. Show that a self-adjoint operator P is a projection if and
only if �(P ) ✓ {0, 1}.

Problem 3.2. Consider the parity operator ⇧ : L2(Rn) ! L2(Rn),
 (x) 7!  (�x). Show that ⇧ is self-adjoint. Compute its spectrum �(⇧)
and the corresponding projection-valued measure P⇧.

Problem 3.3. Show that (3.7) is a projection-valued measure. What is the
corresponding operator?

Problem 3.4. Show that P (�) defined in (3.14) satisfies properties (i)–(iv)
stated there.

Problem 3.5. Show that for a self-adjoint operator A we have kRA(z)k =
dist(z,�(A)).

Problem 3.6. Suppose A is self-adjoint and kB � z0k  r. Show that
�(A + B) ✓ �(A) + Br(z0), where Br(z0) is the ball of radius r around z0.
(Hint: Problem 2.17.)

Problem 3.7. Show that for a self-adjoint operator A we have kARA(z)k 

|z|
Im(z) . Find some A for which equality is attained.

Conclude that for every  2 H we have

lim
z!1

kARA(z) k = 0, (3.57)

where the limit is taken in any sector "|Re(z)|  | Im(z)|, " > 0.

Problem 3.8. Suppose A is self-adjoint. Show that, if  2 D(An), then

RA(z) = �

nX

j=0

Aj 

zj+1
+O(

kAn k

|z|n Im(z)
), as z ! 1. (3.58)

(Hint: Proceed as in (2.87) and use the previous problem.)
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Problem 3.9. Let �0 be an eigenvalue and  a corresponding normalized
eigenvector. Compute µ .

Problem 3.10. Show that �0 is an eigenvalue if and only if P ({�0}) 6= 0.
Show that Ran(P ({�0})) is the corresponding eigenspace in this case.

Problem 3.11 (Polar decomposition). Let A be a closed operator and
set |A| =

p
A⇤A (recall that, by Problem 2.12, A⇤A is self-adjoint and

Q(A⇤A) = D(A)). Show that

k|A| k = kA k.

Conclude that Ker(A) = Ker(|A|) = Ran(|A|)? and that

U =

⇢
' = |A| 7! A if ' 2 Ran(|A|),
' 7! 0 if ' 2 Ker(|A|)

extends to a well-defined partial isometry; that is, U : Ker(U)? ! Ran(U)
is unitary, where Ker(U) = Ker(A) and Ran(U) = Ker(A⇤)?.

In particular, we have the polar decomposition

A = U |A|.

Problem 3.12. Compute |A| =
p
A⇤A for the rank one operator A =

h', .i . Compute
p
AA⇤ also.

3.2. More on Borel measures

Section 3.1 showed that in order to understand self-adjoint operators, one
needs to understand multiplication operators on L2(R, dµ), where dµ is a
finite Borel measure. This is the purpose of the present section.

The set of all growth points, that is,

�(µ) = {� 2 R|µ((�� ",�+ ")) > 0 for all " > 0}, (3.59)

is called the spectrum of µ. The same proof as for Corollary 3.9 shows that
the spectrum � = �(µ) is a support for µ; that is, µ(R\�) = 0.

In the previous section we have already seen that the Borel transform of
µ,

F (z) =

Z

R

1

�� z
dµ(�), (3.60)

plays an important role.

Theorem 3.10. The Borel transform of a finite Borel measure is a Herglotz
function. It is holomorphic in C\�(µ) and satisfies

F (z⇤) = F (z)⇤, |F (z)| 
µ(R)
Im(z)

, z 2 C+. (3.61)
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Proof. First of all note

Im(F (z)) =

Z

R
Im

✓
1

�� z

◆
dµ(�) = Im(z)

Z

R

dµ(�)

|�� z|2
,

which shows that F maps C+ to C+. Moreover, F (z⇤) = F (z)⇤ is obvious
and

|F (z)| 

Z

R

dµ(�)

|�� z|


1

Im(z)

Z

R
dµ(�)

establishes the bound. Moreover, since µ(R\�) = 0, we have

F (z) =

Z

�

1

�� z
dµ(�),

which together with the bound

1

|�� z|


1

dist(z,�)

allows the application of the dominated convergence theorem to conclude
that F is continuous on C\�. To show that F is holomorphic in C\�,
by Morera’s theorem, it su�ces to check

R
� F (z)dz = 0 for every triangle

� ⇢ C\�. Since (� � z)�1 is bounded for (�, z) 2 � ⇥ �, this follows fromR
�(� � z)�1dz = 0 by using Fubini,

R
� F (z)dz =

R
�

R
R(� � z)�1dµ(�) dz =R

R
R
�(�� z)�1dz dµ(�) = 0. ⇤

Note that F cannot be holomorphically extended to a larger domain. In
fact, if F is holomorphic in a neighborhood of some � 2 R, then F (�) =
F (�⇤) = F (�)⇤ implies Im(F (�)) = 0 and the Stieltjes inversion formula
(Theorem 3.21) shows that � 2 R\�(µ).

Associated with this measure is the operator

Af(�) = �f(�), D(A) = {f 2 L2(R, dµ)|�f(�) 2 L2(R, dµ)}. (3.62)

By Theorem 3.8 the spectrum of A is precisely the spectrum of µ; that is,

�(A) = �(µ). (3.63)

Note that 1 2 L2(R, dµ) is a cyclic vector for A and that

dµg,f (�) = g(�)⇤f(�)dµ(�). (3.64)

Now what can we say about the function f(A) (which is precisely the
multiplication operator by f) of A? We are only interested in the case where
f is real-valued. Introduce the measure

(f?µ)(⌦) = µ(f�1(⌦)). (3.65)

Then Z

R
g(�)d(f?µ)(�) =

Z

R
g(f(�))dµ(�). (3.66)
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In fact, it su�ces to check this formula for simple functions g, which follows
since �⌦ � f = �f�1(⌦). In particular, we have

Pf(A)(⌦) = �f�1(⌦). (3.67)

It is tempting to conjecture that f(A) is unitarily equivalent to multi-
plication by � in L2(R, d(f?µ)) via the map

L2(R, d(f?µ)) ! L2(R, dµ), g 7! g � f. (3.68)

However, this map is only unitary if its range is L2(R, dµ).

Lemma 3.11. Suppose f is injective. Then

U : L2(R, dµ) ! L2(R, d(f?µ)), g 7! g � f�1 (3.69)

is a unitary map such that Uf(�) = �.

Example. Let f(�) = �2. Then (g � f)(�) = g(�2) and the range of the
above map is given by the symmetric functions. Note that we can still
get a unitary map L2(R, d(f?µ)) � L2(R, d(f?µ)) ! L2(R, dµ), (g1, g2) 7!

g1(�2) + g2(�2)(�(0,1)(�)� �(0,1)(��)). ⇧

Lemma 3.12. Let f be real-valued. The spectrum of f(A) is given by

�(f(A)) = �(f?µ). (3.70)

In particular,

�(f(A)) ✓ f(�(A)), (3.71)

where equality holds if f is continuous and the closure can be dropped if, in
addition, �(A) is bounded (i.e., compact).

Proof. The first formula follows by comparing

�(f?µ) = {� 2 R |µ(f�1(�� ",�+ ")) > 0 for all " > 0}

with (2.74).

If f is continuous, f�1((f(�) � ", f(�) + ")) contains an open interval
around � and hence f(�) 2 �(f(A)) if � 2 �(A). If, in addition, �(A) is
compact, then f(�(A)) is compact and hence closed. ⇤

Whether two operators with simple spectrum are unitarily equivalent
can be read o↵ from the corresponding measures:

Lemma 3.13. Let A1, A2 be self-adjoint operators with simple spectrum and
corresponding spectral measures µ1 and µ2 of cyclic vectors. Then A1 and
A2 are unitarily equivalent if and only if µ1 and µ2 are mutually absolutely
continuous.
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Proof. Without restriction we can assume that Aj is multiplication by �
in L2(R, dµj). Let U : L2(R, dµ1) ! L2(R, dµ2) be a unitary map such that
UA1 = A2U . Then we also have Uf(A1) = f(A2)U for any bounded Borel
function and hence

Uf(�) = Uf(�) · 1 = f(�)U(1)(�)

and thus U is multiplication by u(�) = U(1)(�). Moreover, since U is
unitary, we have

µ1(⌦) =

Z

R
|�⌦|

2dµ1 =

Z

R
|u�⌦|

2dµ2 =

Z

⌦
|u|2dµ2;

that is, dµ1 = |u|2dµ2. Reversing the roles of A1 and A2, we obtain dµ2 =
|v|2dµ1, where v = U�11.

The converse is left as an exercise (Problem 3.17). ⇤

Next we recall the unique decomposition of µ with respect to Lebesgue
measure,

dµ = dµac + dµs, (3.72)

where µac is absolutely continuous with respect to Lebesgue measure (i.e.,
we have µac(B) = 0 for all B with Lebesgue measure zero) and µs is singular
with respect to Lebesgue measure (i.e., µs is supported, µs(R\B) = 0, on
a set B with Lebesgue measure zero). The singular part µs can be further
decomposed into a (singularly) continuous and a pure point part,

dµs = dµsc + dµpp, (3.73)

where µsc is continuous on R and µpp is a step function. Since the measures
dµac, dµsc, and dµpp are mutually singular, they have mutually disjoint
supports Mac, Msc, and Mpp. Note that these sets are not unique. We will
choose them such that Mpp is the set of all jumps of µ(�) and such that Msc

has Lebesgue measure zero.

To the sets Mac, Msc, and Mpp correspond projectors P ac = �Mac(A),
P sc = �Msc(A), and P pp = �Mpp(A) satisfying P ac + P sc + P pp = I. In
other words, we have a corresponding direct sum decomposition of both our
Hilbert space

L2(R, dµ) = L2(R, dµac)� L2(R, dµsc)� L2(R, dµpp) (3.74)

and our operator

A = (AP ac)� (AP sc)� (AP pp). (3.75)

The corresponding spectra, �ac(A) = �(µac), �sc(A) = �(µsc), and �pp(A) =
�(µpp) are called the absolutely continuous, singularly continuous, and pure
point spectrum of A, respectively.
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It is important to observe that �pp(A) is in general not equal to the set
of eigenvalues

�p(A) = {� 2 R|� is an eigenvalue of A} (3.76)

since we only have �pp(A) = �p(A).

Example. Let H = `2(N) and let A be given by A�n = 1
n�n, where �n is

the sequence which is 1 at the n’th place and zero otherwise (that is, A is
a diagonal matrix with diagonal elements 1

n). Then �p(A) = {
1
n |n 2 N}

but �(A) = �pp(A) = �p(A) [ {0}. To see this, just observe that �n is the
eigenvector corresponding to the eigenvalue 1

n and for z 62 �(A) we have
RA(z)�n = n

1�nz �n. At z = 0 this formula still gives the inverse of A, but
it is unbounded and hence 0 2 �(A) but 0 62 �p(A). Since a continuous
measure cannot live on a single point and hence also not on a countable set,
we have �ac(A) = �sc(A) = ;. ⇧

Example. An example with purely absolutely continuous spectrum is given
by taking µ to be the Lebesgue measure. An example with purely singularly
continuous spectrum is given by taking µ to be the Cantor measure. ⇧

Finally, we show how the spectrum can be read o↵ from the boundary
values of Im(F ) towards the real line. We define the following sets:

Mac = {�|0 < lim sup
"#0

Im(F (�+ i")) < 1},

Ms = {�| lim sup
"#0

Im(F (�+ i")) = 1}, (3.77)

M = Mac [Ms = {�|0 < lim sup
"#0

Im(F (�+ i"))}.

Then, by Theorem 3.23 we conclude that these sets are minimal supports for
µac, µs, and µ, respectively. In fact, by Theorem 3.23 we could even restrict
ourselves to values of �, where the lim sup is a lim (finite or infinite).

Lemma 3.14. The spectrum of µ is given by

�(µ) = M, M = {�|0 < lim inf
"#0

Im(F (�+ i"))}. (3.78)

Proof. First observe that F is real holomorphic near � 62 �(µ) and hence
Im(F (�)) = 0 in this case. Thus M ✓ �(µ) and since �(µ) is closed, we
even have M ✓ �(µ). To see the converse, note that by Theorem 3.23, the
set M is a support for M . Thus, if � 2 �(µ), then

0 < µ((�� ",�+ ")) = µ((�� ",�+ ") \M)

for all " > 0 and we can find a sequence �n 2 (��1/n,�+1/n)\M converging
to � from inside M . This shows the remaining part �(µ) ✓ M . ⇤
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To recover �(µac) from Mac, we need the essential closure of a Borel
set N ✓ R,

N
ess

= {� 2 R||(�� ",�+ ") \N | > 0 for all " > 0}. (3.79)

Note that N
ess

is closed, whereas, in contradistinction to the ordinary clo-
sure, we might have N 6⇢ N

ess
(e.g., any isolated point of N will disappear).

Lemma 3.15. The absolutely continuous spectrum of µ is given by

�(µac) = M
ess
ac . (3.80)

Proof. We use that 0 < µac((� � ",� + ")) = µac((� � ",� + ") \ Mac)
is equivalent to |(� � ",� + ") \ Mac| > 0. One direction follows from the
definition of absolute continuity and the other from minimality of Mac. ⇤

Problem 3.13. Construct a multiplication operator on L2(R) which has
dense point spectrum.

Problem 3.14. Let � be Lebesgue measure on R. Show that if f 2 AC(R)
with f 0 > 0, then

d(f?�) =
1

f 0(�)
d�.

Problem 3.15. Let dµ(�) = �[0,1](�)d� and f(�) = �(�1,t](�), t 2 R.
Compute f?µ.

Problem 3.16. Let A be the multiplication operator by the Cantor function
in L2(0, 1). Compute the spectrum of A. Determine the spectral types.

Problem 3.17. Show the missing direction in the proof of Lemma 3.13.

Problem 3.18. Show N
ess

✓ N .

3.3. Spectral types

Our next aim is to transfer the results of the previous section to arbitrary
self-adjoint operators A using Lemma 3.4. To this end, we will need a
spectral measure which contains the information from all measures in a
spectral basis. This will be the case if there is a vector  such that for every
' 2 H its spectral measure µ' is absolutely continuous with respect to µ .
Such a vector will be called a maximal spectral vector of A and µ will
be called a maximal spectral measure of A.

Lemma 3.16. For every self-adjoint operator A there is a maximal spectral
vector.
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Proof. Let { j}j2J be a spectral basis and choose nonzero numbers "j withP
j2J |"j |

2 = 1. Then I claim that

 =
X

j2J

"j j

is a maximal spectral vector. Let ' be given. Then we can write it as ' =P
j fj(A) j and hence dµ' =

P
j |fj |

2dµ j . But µ (⌦) =
P

j |"j |
2µ j (⌦) =

0 implies µ j (⌦) = 0 for every j 2 J and thus µ'(⌦) = 0. ⇤

A set { j} of spectral vectors is called ordered if  k is a maximal

spectral vector for A restricted to (
Lk�1

j=1 H j )
?. As in the unordered case

one can show

Theorem 3.17. For every self-adjoint operator there is an ordered spectral
basis.

Observe that if { j} is an ordered spectral basis, then µ j+1 is absolutely
continuous with respect to µ j .

If µ is a maximal spectral measure, we have �(A) = �(µ) and the fol-
lowing generalization of Lemma 3.12 holds.

Theorem 3.18 (Spectral mapping). Let µ be a maximal spectral measure
and let f be real-valued. Then the spectrum of f(A) is given by

�(f(A)) = {� 2 R|µ(f�1(�� ",�+ ")) > 0 for all " > 0}. (3.81)

In particular,
�(f(A)) ✓ f(�(A)), (3.82)

where equality holds if f is continuous and the closure can be dropped if, in
addition, �(A) is bounded.

Next, we want to introduce the splitting (3.74) for arbitrary self-adjoint
operators A. It is tempting to pick a spectral basis and treat each summand
in the direct sum separately. However, since it is not clear that this approach
is independent of the spectral basis chosen, we use the more sophisticated
definition

Hac = { 2 H|µ is absolutely continuous},

Hsc = { 2 H|µ is singularly continuous},

Hpp = { 2 H|µ is pure point}. (3.83)

Lemma 3.19. We have

H = Hac � Hsc � Hpp. (3.84)

There are Borel sets Mxx such that the projector onto Hxx is given by P xx =
�Mxx(A), xx 2 {ac, sc, pp}. In particular, the subspaces Hxx reduce A. For
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the sets Mxx one can choose the corresponding supports of some maximal
spectral measure µ.

Proof. We will use the unitary operator U of Lemma 3.4. Pick ' 2 H and
write ' =

P
n 'n with 'n 2 H n . Let fn = U'n. Then, by construction

of the unitary operator U , 'n = fn(A) n and hence dµ'n = |fn|2dµ n .
Moreover, since the subspaces H n are orthogonal, we have

dµ' =
X

n

|fn|
2dµ n

and hence

dµ',xx =
X

n

|fn|
2dµ n,xx, xx 2 {ac, sc, pp}.

This shows

UHxx =
M

n

L2(R, dµ n,xx), xx 2 {ac, sc, pp}

and reduces our problem to the considerations of the previous section.

Furthermore, note that if µ is a maximal spectral measure, then every
support for µxx is also a support for µ',xx for any ' 2 H. ⇤

The absolutely continuous, singularly continuous, and pure point
spectrum of A are defined as

�ac(A) = �(A|Hac), �sc(A) = �(A|Hsc), and �pp(A) = �(A|Hpp),
(3.85)

respectively. If µ is a maximal spectral measure, we have �ac(A) = �(µac),
�sc(A) = �(µsc), and �pp(A) = �(µpp).

If A and Ã are unitarily equivalent via U , then so are A|Hxx and Ã|
H̃xx

by (3.52). In particular, �xx(A) = �xx(Ã).

Problem 3.19. Compute �(A), �ac(A), �sc(A), and �pp(A) for the multi-
plication operator A = 1

1+x2 in L2(R). What is its spectral multiplicity?

3.4. Appendix: The Herglotz theorem

Let C± = {z 2 C|± Im(z) > 0} be the upper, respectively, lower, half plane.
A holomorphic function F : C+ ! C+ mapping the upper half plane to itself
is called a Herglotz function. We can define F on C� using F (z⇤) = F (z)⇤.

In Theorem 3.10 we have seen that the Borel transform of a finite mea-
sure is a Herglotz function satisfying a growth estimate. It turns out that
the converse is also true.
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Theorem 3.20 (Herglotz representation). Suppose F is a Herglotz function
satisfying

|F (z)| 
M

Im(z)
, z 2 C+. (3.86)

Then there is a Borel measure µ, satisfying µ(R)  M , such that F is the
Borel transform of µ.

Proof. We abbreviate F (z) = v(z)+ iw(z) and z = x+i y. Next we choose
a contour

� = {x+ i"+ �|� 2 [�R,R]} [ {x+ i"+Rei'|' 2 [0,⇡]}

and note that z lies inside � and z⇤ + 2i" lies outside � if 0 < " < y < R.
Hence we have by Cauchy’s formula

F (z) =
1

2⇡i

Z

�

✓
1

⇣ � z
�

1

⇣ � z⇤ � 2i"

◆
F (⇣)d⇣.

Inserting the explicit form of �, we see

F (z) =
1

⇡

Z R

�R

y � "

�2 + (y � ")2
F (x+ i"+ �)d�

+
i

⇡

Z ⇡

0

y � "

R2e2i' + (y � ")2
F (x+ i"+Rei')Rei'd'.

The integral over the semi-circle vanishes as R ! 1 and hence we obtain

F (z) =
1

⇡

Z

R

y � "

(�� x)2 + (y � ")2
F (�+ i")d�

and taking imaginary parts,

w(z) =

Z

R
�"(�)w"(�)d�,

where �"(�) = (y�")/((��x)2+(y�")2) and w"(�) = w(�+i")/⇡. Letting
y ! 1, we infer from our bound

Z

R
w"(�)d�  M.

In particular, since |�"(�)� �0(�)|  const ", we have

w(z) = lim
"#0

Z

R
�0(�)dµ"(�),

where µ"(�) =
R �
�1

w"(x)dx. Since µ"(R)  M , Lemma A.26 implies that
there is subsequence which converges vaguely to some measure µ. Moreover,
by Lemma A.27 we even have

w(z) =

Z

R
�0(�)dµ(�).
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Now F (z) and
R
R(��z)�1dµ(�) have the same imaginary part and thus

they only di↵er by a real constant. By our bound this constant must be
zero. ⇤

Observe

Im(F (z)) = Im(z)

Z

R

dµ(�)

|�� z|2
(3.87)

and

lim
�!1

� Im(F (i�)) = µ(R). (3.88)

Theorem 3.21. Let F be the Borel transform of some finite Borel measure
µ. Then the measure µ is unique and can be reconstructed via the Stieltjes
inversion formula

1

2
(µ((�1,�2)) + µ([�1,�2])) = lim

"#0

1

⇡

Z �2

�1

Im(F (�+ i"))d�. (3.89)

Proof. By Fubini we have

1

⇡

Z �2

�1

Im(F (�+ i"))d� =
1

⇡

Z �2

�1

Z

R

"

(x� �)2 + "2
dµ(x)d�

=

Z

R

1

⇡

Z �2

�1

"

(x� �)2 + "2
d� dµ(x),

where

1

⇡

Z �2

�1

"

(x� �)2 + "2
d� =

1

⇡

✓
arctan

⇣�2 � x

"

⌘
� arctan

⇣�1 � x

"

⌘◆

!
1

2

�
�[�1,�2](x) + �(�1,�2)(x)

�

pointwise. Hence the result follows from the dominated convergence theorem
since 0 

1
⇡

�
arctan(�2�x

" )� arctan(�1�x
" )

�
 1. ⇤

Furthermore, the Radon–Nikodym derivative of µ can be obtained from
the boundary values of F .

Theorem 3.22. Let µ be a finite Borel measure and F its Borel transform.
Then

(Dµ)(�)  lim inf
"#0

1

⇡
F (�+ i")  lim sup

"#0

1

⇡
F (�+ i")  (Dµ)(�). (3.90)

Proof. We need to estimate

Im(F (�+ i")) =

Z

R
K"(t)dµ(t), K"(t) =

"

t2 + "2
.
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We first split the integral into two parts:

Im(F (�+i")) =

Z

I�

K"(t��)dµ(t)+

Z

R\I�
K"(t��)µ(t), I� = (���,�+�).

Clearly the second part can be estimated by
Z

R\I�
K"(t� �)µ(t)  K"(�)µ(R).

To estimate the first part, we integrate

K 0

"(s) ds dµ(t)

over the triangle {(s, t)|� � s < t < � + s, 0 < s < �} = {(s, t)|� � � < t <
�+ �, t� � < s < �} and obtain

Z �

0
µ(Is)K

0

"(s)ds =

Z

I�

(K(�)�K"(t� �))dµ(t).

Now suppose there are constants c and C such that c  µ(Is)
2s  C, 0  s  �.

Then

2c arctan(
�

"
) 

Z

I�

K"(t� �)dµ(t)  2C arctan(
�

"
)

since

�K"(�) +

Z �

0
�sK 0

"(s)ds = arctan(
�

"
).

Thus the claim follows combining both estimates. ⇤

As a consequence of Theorem A.37 and Theorem A.38 we obtain (cf.
also Lemma A.39)

Theorem 3.23. Let µ be a finite Borel measure and F its Borel transform.
Then the limit

Im(F (�)) = lim
"#0

1

⇡
Im(F (�+ i")) (3.91)

exists a.e. with respect to both µ and Lebesgue measure (finite or infinite)
and

(Dµ)(�) =
1

⇡
Im(F (�)) (3.92)

whenever (Dµ)(�) exists.

Moreover, the set {�| Im(F (�)) = 1} is a support for the singularly
continuous part and {�|0 < Im(F (�)) < 1} is a minimal support for the
absolutely continuous part.

In particular,

Corollary 3.24. The measure µ is purely absolutely continuous on I if
lim sup"#0 Im(F (�+ i")) < 1 for all � 2 I.
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The limit of the real part can be computed as well.

Corollary 3.25. The limit

lim
"#0

F (�+ i") (3.93)

exists a.e. with respect to both µ and Lebesgue measure. It is finite a.e. with
respect to Lebesgue measure.

Proof. If F (z) is a Herglotz function, then so is
p
F (z). Moreover,

p
F (z)

has values in the first quadrant; that is, both Re(
p
F (z)) and Im(

p
F (z)) are

positive for z 2 C+. Hence both
p
F (z) and i

p
F (z) are Herglotz functions

and by Theorem 3.23 both lim"#0Re(
p
F (�+ i")) and lim"#0 Im(

p
F (�+ i"))

exist and are finite a.e. with respect to Lebesgue measure. By taking squares,
the same is true for F (z) and hence lim"#0 F (�+ i") exists and is finite a.e.
with respect to Lebesgue measure. Since lim"#0 Im(F (�+ i")) = 1 implies
lim"#0 F (�+ i") = 1, the result follows. ⇤
Problem 3.20. Find all rational Herglotz functions F : C ! C satisfying
F (z⇤) = F (z)⇤ and lim|z|!1 |zF (z)| = M < 1. What can you say about
the zeros of F?

Problem 3.21. A complex measure dµ is a measure which can be written
as a complex linear combinations of positive measures dµj:

dµ = dµ1 � dµ2 + i(dµ3 � dµ4).

Let

F (z) =

Z

R

dµ

�� z
be the Borel transform of a complex measure. Show that µ is uniquely de-
termined by F via the Stieltjes inversion formula

1

2
(µ((�1,�2)) + µ([�1,�2])) = lim

"#0

1

2⇡i

Z �2

�1

(F (�+ i")� F (�� i"))d�.

Problem 3.22. Compute the Borel transform of the complex measure given
by dµ(�) = d�

(��i)2 .



Chapter 4

Applications of the
spectral theorem

This chapter can be mostly skipped on first reading. You might want to have a

look at the first section and then come back to the remaining ones later.

Now let us show how the spectral theorem can be used. We will give a
few typical applications:

First we will derive an operator-valued version of the Stieltjes inversion
formula. To do this, we need to show how to integrate a family of functions
of A with respect to a parameter. Moreover, we will show that these integrals
can be evaluated by computing the corresponding integrals of the complex-
valued functions.

Secondly we will consider commuting operators and show how certain
facts, which are known to hold for the resolvent of an operator A, can be
established for a larger class of functions.

Then we will show how the eigenvalues below the essential spectrum and
dimension of RanPA(⌦) can be estimated using the quadratic form.

Finally, we will investigate tensor products of operators.

4.1. Integral formulas

We begin with the first task by having a closer look at the projections PA(⌦).
They project onto subspaces corresponding to expectation values in the set
⌦. In particular, the number

h ,�⌦(A) i (4.1)

111
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is the probability for a measurement of a to lie in ⌦. In addition, we have

h , A i =

Z

⌦
� dµ (�) 2 hull(⌦),  2 PA(⌦)H, k k = 1, (4.2)

where hull(⌦) is the convex hull of ⌦.

The space Ran�{�0}(A) is called the eigenspace corresponding to �0
since we have

h', A i =

Z

R
��{�0}(�)dµ', (�) = �0

Z

R
dµ', (�) = �0h', i (4.3)

and hence A = �0 for all  2 Ran�{�0}(A). The dimension of the
eigenspace is called the multiplicity of the eigenvalue.

Moreover, since

lim
"#0

�i"

�� �0 � i"
= �{�0}(�), (4.4)

we infer from Theorem 3.1 that

lim
"#0

�i"RA(�0 + i") = �{�0}(A) . (4.5)

Similarly, we can obtain an operator-valued version of the Stieltjes inversion
formula. But first we need to recall a few facts from integration in Banach
spaces.

We will consider the case of mappings f : I ! X where I = [t0, t1] ⇢ R is
a compact interval andX is a Banach space. As before, a function f : I ! X
is called simple if the image of f is finite, f(I) = {xi}ni=1, and if each inverse
image f�1(xi), 1  i  n, is a Borel set. The set of simple functions S(I,X)
forms a linear space and can be equipped with the sup norm

kfk1 = sup
t2I

kf(t)k. (4.6)

The corresponding Banach space obtained after completion is called the set
of regulated functions R(I,X).

Observe that C(I,X) ⇢ R(I,X). In fact, consider the simple function
fn =

Pn�1
i=0 f(si)�[si,si+1), where si = t0 + i t1�t0

n . Since f 2 C(I,X) is
uniformly continuous, we infer that fn converges uniformly to f .

For f 2 S(I,X) we can define a linear map
R
: S(I,X) ! X by

Z

I
f(t)dt =

nX

i=1

xi|f
�1(xi)|, (4.7)

where |⌦| denotes the Lebesgue measure of ⌦. This map satisfies

k

Z

I
f(t)dtk  kfk1(t1 � t0) (4.8)
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and hence it can be extended uniquely to a linear map
R

: R(I,X) ! X
with the same norm (t1 � t0) by Theorem 0.26. We even have

k

Z

I
f(t)dtk 

Z

I
kf(t)kdt, (4.9)

which clearly holds for f 2 S(I,X) and thus for all f 2 R(I,X) by conti-
nuity. In addition, if ` 2 X⇤ is a continuous linear functional, then

`(

Z

I
f(t)dt) =

Z

I
`(f(t))dt, f 2 R(I,X). (4.10)

In particular, if A(t) 2 R(I,L(H)), then
✓Z

I
A(t)dt

◆
 =

Z

I
(A(t) )dt. (4.11)

If I = R, we say that f : I ! X is integrable if f 2 R([�r, r], X) for all
r > 0 and if kf(t)k is integrable. In this case we can set

Z

R
f(t)dt = lim

r!1

Z

[�r,r]
f(t)dt (4.12)

and (4.9) and (4.10) still hold.

We will use the standard notation
R t3
t2

f(s)ds =
R
I �(t2,t3)(s)f(s)ds and

R t2
t3

f(s)ds = �
R t3
t2

f(s)ds.

We write f 2 C1(I,X) if

d

dt
f(t) = lim

"!0

f(t+ ")� f(t)

"
(4.13)

exists for all t 2 I. In particular, if f 2 C(I,X), then F (t) =
R t
t0
f(s)ds 2

C1(I,X) and dF/dt = f as can be seen from

kF (t+ ")�F (t)� f(t)"k = k

Z t+"

t
(f(s)� f(t))dsk  |"| sup

s2[t,t+"]
kf(s)� f(t)k.

(4.14)

The important facts for us are the following two results.

Lemma 4.1. Suppose f : I ⇥ R ! C is a bounded Borel function and set
F (�) =

R
I f(t,�)dt. Let A be self-adjoint. Then f(t, A) 2 R(I,L(H)) and

F (A) =

Z

I
f(t, A)dt, respectively, F (A) =

Z

I
f(t, A) dt. (4.15)

Proof. That f(t, A) 2 R(I,L(H)) follows from the spectral theorem, since
it is no restriction to assume that A is multiplication by � in some L2 space.
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We compute

h', (

Z

I
f(t, A)dt) i =

Z

I
h', f(t, A) idt

=

Z

I

Z

R
f(t,�)dµ', (�)dt

=

Z

R

Z

I
f(t,�)dt dµ', (�)

=

Z

R
F (�)dµ', (�) = h', F (A) i

by Fubini’s theorem and hence the first claim follows. ⇤

Lemma 4.2. Suppose f : R ! L(H) is integrable and A 2 L(H). Then

A

Z

R
f(t)dt =

Z

R
Af(t)dt, respectively,

Z

R
f(t)dtA =

Z

R
f(t)Adt.

(4.16)

Proof. It su�ces to prove the case where f is simple and of compact sup-
port. But for such functions the claim is straightforward. ⇤

Now we can prove an operator-valued version of the Stieltjes inversion
formula.

Theorem 4.3 (Stone’s formula). Let A be self-adjoint. Then

1

2⇡i

Z �2

�1

�
RA(�+ i")�RA(�� i")

�
d�

s
!

1

2

�
PA([�1,�2]) + PA((�1,�2))

�

(4.17)
strongly.

Proof. By

1

2⇡i

Z �2

�1

✓
1

x� �� i"
�

1

x� �+ i"

◆
d� =

1

⇡

Z �2

�1

"

(x� �)2 + "2
d�

=
1

⇡

✓
arctan

⇣�2 � x

"

⌘
� arctan

⇣�1 � x

"

⌘◆

!
1

2

�
�[�1,�2](x) + �(�1,�2)(x)

�

the result follows combining the last part of Theorem 3.1 with Lemma 4.1.
⇤
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Note that by using the first resolvent formula, Stone’s formula can also
be written in the form

h ,
1

2

�
PA([�1,�2]) + PA((�1,�2))

�
 i = lim

"#0

1

⇡

Z �2

�1

Imh , RA(�+ i") id�

= lim
"#0

"

⇡

Z �2

�1

kRA(�+ i") k2d�.

(4.18)

Problem 4.1. Let � be a di↵erentiable Jordan curve in ⇢(A). Show

�⌦(A) =

Z

�
RA(z)dz,

where ⌦ is the intersection of the interior of � with R.

4.2. Commuting operators

Now we come to commuting operators. As a preparation we can now prove

Lemma 4.4. Let K ✓ R be closed and let C1(K) be the set of all continuous
functions on K which vanish at 1 (if K is unbounded) with the sup norm.
The ⇤-subalgebra generated by the function

� 7!
1

�� z
(4.19)

for one z 2 C\K is dense in C1(K).

Proof. If K is compact, the claim follows directly from the complex Stone–
Weierstraß theorem since (�1�z)�1 = (�2�z)�1 implies �1 = �2. Otherwise,
replace K by K̃ = K[{1}, which is compact, and set (1�z)�1 = 0. Then
we can again apply the complex Stone–Weierstraß theorem to conclude that
our ⇤-subalgebra is equal to {f 2 C(K̃)|f(1) = 0} which is equivalent to
C1(K). ⇤

We say that two bounded operators A, B commute if

[A,B] = AB �BA = 0. (4.20)

If A or B is unbounded, we soon run into trouble with this definition since
the above expression might not even make sense for any nonzero vector (e.g.,
take B = h', .i with  62 D(A)). To avoid this nuisance, we will replace A
by a bounded function of A. A good candidate is the resolvent. Hence if A
is self-adjoint and B is bounded, we will say that A and B commute if

[RA(z), B] = [RA(z
⇤), B] = 0 (4.21)

for one z 2 ⇢(A).
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Lemma 4.5. Suppose A is self-adjoint and commutes with the bounded
operator B. Then

[f(A), B] = 0 (4.22)

for any bounded Borel function f . If f is unbounded, the claim holds for
any  2 D(f(A)) in the sense that Bf(A) ✓ f(A)B.

Proof. Equation (4.21) tells us that (4.22) holds for any f in the ⇤-sub-
algebra generated by RA(z). Since this subalgebra is dense in C1(�(A)),
the claim follows for all such f 2 C1(�(A)). Next fix  2 H and let f be
bounded. Choose a sequence fn 2 C1(�(A)) converging to f in L2(R, dµ ).
Then

Bf(A) = lim
n!1

Bfn(A) = lim
n!1

fn(A)B = f(A)B .

If f is unbounded, let  2 D(f(A)) and choose fn as in (3.26). Then

f(A)B = lim
n!1

fn(A)B = lim
n!1

Bfn(A) 

shows f 2 L2(R, dµB ) (i.e., B 2 D(f(A))) and f(A)B = BF (A) . ⇤

In the special case where B is an orthogonal projection, we obtain

Corollary 4.6. Let A be self-adjoint and H1 a closed subspace with corre-
sponding projector P1. Then H1 reduces A if and only if P1 and A commute.

Furthermore, note

Corollary 4.7. If A is self-adjoint and bounded, then (4.21) holds if and
only if (4.20) holds.

Proof. Since �(A) is compact, we have � 2 C1(�(A)) and hence (4.20)
follows from (4.22) by our lemma. Conversely, since B commutes with any
polynomial of A, the claim follows from the Neumann series. ⇤

As another consequence we obtain

Theorem 4.8. Suppose A is self-adjoint and has simple spectrum. A bounded
operator B commutes with A if and only if B = f(A) for some bounded Borel
function.

Proof. Let  be a cyclic vector for A. By our unitary equivalence it is no
restriction to assume H = L2(R, dµ ). Then

Bg(�) = Bg(�) · 1 = g(�)(B1)(�)

since B commutes with the multiplication operator g(�). Hence B is multi-
plication by f(�) = (B1)(�). ⇤
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The assumption that the spectrum of A is simple is crucial as the exam-
ple A = I shows. Note also that the functions exp(�itA) can also be used
instead of resolvents.

Lemma 4.9. Suppose A is self-adjoint and B is bounded. Then B commutes
with A if and only if

[e�iAt, B] = 0 (4.23)

for all t 2 R.

Proof. It su�ces to show [f̂(A), B] = 0 for f 2 S(R), since these functions
are dense in C1(R) by the complex Stone–Weierstraß theorem. Here f̂
denotes the Fourier transform of f ; see Section 7.1. But for such f we have

[f̂(A), B] =
1

p
2⇡

[

Z

R
f(t)e�iAtdt,B] =

1
p
2⇡

Z

R
f(t)[e�iAt, B]dt = 0

by Lemma 4.2. ⇤

The extension to the case where B is self-adjoint and unbounded is
straightforward. We say that A and B commute in this case if

[RA(z1), RB(z2)] = [RA(z
⇤

1), RB(z2)] = 0 (4.24)

for one z1 2 ⇢(A) and one z2 2 ⇢(B) (the claim for z⇤2 follows by taking
adjoints). From our above analysis it follows that this is equivalent to

[e�iAt, e�iBs] = 0, t, s 2 R, (4.25)

respectively,
[f(A), g(B)] = 0 (4.26)

for arbitrary bounded Borel functions f and g.

Problem 4.2. Let A and B be self-adjoint. Show that A and B commute if
and only if the corresponding spectral projections PA(⌦) and PB(⌦) commute
for every Borel set ⌦. In particular, Ran(PB(⌦)) reduces A and vice versa.

Problem 4.3. Let A and B be self-adjoint operators with pure point spec-
trum. Show that A and B commute if and only if they have a common
orthonormal basis of eigenfunctions.

4.3. The min-max theorem

In many applications a self-adjoint operator has a number of eigenvalues
below the bottom of the essential spectrum. The essential spectrum is ob-
tained from the spectrum by removing all discrete eigenvalues with finite
multiplicity (we will have a closer look at this in Section 6.2). In general
there is no way of computing the lowest eigenvalues and their corresponding
eigenfunctions explicitly. However, one often has some idea about how the
eigenfunctions might approximately look.
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So suppose we have a normalized function  1 which is an approximation
for the eigenfunction '1 of the lowest eigenvalue E1. Then by Theorem 2.19
we know that

h 1, A 1i � h'1, A'1i = E1. (4.27)

If we add some free parameters to  1, one can optimize them and obtain
quite good upper bounds for the first eigenvalue.

But is there also something one can say about the next eigenvalues?
Suppose we know the first eigenfunction '1. Then we can restrict A to
the orthogonal complement of '1 and proceed as before: E2 will be the
infimum over all expectations restricted to this subspace. If we restrict to
the orthogonal complement of an approximating eigenfunction  1, there will
still be a component in the direction of '1 left and hence the infimum of the
expectations will be lower than E2. Thus the optimal choice  1 = '1 will
give the maximal value E2.

More precisely, let {'j}
N
j=1 be an orthonormal basis for the space spanned

by the eigenfunctions corresponding to eigenvalues below the essential spec-
trum. Here the essential spectrum �ess(A) is given by precisely those values
in the spectrum which are not isolated eigenvalues of finite multiplicity (see
Section 6.2). Assume they satisfy (A � Ej)'j = 0, where Ej  Ej+1 are
the eigenvalues (counted according to their multiplicity). If the number of
eigenvalues N is finite, we set Ej = inf �ess(A) for j > N and choose 'j

orthonormal such that k(A� Ej)'jk  ".

Define

U( 1, . . . , n) = { 2 D(A)| k k = 1,  2 span{ 1, . . . , n}
?
}. (4.28)

(i) We have

inf
 2U( 1,..., n�1)

h , A i  En +O("). (4.29)

In fact, set  =
Pn

j=1 ↵j'j and choose ↵j such that  2 U( 1, . . . , n�1).
Then

h , A i =
nX

j=1

|↵j |
2Ej +O(")  En +O(") (4.30)

and the claim follows.

(ii) We have

inf
 2U('1,...,'n�1)

h , A i � En �O("). (4.31)

In fact, set  = 'n.

Since " can be chosen arbitrarily small, we have proven the following.
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Theorem 4.10 (Min-max). Let A be self-adjoint and let E1  E2  E3 · · ·

be the eigenvalues of A below the essential spectrum, respectively, the in-
fimum of the essential spectrum, once there are no more eigenvalues left.
Then

En = sup
 1,..., n�1

inf
 2U( 1,..., n�1)

h , A i. (4.32)

Clearly the same result holds if D(A) is replaced by the quadratic form
domain Q(A) in the definition of U . In addition, as long as En is an eigen-
value, the sup and inf are in fact max and min, explaining the name.

Corollary 4.11. Suppose A and B are self-adjoint operators with A � B
(i.e., A�B � 0). Then En(A) � En(B).

Problem 4.4. Suppose A, An are bounded and An ! A. Then Ek(An) !
Ek(A). (Hint: kA�Ank  " is equivalent to A� "  A  A+ ".)

4.4. Estimating eigenspaces

Next, we show that the dimension of the range of PA(⌦) can be estimated
if we have some functions which lie approximately in this space.

Theorem 4.12. Suppose A is a self-adjoint operator and  j, 1  j  k,
are linearly independent elements of a H.

(i) Let � 2 R,  j 2 Q(A). If

h , A i < �k k2 (4.33)

for any nonzero linear combination  =
Pk

j=1 cj j, then

dimRan PA((�1,�)) � k. (4.34)

Similarly, h , A i > �k k2 implies dimRan PA((�,1)) � k.

(ii) Let �1 < �2,  j 2 D(A). If

k(A�
�2 + �1

2
) k <

�2 � �1
2

k k (4.35)

for any nonzero linear combination  =
Pk

j=1 cj j, then

dimRan PA((�1,�2)) � k. (4.36)

Proof. (i) Let M = span{ j} ✓ H. We claim dimPA((�1,�))M =
dimM = k. For this it su�ces to show KerPA((�1,�))|M = {0}. Sup-
pose PA((�1,�)) = 0,  6= 0. Then we see that for any nonzero linear
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combination  

h , A i =

Z

R
⌘ dµ (⌘) =

Z

[�,1)
⌘ dµ (⌘)

� �

Z

[�,1)
dµ (⌘) = �k k2.

This contradicts our assumption (4.33).

(ii) This is just the previous case (i) applied to (A� (�2 + �1)/2)2 with
� = (�2 � �1)2/4. ⇤

Another useful estimate is

Theorem 4.13 (Temple’s inequality). Let �1 < �2 and  2 D(A) with
k k = 1 such that

� = h , A i 2 (�1,�2). (4.37)

If there is one isolated eigenvalue E between �1 and �2, that is, �(A) \
(�1,�2) = E, then

��
k(A� �) k2

�2 � �
 E  �+

k(A� �) k2

�� �1
. (4.38)

Proof. First of all we can assume � = 0 if we replace A by A��. To prove
the first inequality, observe that by assumption (E,�2) ⇢ ⇢(A) and hence the
spectral theorem implies (A��2)(A�E) � 0. Thus h , (A��2)(A�E)i =
kA k2 + �2E � 0 and the first inequality follows after dividing by �2 > 0.
Similarly, (A� �1)(A� E) � 0 implies the second inequality. ⇤

Note that the last inequality only provides additional information if
k(A� �) k2  (�2 � �)(�� �1).

A typical application is if E = E0 is the lowest eigenvalue. In this case
any normalized trial function  will give the bound E0  h , A i. If, in
addition, we also have some estimate �2  E1 for the second eigenvalue E1,
then Temple’s inequality can give a bound from below. For �1 we can choose
any value �1 < E0; in fact, if we let �1 ! �1, we just recover the bound
we already know.

4.5. Tensor products of operators

Recall the definition of the tensor product of Hilbert space from Section 1.4.
Suppose Aj , 1  j  n, are (essentially) self-adjoint operators on Hj . For
every monomial �n1

1 · · ·�nn
n we can define

(An1
1 ⌦ · · ·⌦Ann

n ) 1 ⌦ · · ·⌦  n = (An1
1  1)⌦ · · ·⌦ (Ann

n  n),  j 2 D(A
nj

j ),
(4.39)
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and extend this definition by linearity to the span of all such functions
(check that this definition is well-defined by showing that the corresponding
operator on F(H1, . . . ,Hn) vanishes on N (H1, . . . ,Hn)). Hence for every
polynomial P (�1, . . . ,�n) of degree N we obtain an operator

P (A1, . . . , An) 1 ⌦ · · ·⌦  n,  j 2 D(AN
j ), (4.40)

defined on the set

D = span{ 1 ⌦ · · ·⌦  n | j 2 D(AN
j )}. (4.41)

Moreover, if P is real-valued, then the operator P (A1, . . . , An) on D is sym-
metric and we can consider its closure, which will again be denoted by
P (A1, . . . , An).

Theorem 4.14. Suppose Aj, 1  j  n, are self-adjoint operators on Hj

and let P (�1, . . . ,�n) be a real-valued polynomial and define P (A1, . . . , An)
as above.

Then P (A1, . . . , An) is self-adjoint and its spectrum is the closure of the
range of P on the product of the spectra of the Aj; that is,

�(P (A1, . . . , An)) = P (�(A1), . . . ,�(An)). (4.42)

Proof. By the spectral theorem it is no restriction to assume that Aj is
multiplication by �j on L2(R, dµj) and P (A1, . . . , An) is hence multiplication
by P (�1, . . . ,�n) on L2(Rn, dµ1 ⇥ · · · ⇥ dµn). Since D contains the set of
all functions  1(�1) · · · n(�n) for which  j 2 L2

c(R, dµj), it follows that the
domain of the closure of P contains L2

c(Rn, dµ1 ⇥ · · · ⇥ dµn). Hence P is
the maximally defined multiplication operator by P (�1, . . . ,�n), which is
self-adjoint.

Now let � = P (�1, . . . ,�n) with �j 2 �(Aj). Then there exist Weyl
sequences  j,k 2 D(AN

j ) with (Aj � �j) j,k ! 0 as k ! 1. Consequently,
(P��) k ! 0, where  k =  1,k⌦· · ·⌦ 1,k and hence � 2 �(P ). Conversely,

if � 62 P (�(A1), . . . ,�(An)), then |P (�1, . . . ,�n) � �| � " for a.e. �j with
respect to µj and hence (P � �)�1 exists and is bounded; that is, � 2

⇢(P ). ⇤

The two main cases of interest are A1 ⌦A2, in which case

�(A1 ⌦A2) = �(A1)�(A2) = {�1�2|�j 2 �(Aj)}, (4.43)

and A1 ⌦ I+ I⌦A2, in which case

�(A1 ⌦ I+ I⌦A2) = �(A1) + �(A2) = {�1 + �2|�j 2 �(Aj)}. (4.44)

Problem 4.5. Show that the closure can be omitted in (4.44) if at least one
operator is bounded and in (4.43) if both operators are bounded.





Chapter 5

Quantum dynamics

As in the finite dimensional case, the solution of the Schrödinger equation

i
d

dt
 (t) = H (t) (5.1)

is given by
 (t) = exp(�itH) (0). (5.2)

A detailed investigation of this formula will be our first task. Moreover, in
the finite dimensional case the dynamics is understood once the eigenvalues
are known and the same is true in our case once we know the spectrum. Note
that, like any Hamiltonian system from classical mechanics, our system is
not hyperbolic (i.e., the spectrum is not away from the real axis) and hence
simple results such as all solutions tend to the equilibrium position cannot
be expected.

5.1. The time evolution and Stone’s theorem

In this section we want to have a look at the initial value problem associated
with the Schrödinger equation (2.12) in the Hilbert space H. If H is one-
dimensional (and hence A is a real number), the solution is given by

 (t) = e�itA (0). (5.3)

Our hope is that this formula also applies in the general case and that we
can reconstruct a one-parameter unitary group U(t) from its generator A
(compare (2.11)) via U(t) = exp(�itA). We first investigate the family of
operators exp(�itA).

Theorem 5.1. Let A be self-adjoint and let U(t) = exp(�itA).

(i) U(t) is a strongly continuous one-parameter unitary group.

123
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(ii) The limit limt!0
1
t (U(t) �  ) exists if and only if  2 D(A) in

which case limt!0
1
t (U(t) �  ) = �iA .

(iii) U(t)D(A) = D(A) and AU(t) = U(t)A.

Proof. The group property (i) follows directly from Theorem 3.1 and the
corresponding statements for the function exp(�it�). To prove strong con-
tinuity, observe that

lim
t!t0

ke�itA � e�it0A k2 = lim
t!t0

Z

R
|e�it�

� e�it0�|
2dµ (�)

=

Z

R
lim
t!t0

|e�it�
� e�it0�|

2dµ (�) = 0

by the dominated convergence theorem.

Similarly, if  2 D(A), we obtain

lim
t!0

k
1

t
(e�itA �  ) + iA k2 = lim

t!0

Z

R
|
1

t
(e�it�

� 1) + i�|2dµ (�) = 0

since |eit��1|  |t�|. Now let Ã be the generator defined as in (2.11). Then
Ã is a symmetric extension of A since we have

h', Ã i = lim
t!0

h',
i

t
(U(t)� 1) i = lim

t!0
h
i

�t
(U(�t)� 1)', i = hÃ', i

and hence Ã = A by Corollary 2.2. This settles (ii).

To see (iii), replace  ! U(s) in (ii). ⇤

For our original problem this implies that formula (5.3) is indeed the
solution to the initial value problem of the Schrödinger equation. Moreover,

hU(t) , AU(t) i = hU(t) , U(t)A i = h , A i (5.4)

shows that the expectations of A are time independent. This corresponds
to conservation of energy.

On the other hand, the generator of the time evolution of a quantum
mechanical system should always be a self-adjoint operator since it corre-
sponds to an observable (energy). Moreover, there should be a one-to-one
correspondence between the unitary group and its generator. This is ensured
by Stone’s theorem.

Theorem 5.2 (Stone). Let U(t) be a weakly continuous one-parameter uni-
tary group. Then its generator A is self-adjoint and U(t) = exp(�itA).

Proof. First of all observe that weak continuity together with item (iv) of
Lemma 1.12 shows that U(t) is in fact strongly continuous.
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Next we show that A is densely defined. Pick  2 H and set

 ⌧ =

Z ⌧

0
U(t) dt

(the integral is defined as in Section 4.1) implying lim⌧!0 ⌧�1 ⌧ =  . More-
over,

1

t
(U(t) ⌧ �  ⌧ ) =

1

t

Z t+⌧

t
U(s) ds�

1

t

Z ⌧

0
U(s) ds

=
1

t

Z ⌧+t

⌧
U(s) ds�

1

t

Z t

0
U(s) ds

=
1

t
U(⌧)

Z t

0
U(s) ds�

1

t

Z t

0
U(s) ds ! U(⌧) �  

as t ! 0 shows  ⌧ 2 D(A). As in the proof of the previous theorem, we can
show that A is symmetric and that U(t)D(A) = D(A).

Next, let us prove that A is essentially self-adjoint. By Lemma 2.7 it
su�ces to prove Ker(A⇤

� z⇤) = {0} for z 2 C\R. Suppose A⇤' = z⇤'.
Then for each  2 D(A) we have

d

dt
h', U(t) i = h',�iAU(t) i = �ihA⇤', U(t) i = �izh', U(t) i

and hence h', U(t) i = exp(�izt)h', i. Since the left-hand side is bounded
for all t 2 R and the exponential on the right-hand side is not, we must have
h', i = 0 implying ' = 0 since D(A) is dense.

So A is essentially self-adjoint and we can introduce V (t) = exp(�itA).
We are done if we can show U(t) = V (t).

Let  2 D(A) and abbreviate  (t) = (U(t)� V (t)) . Then

lim
s!0

 (t+ s)�  (t)

s
= iA (t)

and hence d
dtk (t)k

2 = 2Reh (t), iA (t)i = 0. Since  (0) = 0, we have
 (t) = 0 and hence U(t) and V (t) coincide on D(A). Furthermore, since
D(A) is dense, we have U(t) = V (t) by continuity. ⇤

As an immediate consequence of the proof we also note the following
useful criterion.

Corollary 5.3. Suppose D ✓ D(A) is dense and invariant under U(t).
Then A is essentially self-adjoint on D.

Proof. As in the above proof it follows that h', i = 0 for any  2 D and
' 2 Ker(A⇤

� z⇤). ⇤
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Note that by Lemma 4.9 two strongly continuous one-parameter groups
commute,

[e�itA, e�isB] = 0, (5.5)

if and only if the generators commute.

Clearly, for a physicist, one of the goals must be to understand the time
evolution of a quantum mechanical system. We have seen that the time
evolution is generated by a self-adjoint operator, the Hamiltonian, and is
given by a linear first order di↵erential equation, the Schrödinger equation.
To understand the dynamics of such a first order di↵erential equation, one
must understand the spectrum of the generator. Some general tools for this
endeavor will be provided in the following sections.

Problem 5.1. Let H = L2(0, 2⇡) and consider the one-parameter unitary
group given by U(t)f(x) = f(x� t mod 2⇡). What is the generator of U?

5.2. The RAGE theorem

Now, let us discuss why the decomposition of the spectrum introduced in
Section 3.3 is of physical relevance. Let k'k = k k = 1. The vector h', i'
is the projection of  onto the (one-dimensional) subspace spanned by '.
Hence |h', i|2 can be viewed as the part of  which is in the state '. The
first question one might raise is, how does

|h', U(t) i|2, U(t) = e�itA, (5.6)

behave as t ! 1? By the spectral theorem,

µ̂', (t) = h', U(t) i =

Z

R
e�it�dµ', (�) (5.7)

is the Fourier transform of the measure µ', . Thus our question is an-
swered by Wiener’s theorem.

Theorem 5.4 (Wiener). Let µ be a finite complex Borel measure on R and
let

µ̂(t) =

Z

R
e�it�dµ(�) (5.8)

be its Fourier transform. Then the Cesàro time average of µ̂(t) has the limit

lim
T!1

1

T

Z T

0
|µ̂(t)|2dt =

X

�2R
|µ({�})|2, (5.9)

where the sum on the right-hand side is finite.
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Proof. By Fubini we have

1

T

Z T

0
|µ̂(t)|2dt =

1

T

Z T

0

Z

R

Z

R
e�i(x�y)tdµ(x)dµ⇤(y)dt

=

Z

R

Z

R

✓
1

T

Z T

0
e�i(x�y)tdt

◆
dµ(x)dµ⇤(y).

The function in parentheses is bounded by one and converges pointwise to
�{0}(x � y) as T ! 1. Thus, by the dominated convergence theorem, the
limit of the above expression is given by

Z

R

Z

R
�{0}(x� y)dµ(x)dµ⇤(y) =

Z

R
µ({y})dµ⇤(y) =

X

y2R
|µ({y})|2,

which finishes the proof. ⇤

To apply this result to our situation, observe that the subspaces Hac,
Hsc, and Hpp are invariant with respect to time evolution since P xxU(t) =
�Mxx(A) exp(�itA) = exp(�itA)�Mxx(A) = U(t)P xx, xx 2 {ac, sc, pp}.
Moreover, if  2 Hxx, we have P xx =  , which shows h', f(A) i =
h', P xxf(A) i = hP xx', f(A) i implying dµ', = dµPxx', . Thus if µ 
is ac, sc, or pp, so is µ', for every ' 2 H.

That is, if  2 Hc = Hac�Hsc, then the Cesàro mean of h', U(t) i tends
to zero. In other words, the average of the probability of finding the system
in any prescribed state tends to zero if we start in the continuous subspace
Hc of A.

If  2 Hac, then dµ', is absolutely continuous with respect to Lebesgue
measure and thus µ̂', (t) is continuous and tends to zero as |t| ! 1. In
fact, this follows from the Riemann-Lebesgue lemma (see Lemma 7.6 below).

Now we want to draw some additional consequences from Wiener’s the-
orem. This will eventually yield a dynamical characterization of the contin-
uous and pure point spectrum due to Ruelle, Amrein, Gorgescu, and Enß.
But first we need a few definitions.

An operator K 2 L(H) is called a finite rank operator if its range is
finite dimensional. The dimension

rank(K) = dimRan(K)

is called the rank of K. If { j}
n
j=1 is an orthonormal basis for Ran(K), we

have

K =
nX

j=1

h j ,K i j =
nX

j=1

h'j , i j , (5.10)
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where 'j = K⇤ j . The elements 'j are linearly independent since Ran(K) =
Ker(K⇤)?. Hence every finite rank operator is of the form (5.10). In addi-
tion, the adjoint of K is also finite rank and is given by

K⇤ =
nX

j=1

h j , i'j . (5.11)

The closure of the set of all finite rank operators in L(H) is called the set
of compact operators C(H). It is straightforward to verify (Problem 5.2)

Lemma 5.5. The set of all compact operators C(H) is a closed ⇤-ideal in
L(H).

There is also a weaker version of compactness which is useful for us. The
operator K is called relatively compact with respect to A if

KRA(z) 2 C(H) (5.12)

for one z 2 ⇢(A). By the first resolvent formula this then follows for all
z 2 ⇢(A). In particular we have D(A) ✓ D(K).

Now let us return to our original problem.

Theorem 5.6. Let A be self-adjoint and suppose K is relatively compact.
Then

lim
T!1

1

T

Z T

0
kKe�itAP c k2dt = 0 and lim

t!1
kKe�itAP ac k = 0

(5.13)
for every  2 D(A). If, in addition, K is bounded, then the result holds for
any  2 H.

Proof. Let  2 Hc, respectively,  2 Hac, and drop the projectors. Then,
if K is a rank one operator (i.e., K = h'1, .i'2), the claim follows from
Wiener’s theorem, respectively, the Riemann-Lebesgue lemma. Hence it
holds for any finite rank operator K.

If K is compact, there is a sequence Kn of finite rank operators such
that kK �Knk  1/n and hence

kKe�itA k  kKne
�itA k+

1

n
k k.

Thus the claim holds for any compact operator K.

If  2 D(A), we can set  = (A � i)�1', where ' 2 Hc if and only if
 2 Hc (since Hc reduces A). Since K(A + i)�1 is compact by assumption,
the claim can be reduced to the previous situation. If K is also bounded,
we can find a sequence  n 2 D(A) such that k �  nk  1/n and hence

kKe�itA k  kKe�itA nk+
1

n
kKk,

concluding the proof. ⇤
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With the help of this result we can now prove an abstract version of the
RAGE theorem.

Theorem 5.7 (RAGE). Let A be self-adjoint. Suppose Kn 2 L(H) is a se-
quence of relatively compact operators which converges strongly to the iden-
tity. Then

Hc = { 2 H| lim
n!1

lim
T!1

1

T

Z T

0
kKne

�itA kdt = 0},

Hpp = { 2 H| lim
n!1

sup
t�0

k(I�Kn)e
�itA k = 0}. (5.14)

Proof. Abbreviate  (t) = exp(�itA) . We begin with the first equation.

Let  2 Hc. Then

1

T

Z T

0
kKn (t)kdt 

✓
1

T

Z T

0
kKn (t)k

2dt

◆1/2

! 0

by Cauchy–Schwarz and the previous theorem. Conversely, if  62 Hc, we
can write  =  c +  pp. By our previous estimate it su�ces to show
kKn pp(t)k � " > 0 for n large. In fact, we even claim

lim
n!1

sup
t�0

kKn 
pp(t)�  pp(t)k = 0. (5.15)

By the spectral theorem, we can write  pp(t) =
P

j ↵j(t) j , where the  j

are orthonormal eigenfunctions and ↵j(t) = exp(�it�j)↵j . Truncate this
expansion after N terms. Then this part converges uniformly to the desired
limit by strong convergence of Kn. Moreover, by Lemma 1.14 we have
kKnk  M , and hence the error can be made arbitrarily small by choosing
N large.

Now let us turn to the second equation. If  2 Hpp, the claim follows
by (5.15). Conversely, if  62 Hpp, we can write  =  c +  pp and by our
previous estimate it su�ces to show that k(I�Kn) c(t)k does not tend to
0 as n ! 1. If it did, we would have

0 = lim
T!1

1

T

Z T

0
k(I�Kn) 

c(t)k2dt

� k c(t)k2 � lim
T!1

1

T

Z T

0
kKn 

c(t)k2dt = k c(t)k2,

a contradiction. ⇤

In summary, regularity properties of spectral measures are related to
the long time behavior of the corresponding quantum mechanical system.
However, a more detailed investigation of this topic is beyond the scope of
this manuscript. For a survey containing several recent results, see [28].
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It is often convenient to treat the observables as time dependent rather
than the states. We set

K(t) = eitAKe�itA (5.16)

and note
h (t),K (t)i = h ,K(t) i,  (t) = e�itA . (5.17)

This point of view is often referred to as the Heisenberg picture in the
physics literature. If K is unbounded, we will assume D(A) ✓ D(K) such
that the above equations make sense at least for  2 D(A). The main
interest is the behavior of K(t) for large t. The strong limits are called
asymptotic observables if they exist.

Theorem 5.8. Suppose A is self-adjoint and K is relatively compact. Then

lim
T!1

1

T

Z T

0
eitAKe�itA dt =

X

�2�p(A)

PA({�})KPA({�}) ,  2 D(A).

(5.18)
If K is in addition bounded, the result holds for any  2 H.

Proof. We will assume that K is bounded. To obtain the general result,
use the same trick as before and replace K by KRA(z). Write  =  c+ pp.
Then

lim
T!1

1

T
k

Z T

0
K(t) cdtk  lim

T!1

1

T

Z T

0
kK(t) cdtk = 0

by Theorem 5.6. As in the proof of the previous theorem we can write
 pp =

P
j ↵j j and hence

X

j

↵j
1

T

Z T

0
K(t) jdt =

X

j

↵j

✓
1

T

Z T

0
eit(A��j)dt

◆
K j .

As in the proof of Wiener’s theorem, we see that the operator in parentheses
tends to PA({�j}) strongly as T ! 1. Since this operator is also bounded
by 1 for all T , we can interchange the limit with the summation and the
claim follows. ⇤

We also note the following corollary.

Corollary 5.9. Under the same assumptions as in the RAGE theorem we
have

lim
n!1

lim
T!1

1

T

Z T

0
eitAKne

�itA dt = P pp , (5.19)

respectively,

lim
n!1

lim
T!1

1

T

Z T

0
eitA(I�Kn)e

�itA dt = P c . (5.20)

Problem 5.2. Prove Lemma 5.5.
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Problem 5.3. Prove Corollary 5.9.

5.3. The Trotter product formula

In many situations the operator is of the form A + B, where eitA and eitB

can be computed explicitly. Since A and B will not commute in general, we
cannot obtain eit(A+B) from eitAeitB. However, we at least have

Theorem 5.10 (Trotter product formula). Suppose A, B, and A + B are
self-adjoint. Then

eit(A+B) = s-lim
n!1

⇣
ei

t
nA ei

t
nB
⌘n

. (5.21)

Proof. First of all note that we have
�
ei⌧Aei⌧B

�n
� eit(A+B)

=
n�1X

j=0

�
ei⌧A ei⌧B

�n�1�j
⇣
ei⌧A ei⌧B � ei⌧(A+B)

⌘⇣
ei⌧(A+B)

⌘j
,

where ⌧ = t
n , and hence

k(ei⌧Aei⌧B)n � eit(A+B) k  |t| max
|s||t|

F⌧ (s),

where

F⌧ (s) = k
1

⌧
(ei⌧A ei⌧B � ei⌧(A+B))eis(A+B) k.

Now for  2 D(A+B) = D(A) \D(B) we have

1

⌧
(ei⌧A ei⌧B � ei⌧(A+B)) ! iA + iB � i(A+B) = 0

as ⌧ ! 0. So lim⌧!0 F⌧ (s) = 0 at least pointwise, but we need this uniformly
with respect to s 2 [�|t|, |t|].

Pointwise convergence implies

k
1

⌧
(ei⌧A ei⌧B � ei⌧(A+B)) k  C( )

and, since D(A+B) is a Hilbert space when equipped with the graph norm
k k2�(A+B) = k k2 + k(A+B) k2, we can invoke the uniform boundedness
principle to obtain

k
1

⌧
(ei⌧A ei⌧B � ei⌧(A+B)) k  Ck k�(A+B).

Now

|F⌧ (s)� F⌧ (r)|  k
1

⌧
(ei⌧A ei⌧B � ei⌧(A+B))(eis(A+B)

� eir(A+B)) k

 Ck(eis(A+B)
� eir(A+B)) k�(A+B)
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shows that F⌧ (.) is uniformly continuous and the claim follows by a standard
"
2 argument. ⇤

If the operators are semi-bounded from below, the same proof shows

Theorem 5.11 (Trotter product formula). Suppose A, B, and A + B are
self-adjoint and semi-bounded from below. Then

e�t(A+B) = s-lim
n!1

⇣
e�

t
nA e�

t
nB
⌘n

, t � 0. (5.22)

Problem 5.4. Prove Theorem 5.11.



Chapter 6

Perturbation theory for
self-adjoint operators

The Hamiltonian of a quantum mechanical system is usually the sum of
the kinetic energy H0 (free Schrödinger operator) plus an operator V cor-
responding to the potential energy. Since H0 is easy to investigate, one
usually tries to consider V as a perturbation of H0. This will only work
if V is small with respect to H0. Hence we study such perturbations of
self-adjoint operators next.

6.1. Relatively bounded operators and the Kato–Rellich
theorem

An operator B is called A bounded or relatively bounded with respect
to A if D(A) ✓ D(B) and if there are constants a, b � 0 such that

kB k  akA k+ bk k,  2 D(A). (6.1)

The infimum of all constants a for which a corresponding b exists such that
(6.1) holds is called the A-bound of B.

The triangle inequality implies

Lemma 6.1. Suppose Bj, j = 1, 2, are A bounded with respective A-bounds
ai, i = 1, 2. Then ↵1B1 + ↵2B2 is also A bounded with A-bound less than
|↵1|a1 + |↵2|a2. In particular, the set of all A bounded operators forms a
linear space.

There are also the following equivalent characterizations:

133
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Lemma 6.2. Suppose A is closed and B is closable. Then the following are
equivalent:

(i) B is A bounded.

(ii) D(A) ✓ D(B).

(iii) BRA(z) is bounded for one (and hence for all) z 2 ⇢(A).

Moreover, the A-bound of B is no larger than infz2⇢(A) kBRA(z)k.

Proof. (i) ) (ii) is true by definition. (ii) ) (iii) since BRA(z) is a closed
(Problem 2.9) operator defined on all of H and hence bounded by the closed
graph theorem (Theorem 2.8). To see (iii) ) (i), let  2 D(A). Then

kB k = kBRA(z)(A� z) k  ak(A� z) k  akA k+ (a|z|)k k,

where a = kBRA(z)k. Finally, note that if BRA(z) is bounded for one
z 2 ⇢(A), it is bounded for all z 2 ⇢(A) by the first resolvent formula. ⇤

Example. Let A be the self-adjoint operator A = �
d2

dx2 , D(A) = {f 2

H2[0, 1]|f(0) = f(1) = 0} in the Hilbert space L2(0, 1). If we want to add a
potential represented by a multiplication operator with a real-valued (mea-
surable) function q, then q will be relatively bounded if q 2 L2(0, 1): Indeed,
since all functions in D(A) are continuous on [0, 1] and hence bounded, we
clearly have D(A) ⇢ D(q) in this case. ⇧

We are mainly interested in the situation where A is self-adjoint and B
is symmetric. Hence we will restrict our attention to this case.

Lemma 6.3. Suppose A is self-adjoint and B relatively bounded. The A-
bound of B is given by

lim
�!1

kBRA(±i�)k. (6.2)

If A is bounded from below, we can also replace ±i� by ��.

Proof. Let ' = RA(±i�) , � > 0, and let a1 be the A-bound of B. Then
(use the spectral theorem to estimate the norms)

kBRA(±i�) k  akARA(±i�) k+ bkRA(±i�) k  (a+
b

�
)k k.

Hence lim sup� kBRA(±i�)k  a1 which, together with the inequality a1 

inf� kBRA(±i�)k from the previous lemma, proves the claim.

The case where A is bounded from below is similar, using

kBRA(��) k 

✓
amax

⇣
1,

|�|

�+ �

⌘
+

b

�+ �

◆
k k,

for �� < �. ⇤

Now we will show the basic perturbation result due to Kato and Rellich.
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Theorem 6.4 (Kato–Rellich). Suppose A is (essentially) self-adjoint and
B is symmetric with A-bound less than one. Then A + B, D(A + B) =
D(A), is (essentially) self-adjoint. If A is essentially self-adjoint, we have
D(A) ✓ D(B) and A+B = A+B.

If A is bounded from below by �, then A+B is bounded from below by

� �max
⇣
a|�|+ b,

b

a� 1

⌘
. (6.3)

Proof. Since D(A) ✓ D(B) and D(A) ✓ D(A+B) by (6.1), we can assume
that A is closed (i.e., self-adjoint). It su�ces to show that Ran(A+B±i�) =
H. By the above lemma we can find a � > 0 such that kBRA(±i�)k < 1.
Hence �1 2 ⇢(BRA(±i�)) and thus I+BRA(±i�) is onto. Thus

(A+B ± i�) = (I+BRA(±i�))(A± i�)

is onto and the proof of the first part is complete.

If A is bounded from below, we can replace ±i� by �� and the above
equation shows that RA+B exists for � su�ciently large. By the proof of
the previous lemma we can choose �� < min(�, b/(a� 1)). ⇤

Example. In our previous example we have seen that q 2 L2(0, 1) is rel-
atively bounded by checking D(A) ⇢ D(q). However, working a bit harder
(Problem 6.2), one can even show that the relative bound is 0 and hence
A+ q is self-adjoint by the Kato–Rellich theorem. ⇧

Finally, let us show that there is also a connection between the resolvents.

Lemma 6.5. Suppose A and B are closed and D(A) ✓ D(B). Then we
have the second resolvent formula

RA+B(z)�RA(z) = �RA(z)BRA+B(z) = �RA+B(z)BRA(z) (6.4)

for z 2 ⇢(A) \ ⇢(A+B).

Proof. We compute

RA+B(z) +RA(z)BRA+B(z) = RA(z)(A+B � z)RA+B(z) = RA(z).

The second identity is similar. ⇤

Problem 6.1. Show that (6.1) implies

kB k2  ã2kA k2 + b̃2k k2

with ã = a(1 + "2) and b̃ = b(1 + "�2) for any " > 0. Conversely, show that
this inequality implies (6.1) with a = ã and b = b̃.
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Problem 6.2. Let A be the self-adjoint operator A = �
d2

dx2 , D(A) = {f 2

H2[0, 1]|f(0) = f(1) = 0} in the Hilbert space L2(0, 1) and q 2 L2(0, 1).

Show that for every f 2 D(A) we have

kfk21 
"

2
kf 00

k
2 +

1

2"
kfk2

for any " > 0. Conclude that the relative bound of q with respect to A is
zero. (Hint: |f(x)|2  |

R 1
0 f 0(t)dt|2 

R 1
0 |f 0(t)|2dt = �

R 1
0 f(t)⇤f 00(t)dt.)

Problem 6.3. Let A be as in the previous example. Show that q is relatively
bounded if and only if x(1� x)q(x) 2 L2(0, 1).

Problem 6.4. Compute the resolvent of A+ ↵h , .i . (Hint: Show

(I+ ↵h', .i )�1 = I� ↵

1 + ↵h', i
h', .i 

and use the second resolvent formula.)

6.2. More on compact operators

Recall from Section 5.2 that we have introduced the set of compact operators
C(H) as the closure of the set of all finite rank operators in L(H). Before we
can proceed, we need to establish some further results for such operators.
We begin by investigating the spectrum of self-adjoint compact operators
and show that the spectral theorem takes a particularly simple form in this
case.

Theorem 6.6 (Spectral theorem for compact operators). Suppose the op-
erator K is self-adjoint and compact. Then the spectrum of K consists of
an at most countable number of eigenvalues which can only cluster at 0.
Moreover, the eigenspace to each nonzero eigenvalue is finite dimensional.

In addition, we have

K =
X

�2�(K)

�PK({�}). (6.5)

Proof. It su�ces to show rank(PK((� � ",� + "))) < 1 for 0 < " < |�|.
Let Kn be a sequence of finite rank operators such that kK�Knk  1/n. If
RanPK((��",�+")) is infinite dimensional, we can find a vector  n in this
range such that k nk = 1 and Kn n = 0. But this yields a contradiction
since

1

n
� |h n, (K �Kn) ni| = |h n,K ni| � |�|� " > 0

by (4.2). ⇤

As a consequence we obtain the canonical form of a general compact
operator.
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Theorem 6.7 (Canonical form of compact operators). Let K be compact.
There exist orthonormal sets {�̂j}, {�j} and positive numbers sj = sj(K)
such that

K =
X

j

sjh�j , .i�̂j , K⇤ =
X

j

sjh�̂j , .i�j . (6.6)

Note K�j = sj�̂j and K⇤�̂j = sj�j, and hence K⇤K�j = s2j�j and KK⇤�̂j =

s2j �̂j.

The numbers sj(K)2 > 0 are the nonzero eigenvalues of KK⇤, respec-
tively, K⇤K (counted with multiplicity) and sj(K) = sj(K⇤) = sj are called
singular values of K. There are either finitely many singular values (if K
is finite rank) or they converge to zero.

Proof. By Lemma 5.5, K⇤K is compact and hence Theorem 6.6 applies.
Let {�j} be an orthonormal basis of eigenvectors for PK⇤K((0,1))H and let
s2j be the eigenvalue corresponding to �j . Then, for any  2 H we can write

 =
X

j

h�j , i�j +  ̃

with  ̃ 2 Ker(K⇤K) = Ker(K). Then

K =
X

j

sjh�j , i�̂j ,

where �̂j = s�1
j K�j , since kK ̃k2 = h ̃,K⇤K ̃i = 0. By h�̂j , �̂ki =

(sjsk)�1
hK�j ,K�ki = (sjsk)�1

hK⇤K�j ,�ki = sjs
�1
k h�j ,�ki we see that

the {�̂j} are orthonormal and the formula for K⇤ follows by taking the
adjoint of the formula for K (Problem 6.5). ⇤

If K is self-adjoint, then �j = �j�̂j , �2j = 1 are the eigenvectors of K
and �jsj are the corresponding eigenvalues.

Moreover, note that we have

kKk = max
j

sj(K). (6.7)

Finally, let me remark that there are a number of other equivalent defi-
nitions for compact operators.

Lemma 6.8. For K 2 L(H) the following statements are equivalent:

(i) K is compact.

(i’) K⇤ is compact.

(ii) An 2 L(H) and An
s
! A strongly implies AnK ! AK.

(iii)  n *  weakly implies K n ! K in norm.
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(iv)  n bounded implies that K n has a (norm) convergent subse-
quence.

Proof. (i) , (i’). This is immediate from Theorem 6.7.

(i) ) (ii). Translating An ! An � A, it is no restriction to assume
A = 0. Since kAnk  M , it su�ces to consider the case where K is finite
rank. Then (by (6.6))

kAnKk
2 = sup

k k=1

NX

j=1

sj |h�j , i|
2
kAn�̂jk

2


NX

j=1

sjkAn�̂jk
2
! 0.

(ii) ) (iii). Again, replace  n !  n �  and assume  = 0. Choose
An = h n, .i', k'k = 1. Then kK nk = kAnK⇤

k ! 0.

(iii) ) (iv). If  n is bounded, it has a weakly convergent subsequence
by Lemma 1.13. Now apply (iii) to this subsequence.

(iv) ) (i). Let 'j be an orthonormal basis and set

Kn =
nX

j=1

h'j , .iK'j .

Then

�n = kK �Knk = sup
 2span{'j}

1
j=n,k k=1

kK k

is a decreasing sequence tending to a limit " � 0. Moreover, we can find
a sequence of unit vectors  n 2 span{'j}

1

j=n for which kK nk � ". By
assumption, K n has a convergent subsequence which, since  n converges
weakly to 0, converges to 0. Hence " must be 0 and we are done. ⇤

The last condition explains the name compact. Moreover, note that one
cannot replace AnK ! AK by KAn ! KA in (ii) unless one additionally
requires An to be normal (then this follows by taking adjoints — recall
that only for normal operators is taking adjoints continuous with respect
to strong convergence). Without the requirement that An be normal, the
claim is wrong as the following example shows.

Example. Let H = `2(N) and let An be the operator which shifts each
sequence n places to the left and let K = h�1, .i�1, where �1 = (1, 0, . . . ).
Then s-limAn = 0 but kKAnk = 1. ⇧

Problem 6.5. Deduce the formula for K⇤ from the one for K in (6.6).

Problem 6.6. Show that it su�ces to check conditions (iii) and (iv) from
Lemma 6.8 on a dense subset.



6.3. Hilbert–Schmidt and trace class operators 139

6.3. Hilbert–Schmidt and trace class operators

Among the compact operators two special classes are of particular impor-
tance. The first ones are integral operators

K (x) =

Z

M
K(x, y) (y)dµ(y),  2 L2(M,dµ), (6.8)

where K(x, y) 2 L2(M⇥M,dµ⌦dµ). Such an operator is called a Hilbert–
Schmidt operator. Using Cauchy–Schwarz,

Z

M
|K (x)|2dµ(x) =

Z

M

����
Z

M
|K(x, y) (y)|dµ(y)

����
2

dµ(x)



Z

M

✓Z

M
|K(x, y)|2dµ(y)

◆✓Z

M
| (y)|2dµ(y)

◆
dµ(x)

=

✓Z

M

Z

M
|K(x, y)|2dµ(y) dµ(x)

◆✓Z

M
| (y)|2dµ(y)

◆
, (6.9)

we see that K is bounded. Next, pick an orthonormal basis 'j(x) for
L2(M,dµ). Then, by Lemma 1.10, 'i(x)'j(y) is an orthonormal basis for
L2(M ⇥M,dµ⌦ dµ) and

K(x, y) =
X

i,j

ci,j'i(x)'j(y), ci,j = h'i,K'
⇤

j i, (6.10)

where
X

i,j

|ci,j |
2 =

Z

M

Z

M
|K(x, y)|2dµ(y) dµ(x) < 1. (6.11)

In particular,

K (x) =
X

i,j

ci,jh'
⇤

j , i'i(x) (6.12)

shows that K can be approximated by finite rank operators (take finitely
many terms in the sum) and is hence compact.

Using (6.6), we can also give a di↵erent characterization of Hilbert–
Schmidt operators.

Lemma 6.9. If H = L2(M,dµ), then a compact operator K is Hilbert–
Schmidt if and only if

P
j sj(K)2 < 1 and

X

j

sj(K)2 =

Z

M

Z

M
|K(x, y)|2dµ(x)dµ(y), (6.13)

in this case.
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Proof. If K is compact, we can define approximating finite rank operators
Kn by considering only finitely many terms in (6.6):

Kn =
nX

j=1

sjh�j , .i�̂j .

Then Kn has the kernel Kn(x, y) =
Pn

j=1 sj�j(y)
⇤�̂j(x) and

Z

M

Z

M
|Kn(x, y)|

2dµ(x)dµ(y) =
nX

j=1

sj(K)2.

Now if one side converges, so does the other and, in particular, (6.13) holds
in this case. ⇤

Hence we will call a compact operator Hilbert–Schmidt if its singular
values satisfy X

j

sj(K)2 < 1. (6.14)

By our lemma this coincides with our previous definition if H = L2(M,dµ).

Since every Hilbert space is isomorphic to some L2(M,dµ), we see that
the Hilbert–Schmidt operators together with the norm

kKk2 =
⇣X

j

sj(K)2
⌘1/2

(6.15)

form a Hilbert space (isomorphic to L2(M⇥M,dµ⌦dµ)). Note that kKk2 =
kK⇤

k2 (since sj(K) = sj(K⇤)). There is another useful characterization for
identifying Hilbert–Schmidt operators:

Lemma 6.10. A compact operator K is Hilbert–Schmidt if and only if
X

n

kK nk
2 < 1 (6.16)

for some orthonormal basis and
X

n

kK nk
2 = kKk

2
2 (6.17)

for any orthonormal basis in this case.

Proof. This follows from
X

n

kK nk
2 =

X

n,j

|h�̂j ,K ni|
2 =

X

n,j

|hK⇤�̂j , ni|
2

=
X

n

kK⇤�̂nk
2 =

X

j

sj(K)2.

⇤
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Corollary 6.11. The set of Hilbert–Schmidt operators forms a ⇤-ideal in
L(H) and

kKAk2  kAkkKk2, respectively, kAKk2  kAkkKk2. (6.18)

Proof. Let K be Hilbert–Schmidt and A bounded. Then AK is compact
and

kAKk
2
2 =

X

n

kAK nk
2
 kAk

2
X

n

kK nk
2 = kAk

2
kKk

2
2.

For KA just consider adjoints. ⇤

This approach can be generalized by defining

kKkp =
⇣X

j

sj(K)p
⌘1/p

(6.19)

plus corresponding spaces

Jp(H) = {K 2 C(H)|kKkp < 1}, (6.20)

which are known as Schatten p-classes. Note that by (6.7)

kKk  kKkp (6.21)

and that by sj(K) = sj(K⇤) we have

kKkp = kK⇤
kp. (6.22)

Lemma 6.12. The spaces Jp(H) together with the norm k.kp are Banach
spaces. Moreover,

kKkp = sup

8
<

:

⇣X

j

|h j ,K'ji|
p
⌘1/p��� { j}, {'j} ONS

9
=

; , (6.23)

where the sup is taken over all orthonormal sets.

Proof. The hard part is to prove (6.23): Choose q such that 1
p +

1
q = 1 and

use Hölder’s inequality to obtain (sj |...|2 = (spj |...|
2)1/p|...|2/q)

X

j

sj |h'n,�ji|
2


⇣X

j

spj |h'n,�ji|
2
⌘1/p⇣X

j

|h'n,�ji|
2
⌘1/q



⇣X

j

spj |h'n,�ji|
2
⌘1/p

.
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Clearly the analogous equation holds for �̂j ,  n. Now using Cauchy–Schwarz,
we have

|h n,K'ni|
p =

���
X

j

s1/2j h'n,�jis
1/2
j h�̂j , ni

���
p



⇣X

j

spj |h'n,�ji|
2
⌘1/2⇣X

j

spj |h n, �̂ji|
2
⌘1/2

.

Summing over n, a second appeal to Cauchy–Schwarz and interchanging the
order of summation finally gives

X

n

|h n,K'ni|
p


⇣X

n,j

spj |h'n,�ji|
2
⌘1/2⇣X

n,j

spj |h n, �̂ji|
2
⌘1/2



⇣X

j

spj

⌘1/2⇣X

j

spj

⌘1/2
=
X

j

spj .

Since equality is attained for 'n = �n and  n = �̂n, equation (6.23) holds.

Now the rest is straightforward. From
⇣X

j

|h j , (K1 +K2)'ji|
p
⌘1/p



⇣X

j

|h j ,K1'ji|
p
⌘1/p

+
⇣X

j

|h j ,K2'ji|
p
⌘1/p

 kK1kp + kK2kp

we infer that Jp(H) is a vector space and the triangle inequality. The other
requirements for a norm are obvious and it remains to check completeness.
If Kn is a Cauchy sequence with respect to k.kp, it is also a Cauchy sequence
with respect to k.k (kKk  kKkp). Since C(H) is closed, there is a compact
K with kK �Knk ! 0 and by kKnkp  C we have

⇣X

j

|h j ,K'ji|
p
⌘1/p

 C

for any finite ONS. Since the right-hand side is independent of the ONS
(and in particular on the number of vectors), K is in Jp(H). ⇤

The two most important cases are p = 1 and p = 2: J2(H) is the space
of Hilbert–Schmidt operators investigated in the previous section and J1(H)
is the space of trace class operators. Since Hilbert–Schmidt operators are
easy to identify, it is important to relate J1(H) with J2(H):

Lemma 6.13. An operator is trace class if and only if it can be written as
the product of two Hilbert–Schmidt operators, K = K1K2, and in this case
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we have
kKk1  kK1k2kK2k2. (6.24)

Proof. By Cauchy–Schwarz we have
X

n

|h'n,K ni| =
X

n

|hK⇤

1'n,K2 ni| 

⇣X

n

kK⇤

1'nk
2
X

n

kK2 nk
2
⌘1/2

= kK1k2kK2k2

and hence K = K1K2 is trace class if both K1 and K2 are Hilbert–Schmidt
operators. To see the converse, let K be given by (6.6) and choose K1 =P

j

p
sj(K)h�j , .i�̂j , respectively, K2 =

P
j

p
sj(K)h�j , .i�j . ⇤

Corollary 6.14. The set of trace class operators forms a ⇤-ideal in L(H)
and

kKAk1  kAkkKk1, respectively, kAKk1  kAkkKk1. (6.25)

Proof. Write K = K1K2 with K1,K2 Hilbert–Schmidt and use Corol-
lary 6.11. ⇤

Now we can also explain the name trace class:

Lemma 6.15. If K is trace class, then for any orthonormal basis {'n} the
trace

tr(K) =
X

n

h'n,K'ni (6.26)

is finite and independent of the orthonormal basis.

Proof. Let { n} be another ONB. If we write K = K1K2 with K1,K2

Hilbert–Schmidt, we have
X

n

h'n,K1K2'ni =
X

n

hK⇤

1'n,K2'ni =
X

n,m

hK⇤

1'n, mih m,K2'ni

=
X

m,n

hK⇤

2 m,'nih'n,K1 mi =
X

m

hK⇤

2 m,K1 mi

=
X

m

h m,K2K1 mi.

Hence the trace is independent of the ONB and we even have tr(K1K2) =
tr(K2K1). ⇤

Clearly for self-adjoint trace class operators, the trace is the sum over
all eigenvalues (counted with their multiplicity). To see this, one just has to
choose the orthonormal basis to consist of eigenfunctions. This is even true
for all trace class operators and is known as Lidskij trace theorem (see [44]
or [20] for an easy to read introduction).
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Finally we note the following elementary properties of the trace:

Lemma 6.16. Suppose K, K1, K2 are trace class and A is bounded.

(i) The trace is linear.

(ii) tr(K⇤) = tr(K)⇤.

(iii) If K1  K2, then tr(K1)  tr(K2).

(iv) tr(AK) = tr(KA).

Proof. (i) and (ii) are straightforward. (iii) follows from K1  K2 if and
only if h',K1'i  h',K2'i for every ' 2 H. (iv) By Problem 6.7 and (i) it
is no restriction to assume that A is unitary. Let {'n} be some ONB and
note that { n = A'n} is also an ONB. Then

tr(AK) =
X

n

h n, AK ni =
X

n

hA'n, AKA'ni

=
X

n

h'n,KA'ni = tr(KA)

and the claim follows. ⇤

Problem 6.7. Show that every bounded operator can be written as a linear
combination of two self-adjoint operators. Furthermore, show that every
bounded self-adjoint operator can be written as a linear combination of two
unitary operators. (Hint: x ± i

p
1� x2 has absolute value one for x 2

[�1, 1].)

Problem 6.8. Let H = `2(N) and let A be multiplication by a sequence
a(n). Show that A 2 Jp(`2(N)) if and only if a 2 `p(N). Furthermore, show
that kAkp = kakp in this case.

Problem 6.9. Show that A � 0 is trace class if (6.26) is finite for one (and
hence all) ONB. (Hint: A is self-adjoint (why?) and A =

p
A
p
A.)

Problem 6.10. Show that for an orthogonal projection P we have

dimRan(P ) = tr(P ),

where we set tr(P ) = 1 if (6.26) is infinite (for one and hence all ONB by
the previous problem).

Problem 6.11. Show that for K 2 C we have

|K| =
X

j

sjh�j , .i�j ,

where |K| =
p
K⇤K. Conclude that

kKkp = (tr(|A|
p))1/p.
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Problem 6.12. Show that K : `2(N) ! `2(N), f(n) 7!
P

j2N k(n+j)f(j) is
Hilbert–Schmidt with kKk2  kck1 if |k(n)|  c(n), where c(n) is decreasing
and summable.

6.4. Relatively compact operators and Weyl’s theorem

In the previous section we have seen that the sum of a self-adjoint operator
and a symmetric operator is again self-adjoint if the perturbing operator is
small. In this section we want to study the influence of perturbations on
the spectrum. Our hope is that at least some parts of the spectrum remain
invariant.

We introduce some notation first. The discrete spectrum �d(A) is the
set of all eigenvalues which are discrete points of the spectrum and whose
corresponding eigenspace is finite dimensional. The complement of the dis-
crete spectrum is called the essential spectrum �ess(A) = �(A)\�d(A). If
A is self-adjoint, we might equivalently set

�d(A) = {� 2 �p(A)| rank(PA((�� ",�+ "))) < 1 for some " > 0}, (6.27)

respectively,

�ess(A) = {� 2 R| rank(PA((�� ",�+ "))) = 1 for all " > 0}. (6.28)

Example. For a self-adjoint compact operator K we have by Theorem 6.6
that

�ess(K) ✓ {0}, (6.29)

where equality holds if and only if H is infinite dimensional. ⇧

Let A be self-adjoint. Note that if we add a multiple of the identity to
A, we shift the entire spectrum. Hence, in general, we cannot expect a (rel-
atively) bounded perturbation to leave any part of the spectrum invariant.
Next, if �0 is in the discrete spectrum, we can easily remove this eigenvalue
with a finite rank perturbation of arbitrarily small norm. In fact, consider

A+ "PA({�0}). (6.30)

Hence our only hope is that the remainder, namely the essential spectrum,
is stable under finite rank perturbations. To show this, we first need a good
criterion for a point to be in the essential spectrum of A.

Lemma 6.17 (Weyl criterion). A point � is in the essential spectrum of
a self-adjoint operator A if and only if there is a sequence  n such that
k nk = 1,  n converges weakly to 0, and k(A � �) nk ! 0. Moreover, the
sequence can be chosen orthonormal. Such a sequence is called a singular
Weyl sequence.
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Proof. Let  n be a singular Weyl sequence for the point �0. By Lemma 2.16
we have �0 2 �(A) and hence it su�ces to show �0 62 �d(A). If �0 2 �d(A),
we can find an " > 0 such that P" = PA((�0 � ",�0 + ")) is finite rank.
Consider  ̃n = P" n. Clearly k(A � �0) ̃nk = kP"(A � �0) nk  k(A �

�0) nk ! 0 and Lemma 6.8 (iii) implies  ̃n ! 0. However,

k n �  ̃nk
2 =

Z

R\(��",�+")
dµ n(�)


1

"2

Z

R\(��",�+")
(�� �0)

2dµ n(�)


1

"2
k(A� �0) nk

2

and hence k ̃nk ! 1, a contradiction.

Conversely, if �0 2 �ess(A), consider Pn = PA([� �
1
n ,� �

1
n+1) [ (� +

1
n+1 ,�+ 1

n ]). Then rank(Pnj ) > 0 for an infinite subsequence nj . Now pick
 j 2 RanPnj . ⇤

Now let K be a self-adjoint compact operator and  n a singular Weyl
sequence for A. Then  n converges weakly to zero and hence

k(A+K � �) nk  k(A� �) nk+ kK nk ! 0 (6.31)

since k(A� �) nk ! 0 by assumption and kK nk ! 0 by Lemma 6.8 (iii).
Hence �ess(A) ✓ �ess(A +K). Reversing the roles of A +K and A shows
�ess(A+K) = �ess(A). In particular, note that A and A+K have the same
singular Weyl sequences.

Since we have shown that we can remove any point in the discrete spec-
trum by a self-adjoint finite rank operator, we obtain the following equivalent
characterization of the essential spectrum.

Lemma 6.18. The essential spectrum of a self-adjoint operator A is pre-
cisely the part which is invariant under compact perturbations. In particular,

�ess(A) =
\

K2C(H),K⇤=K

�(A+K). (6.32)

There is even a larger class of operators under which the essential spec-
trum is invariant.

Theorem 6.19 (Weyl). Suppose A and B are self-adjoint operators. If

RA(z)�RB(z) 2 C(H) (6.33)

for one z 2 ⇢(A) \ ⇢(B), then

�ess(A) = �ess(B). (6.34)
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Proof. In fact, suppose � 2 �ess(A) and let  n be a corresponding singular
Weyl sequence. Then

(RA(z)�
1

�� z
) n =

RA(z)

z � �
(A� �) n

and thus k(RA(z)�
1

��z ) nk ! 0. Moreover, by our assumption we also have

k(RB(z)�
1

��z ) nk ! 0 and thus k(B � �)'nk ! 0, where 'n = RB(z) n.
Since

lim
n!1

k'nk = lim
n!1

kRA(z) nk = |�� z|�1
6= 0

(since k(RA(z) �
1

��z ) nk = k
1

��zRA(z)(A � �) nk ! 0), we obtain a
singular Weyl sequence for B, showing � 2 �ess(B). Now interchange the
roles of A and B. ⇤

As a first consequence note the following result:

Theorem 6.20. Suppose A is symmetric with equal finite defect indices.
Then all self-adjoint extensions have the same essential spectrum.

Proof. By Lemma 2.29 the resolvent di↵erence of two self-adjoint extensions
is a finite rank operator if the defect indices are finite. ⇤

In addition, the following result is of interest.

Lemma 6.21. Suppose

RA(z)�RB(z) 2 C(H) (6.35)

for one z 2 ⇢(A)\⇢(B). Then this holds for all z 2 ⇢(A)\⇢(B). In addition,
if A and B are self-adjoint, then

f(A)� f(B) 2 C(H) (6.36)

for all f 2 C1(R).

Proof. If the condition holds for one z, it holds for all since we have (using
both resolvent formulas)

RA(z
0)�RB(z

0)

= (1� (z � z0)RB(z
0))(RA(z)�RB(z))(1� (z � z0)RA(z

0)).

Let A and B be self-adjoint. The set of all functions f for which the
claim holds is a closed ⇤-subalgebra of C1(R) (with sup norm). Hence the
claim follows from Lemma 4.4. ⇤

Remember that we have called K relatively compact with respect to
A if KRA(z) is compact (for one and hence for all z) and note that the
resolvent di↵erence RA+K(z)�RA(z) is compact if K is relatively compact.
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In particular, Theorem 6.19 applies if B = A + K, where K is relatively
compact.

For later use observe that the set of all operators which are relatively
compact with respect to A forms a linear space (since compact operators
do) and relatively compact operators have A-bound zero.

Lemma 6.22. Let A be self-adjoint and suppose K is relatively compact
with respect to A. Then the A-bound of K is zero.

Proof. Write

KRA(�i) = (KRA(i))((A+ i)RA(�i))

and observe that the first operator is compact and the second is normal
and converges strongly to 0 (cf. Problem 3.7). Hence the claim follows from
Lemma 6.3 and the discussion after Lemma 6.8 (since RA is normal). ⇤

In addition, note the following result which is a straightforward conse-
quence of the second resolvent formula.

Lemma 6.23. Suppose A is self-adjoint and B is symmetric with A-bound
less then one. If K is relatively compact with respect to A, then it is also
relatively compact with respect to A+B.

Proof. Since B is A bounded with A-bound less than one, we can choose a
z 2 C such that kBRA(z)k < 1 and hence

BRA+B(z) = BRA(z)(I+BRA(z))
�1 (6.37)

shows that B is also A+B bounded and the result follows from

KRA+B(z) = KRA(z)(I�BRA+B(z)) (6.38)

since KRA(z) is compact and BRA+B(z) is bounded. ⇤

Problem 6.13. Let A and B be self-adjoint operators. Suppose B is rel-
atively bounded with respect to A and A + B is self-adjoint. Show that if
|B|

1/2RA(z) is Hilbert–Schmidt for one z 2 ⇢(A), then this is true for all
z 2 ⇢(A). Moreover, |B|

1/2RA+B(z) is also Hilbert–Schmidt and RA+B(z)�
RA(z) is trace class.

Problem 6.14. Show that A = �
d2

dx2 + q(x), D(A) = H2(R) is self-adjoint
if q 2 L1(R). Show that if �u00(x) + q(x)u(x) = zu(x) has a solution for
which u and u0 are bounded near +1 (or �1) but u is not square integrable
near +1 (or �1), then z 2 �ess(A). (Hint: Use u to construct a Weyl
sequence by restricting it to a compact set. Now modify your construction
to get a singular Weyl sequence by observing that functions with disjoint
support are orthogonal.)
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6.5. Relatively form bounded operators and the KLMN
theorem

In Section 6.1 we have considered the case where the operators A and B
have a common domain on which the operator sum is well-defined. In this
section we want to look at the case were this is no longer possible, but where
it is still possible to add the corresponding quadratic forms. Under suitable
conditions this form sum will give rise to an operator via Theorem 2.13.

Example. Let A be the self-adjoint operator A = �
d2

dx2 , D(A) = {f 2

H2[0, 1]|f(0) = f(1) = 0} in the Hilbert space L2(0, 1). If we want to
add a potential represented by a multiplication operator with a real-valued
(measurable) function q, then we already have seen that q will be relatively
bounded if q 2 L2(0, 1). Hence, if q 62 L2(0, 1), we are out of luck with the
theory developed so far. On the other hand, if we look at the corresponding
quadratic forms, we have Q(A) = {f 2 H1[0, 1]|f(0) = f(1) = 0} and
Q(q) = D(|q|1/2). Thus we see that Q(A) ⇢ Q(q) if q 2 L1(0, 1).

In summary, the operators can be added if q 2 L2(0, 1) while the forms
can be added under the less restrictive condition q 2 L1(0, 1).

Finally, note that in some drastic cases, there might even be no way to
define the operator sum: Let xj be an enumeration of the rational numbers
in (0, 1) and set

q(x) =
1X

j=1

1

2j
p
|x� xj |

,

where the sum is to be understood as a limit in L1(0, 1). Then q gives
rise to a self-adjoint multiplication operator in L2(0, 1). However, note that
D(A) \ D(q) = {0}! In fact, let f 2 D(A) \ D(q). Then f is continuous
and q(x)f(x) 2 L2(0, 1). Now suppose f(xj) 6= 0 for some rational number
xj 2 (0, 1). Then by continuity |f(x)| � � for x 2 (xj � ", xj + ") and
q(x)|f(x)| � �2�j

|x � xj |�1/2 for x 2 (xj � ", xj + ") which shows that
q(x)f(x) 62 L2(0, 1) and hence f must vanish at every rational point. By
continuity, we conclude f = 0. ⇧

Recall from Section 2.3 that every closed semi-bounded form q = qA
corresponds to a self-adjoint operator A (Theorem 2.13).

Given a self-adjoint operator A � � and a (hermitian) form q : Q ! R
with Q(A) ✓ Q, we call q relatively form bound with respect to qA if
there are constants a, b � 0 such that

|q( )|  a qA��( ) + bk k2,  2 Q(A). (6.39)

The infimum of all possible a is called the form bound of q with respect
to qA.
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Note that we do not require that q is associated with some self-adjoint
operator (though it will be in most cases).

Example. Let A = �
d2

dx2 , D(A) = {f 2 H2[0, 1]|f(0) = f(1) = 0}. Then

q(f) = |f(c)|2, f 2 H1[0, 1], c 2 (0, 1),

is a well-defined nonnegative form. Formally, one can interpret q as the
quadratic form of the multiplication operator with the delta distribution at
x = c. But for f 2 Q(A) = {f 2 H1[0, 1]|f(0) = f(1) = 0} we have by
Cauchy–Schwarz

|f(c)|2 = 2Re

Z c

0
f(t)⇤f 0(t)dt  2

Z 1

0
|f(t)⇤f 0(t)|dt  "kf 0

k
2 +

1

"
kfk2.

Consequently q is relatively bounded with bound 0 and hence qA + q gives
rise to a well-defined operator as we will show in the next theorem. ⇧

The following result is the analog of the Kato–Rellich theorem and is
due to Kato, Lions, Lax, Milgram, and Nelson.

Theorem 6.24 (KLMN). Suppose qA : Q(A) ! R is a semi-bounded closed
hermitian form and q a relatively bounded hermitian form with relative bound
less than one. Then qA+q defined on Q(A) is closed and hence gives rise to
a semi-bounded self-adjoint operator. Explicitly we have qA+q � (1�a)��b.

Proof. A straightforward estimate shows qA( ) + q( ) � (1 � a)qa( ) �
bk k2 � ((1� a)� � b)k k2; that is, qA + q is semi-bounded. Moreover, by

qA( ) 
1

1� a

�
|qA( ) + q( )|+ bk k2

�

we see that the norms k.kqA and k.kqA+q are equivalent. Hence qA + q is
closed and the result follows from Theorem 2.13. ⇤

In the investigation of the spectrum of the operator A + B a key role
is played by the second resolvent formula. In our present case we have the
following analog.

Theorem 6.25. Suppose A� � � 0 is self-adjoint and let q be a hermitian
form with Q(q) ✓ Q(A). Then the hermitian form

q(RA(��)
1/2 ),  2 H, (6.40)

corresponds to a bounded operator Cq(�) with kCq(�)k  a for � > b
a � � if

and only if q is relatively form bound with constants a and b.

In particular, the form bound is given by

lim
�!1

kCq(�)k. (6.41)
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Moreover, if a < 1, then

RqA+q(��) = RA(��)
1/2(1� Cq(�))

�1RA(��)
1/2. (6.42)

Here RqA+q(z) is the resolvent of the self-adjoint operator corresponding to
qA + q.

Proof. We will abbreviate C = Cq(�) and R1/2
A = RA(��)1/2. If q is form

bounded, we have for � > b
a � � that

|q(R1/2
A  )|  a qA��(R

1/2
A  ) + bkR1/2

A  k2

= ah , (A� � +
b

a
)R1/2

A  i  ak k2

and hence q(R1/2
A  ) corresponds to a bounded operator C. The converse is

similar.

If a < 1, then (1 � C)�1 is a well-defined bounded operator and so is

R = R1/2
A (1 � C)�1R1/2

A . To see that R is the inverse of A1 � �, where A1

is the operator associated with qA + q, take ' = R1/2
A '̃ 2 Q(A) and  2 H.

Then

sA1+�(', R ) = sA+�(', R ) + s(', R )

= h'̃, (1 + C)�1R1/2
A  i+ h'̃, C(1 + C)�1R1/2

A  i = h', i.

Taking ' 2 D(A1) ✓ Q(A), we see h(A1 + �)', R i = h', i and thus
R = RA1(��) (Problem 6.15). ⇤

Furthermore, we can define Cq(�) for all z 2 ⇢(A) using

Cq(z) = ((A+ �)1/2RA(�z)1/2)⇤Cq(�)(A+ �)1/2RA(�z)1/2. (6.43)

We will call q relatively form compact if the operator Cq(z) is compact for
one and hence all z 2 ⇢(A). As in the case of relatively compact operators
we have

Lemma 6.26. Suppose A � � � 0 is self-adjoint and let q be a hermitian
form. If q is relatively form compact with respect to qA, then its relative
form bound is 0 and the resolvents of qA + q and qA di↵er by a compact
operator.

In particular, by Weyl’s theorem, the operators associated with qA and
qA + q have the same essential spectrum.

Proof. Fix �0 > b
a � � and let � � �0. Consider the operator D(�) =

(A+�0)1/2RA(��)1/2 and note that D(�) is a bounded self-adjoint operator
with kD(�)k  1. Moreover, D(�) converges strongly to 0 as � ! 1 (cf.
Problem 3.7). Hence kD(�)C(�0)k ! 0 by Lemma 6.8 and the same is
true for C(�) = D(�)C(�0)D(�). So the relative bound is zero by (6.41).
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Finally, the resolvent di↵erence is compact by (6.42) since (1 + C)�1 =
1� C(1 + C)�1. ⇤
Corollary 6.27. Suppose A�� � 0 is self-adjoint and let q1, q2 be hermitian
forms. If q1 is relatively bounded with bound less than one and q2 is relatively
compact, then the resolvent di↵erence of qA+q1+q2 and qA+q1 is compact.
In particular, the operators associated with qA+ q1 and qA+ q1+ q2 have the
same essential spectrum.

Proof. Just observe that Cq1+q2 = Cq1 + Cq2 and (1 + Cq1 + Cq2)
�1 =

(1 + Cq1)
�1

� (1 + Cq1)
�1Cq2(1 + Cq1 + Cq2)

�1. ⇤

Finally we turn to the special case where q = qB for some self-adjoint
operator B. In this case we have

CB(z) = (|B|
1/2RA(�z)1/2)⇤ sign(B)|B|

1/2RA(�z)1/2 (6.44)

and hence
kCB(z)k  k|B|

1/2RA(�z)1/2k2 (6.45)

with equality if V � 0. Thus the following result is not too surprising.

Lemma 6.28. Suppose A�� � 0 and B is self-adjoint. Then the following
are equivalent:

(i) B is A form bounded.

(ii) Q(A) ✓ Q(B).

(iii) |B|
1/2RA(z)1/2 is bounded for one (and hence for all) z 2 ⇢(A).

Proof. (i) ) (ii) is true by definition. (ii) ) (iii) since |B|
1/2RA(z)1/2

is a closed (Problem 2.9) operator defined on all of H and hence bounded
by the closed graph theorem (Theorem 2.8). To see (iii) ) (i), observe
|B|

1/2RA(z)1/2 = |B|
1/2RA(z0)1/2(A � z0)1/2RA(z)1/2 which shows that

|B|
1/2RA(z)1/2 is bounded for all z 2 ⇢(A) if it is bounded for one z0 2 ⇢(A).

But then (6.45) shows that (i) holds. ⇤

Clearly C(�) will be compact if |B|
1/2RA(z)1/2 is compact. However,

since R1/2
A (z) might be hard to compute, we provide the following more

handy criterion.

Lemma 6.29. Suppose A � � � 0 and B is self-adjoint where B is rela-
tively form bounded with bound less than one. Then the resolvent di↵erence
RA+B(z) � RA(z) is compact if |B|

1/2RA(z) is compact and trace class if
|B|

1/2RA(z) is Hilbert–Schmidt.

Proof. Abbreviate RA = RA(��), B1 = |B|
1/2, B2 = sign(B)|B|

1/2. Then

we have (1 � CB)�1 = 1 � (B1R
1/2
A )⇤(1 + C̃B)�1B2R

1/2
A , where C̃B =
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B2R
1/2
A (B1R

1/2
A )⇤. Hence RA+B � RA = (B1RA)⇤(1 + C̃B)�1B2RA and the

claim follows. ⇤

Moreover, the second resolvent formula still holds when interpreted suit-
ably:

Lemma 6.30. Suppose A � � � 0 and B is self-adjoint. If Q(A) ✓ Q(B)
and qA + qB is a closed semi-bounded form. Then

RA+B(z) = RA(z)� (|B|
1/2RA+B(z

⇤))⇤ sign(B)|B|
1/2RA(z)

= RA(z)� (|B|
1/2RA(z

⇤))⇤ sign(B)|B|
1/2RA+B(z) (6.46)

for z 2 ⇢(A) \ ⇢(A+B). Here A+B is the self-adjoint operator associated
with qA + qB.

Proof. Let ' 2 D(A + B) and  2 H. Denote the right-hand side in
(6.46) by R(z) and abbreviate R = R(z), RA = RA(z), B1 = |B|

1/2, B2 =
sign(B)|B|

1/2. Then, using sA+B�z(', ) = h(A+B + z⇤)', i,

sA+B�z(', R ) = sA+B�z(', RA )� hB1R
⇤

A+B(A+B + z⇤)', B2RA i

= sA+B�z(', RA )� sB(', RA ) = sA�z(', RA )

= h', i.

Thus R = RA+B(z) (Problem 6.15). The second equality follows after ex-
changing the roles of A and A+B. ⇤

It can be shown using abstract interpolation techniques that if B is
relatively bounded with respect to A, then it is also relatively form bounded.
In particular, if B is relatively bounded, then BRA(z) is bounded and it is
not hard to check that (6.46) coincides with (6.4). Consequently A + B
defined as operator sum is the same as A+B defined as form sum.

Problem 6.15. Suppose A is closed and R is bounded. Show that R =
RA(z) if and only if h(A� z)⇤', R i = h', i for all ' 2 D(A⇤),  2 H.

Problem 6.16. Let q be relatively form bounded with constants a and b.
Show that Cq(�) satisfies kC(�)k  max(a, b

�+� ) for � > ��. Furthermore,

show that kC(�)k decreases as �! 1.

6.6. Strong and norm resolvent convergence

Suppose An and A are self-adjoint operators. We say that An converges to
A in the norm, respectively, strong resolvent sense, if

lim
n!1

RAn(z) = RA(z), respectively, s-lim
n!1

RAn(z) = RA(z), (6.47)

for one z 2 � = C\⌃, ⌃ = �(A) [
S

n �(An). In fact, in the case of
strong resolvent convergence it will be convenient to include the case if An
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is only defined on some subspace Hn ✓ H, where we require Pn
s
! 1 for

the orthogonal projection onto Hn. In this case RAn(z) (respectively, any
other function of An) has to be understood as RAn(z)Pn, where Pn is the
orthogonal projector onto Hn. (This generalization will produce nothing
new in the norm case, since Pn ! 1 implies Pn = 1 for su�ciently large n.)

Using the Stone–Weierstraß theorem, we obtain as a first consequence

Theorem 6.31. Suppose An converges to A in the norm resolvent sense.
Then f(An) converges to f(A) in norm for any bounded continuous function
f : ⌃ ! C with lim�!�1 f(�) = lim�!1 f(�).

If An converges to A in the strong resolvent sense, then f(An) converges
to f(A) strongly for any bounded continuous function f : ⌃ ! C.

Proof. The set of functions for which the claim holds clearly forms a ⇤-
subalgebra (since resolvents are normal, taking adjoints is continuous even
with respect to strong convergence) and since it contains f(�) = 1 and
f(�) = 1

��z0
, this ⇤-subalgebra is dense by the Stone–Weierstraß theorem

(cf. Problem 1.21). The usual "
3 argument shows that this ⇤-subalgebra is

also closed.

It remains to show the strong resolvent case for arbitrary bounded con-
tinuous functions. Let �n be a compactly supported continuous function
(0  �m  1) which is one on the interval [�m,m]. Then �m(An)

s
! �m(A),

f(An)�m(An)
s
! f(A)�m(A) by the first part and hence

k(f(An)� f(A)) k kf(An)k k(1� �m(A)) k

+ kf(An)k k(�m(A)� �m(An)) k

+ k(f(An)�m(An)� f(A)�m(A)) k

+ kf(A)k k(1� �m(A)) k

can be made arbitrarily small since kf(.)k  kfk1 and �m(.)
s
! I by Theo-

rem 3.1. ⇤

As a consequence, note that the point z 2 � is of no importance, that
is,

Corollary 6.32. Suppose An converges to A in the norm or strong resolvent
sense for one z0 2 �. Then this holds for all z 2 �.

Also,

Corollary 6.33. Suppose An converges to A in the strong resolvent sense.
Then

eitAn s
! eitA, t 2 R, (6.48)
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and if all operators are semi-bounded by the same bound

e�tAn s
! e�tA, t � 0. (6.49)

Next we need some good criteria to check for norm, respectively, strong,
resolvent convergence.

Lemma 6.34. Let An, A be self-adjoint operators with D(An) = D(A).
Then An converges to A in the norm resolvent sense if there are sequences
an and bn converging to zero such that

k(An �A) k  ank k+ bnkA k,  2 D(A) = D(An). (6.50)

Proof. From the second resolvent formula

RAn(z)�RA(z) = RAn(z)(A�An)RA(z),

we infer

k(RAn(i)�RA(i)) k  kRAn(i)k
⇣
ankRA(i) k+ bnkARA(i) k

⌘

 (an + bn)k k

and hence kRAn(i)�RA(i)k  an + bn ! 0. ⇤

In particular, norm convergence implies norm resolvent convergence:

Corollary 6.35. Let An, A be bounded self-adjoint operators with An ! A.
Then An converges to A in the norm resolvent sense.

Similarly, if no domain problems get in the way, strong convergence
implies strong resolvent convergence:

Lemma 6.36. Let An, A be self-adjoint operators. Then An converges to
A in the strong resolvent sense if there is a core D0 of A such that for any
 2 D0 we have Pn 2 D(An) for n su�ciently large and An ! A .

Proof. We begin with the case Hn = H. Using the second resolvent formula,
we have

k(RAn(i)�RA(i)) k  k(A�An)RA(i) k ! 0

for  2 (A� i)D0 which is dense, since D0 is a core. The rest follows from
Lemma 1.14.

If Hn ⇢ H, we can consider Ãn = An � 0 and conclude RÃn
(i)

s
! RA(i)

from the first case. By RÃn
(i) = RAn(i) � i(1 � Pn) the same is true for

RAn(i) since 1� Pn
s
! 0 by assumption. ⇤

If you wonder why we did not define weak resolvent convergence, here
is the answer: it is equivalent to strong resolvent convergence.
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Lemma 6.37. Suppose w-limn!1RAn(z) = RA(z) for some z 2 �. Then
s-limn!1RAn(z) = RA(z) also.

Proof. By RAn(z) * RA(z) we also have RAn(z)
⇤ * RA(z)⇤ and thus by

the first resolvent formula

kRAn(z) k
2
� kRA(z) k

2 = h , RAn(z
⇤)RAn(z) �RA(z

⇤)RA(z) i

=
1

z � z⇤
h , (RAn(z)�RAn(z

⇤) +RA(z)�RA(z
⇤)) i ! 0.

Together with RAn(z) * RA(z) we have RAn(z) ! RA(z) by virtue
of Lemma 1.12 (iv). ⇤

Now what can we say about the spectrum?

Theorem 6.38. Let An and A be self-adjoint operators. If An converges
to A in the strong resolvent sense, we have �(A) ✓ limn!1 �(An). If An

converges to A in the norm resolvent sense, we have �(A) = limn!1 �(An).

Proof. Suppose the first claim were incorrect. Then we can find a � 2 �(A)
and some " > 0 such that �(An) \ (� � ",� + ") = ;. Choose a bounded
continuous function f which is one on (� �

"
2 ,� + "

2) and which vanishes
outside (�� ",�+ "). Then f(An) = 0 and hence f(A) = lim f(An) = 0
for every  . On the other hand, since � 2 �(A), there is a nonzero  2

RanPA((��
"
2 ,�+ "

2)) implying f(A) =  , a contradiction.

To see the second claim, recall that the norm of RA(z) is just one over
the distance from the spectrum. In particular, � 62 �(A) if and only if
kRA(� + i)k < 1. So � 62 �(A) implies kRA(� + i)k < 1, which implies
kRAn(� + i)k < 1 for n su�ciently large, which implies � 62 �(An) for n
su�ciently large. ⇤

Example. Note that the spectrum can contract if we only have convergence
in the strong resolvent sense: Let An be multiplication by 1

nx in L2(R).
Then An converges to 0 in the strong resolvent sense, but �(An) = R and
�(0) = {0}. ⇧

Lemma 6.39. Suppose An converges in the strong resolvent sense to A. If
PA({�}) = 0, then

s-lim
n!1

PAn((�1,�)) = s-lim
n!1

PAn((�1,�]) = PA((�1,�)) = PA((�1,�]).

(6.51)

Proof. By Theorem 6.31 the spectral measures µn, corresponding to An

converge vaguely to those of A. Hence kPAn(⌦) k
2 = µn, (⌦) together with

Lemma A.25 implies the claim. ⇤
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Using P ((�0,�1)) = P ((�1,�1)) � P ((�1,�0]), we also obtain the
following.

Corollary 6.40. Suppose An converges in the strong resolvent sense to A.
If PA({�0}) = PA({�1}) = 0, then

s-lim
n!1

PAn((�0,�1)) = s-lim
n!1

PAn([�0,�1]) = PA((�0,�1)) = PA([�0,�1]).

(6.52)

Example. The following example shows that the requirement PA({�}) = 0
is crucial, even if we have bounded operators and norm convergence. In fact,
let H = C2 and

An =
1

n

✓
1 0
0 �1

◆
. (6.53)

Then An ! 0 and

PAn((�1, 0)) = PAn((�1, 0]) =

✓
0 0
0 1

◆
, (6.54)

but P0((�1, 0)) = 0 and P0((�1, 0]) = I. ⇧

Problem 6.17. Show that for self-adjoint operators, strong resolvent con-
vergence is equivalent to convergence with respect to the metric

d(A,B) =
X

n2N

1

2n
k(RA(i)�RB(i))'nk, (6.55)

where {'n}n2N is some (fixed) ONB.

Problem 6.18 (Weak convergence of spectral measures). Suppose An ! A
in the strong resolvent sense and let µn, , µ be the corresponding spectral
measures. Show that Z

f(�)dµn, (�) !

Z
f(�)dµ (�) (6.56)

for every bounded continuous f . Give a counterexample when f is not con-
tinuous.
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Schrödinger Operators





Chapter 7

The free Schrödinger
operator

7.1. The Fourier transform

We first review some basic facts concerning the Fourier transform which
will be needed in the following section.

Let C1(Rn) be the set of all complex-valued functions which have partial
derivatives of arbitrary order. For f 2 C1(Rn) and ↵ 2 Nn

0 we set

@↵f =
@|↵|f

@x↵1
1 · · · @x↵n

n
, x↵ = x↵1

1 · · ·x↵n
n , |↵| = ↵1 + · · ·+ ↵n. (7.1)

An element ↵ 2 Nn
0 is called a multi-index and |↵| is called its order.

Recall the Schwartz space

S(Rn) = {f 2 C1(Rn)| sup
x

|x↵(@�f)(x)| < 1, ↵,� 2 Nn
0} (7.2)

which is dense in L2(Rn) (since C1
c (Rn) ⇢ S(Rn) is). Note that if f 2

S(Rn), then the same is true for x↵f(x) and (@↵f)(x) for any multi-index
↵. For f 2 S(Rn) we define

F(f)(p) ⌘ f̂(p) =
1

(2⇡)n/2

Z

Rn
e�ipxf(x)dnx. (7.3)

Then,

Lemma 7.1. The Fourier transform maps the Schwartz space into itself,
F : S(Rn) ! S(Rn). Furthermore, for any multi-index ↵ 2 Nn

0 and any
f 2 S(Rn) we have

(@↵f)
^(p) = (ip)↵f̂(p), (x↵f(x))^(p) = i|↵|@↵f̂(p). (7.4)

161
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Proof. First of all, by integration by parts, we see

(
@

@xj
f(x))^(p) =

1

(2⇡)n/2

Z

Rn
e�ipx @

@xj
f(x)dnx

=
1

(2⇡)n/2

Z

Rn

✓
�

@

@xj
e�ipx

◆
f(x)dnx

=
1

(2⇡)n/2

Z

Rn
ipje

�ipxf(x)dnx = ipj f̂(p).

So the first formula follows by induction.

Similarly, the second formula follows from induction using

(xjf(x))
^(p) =

1

(2⇡)n/2

Z

Rn
xje

�ipxf(x)dnx

=
1

(2⇡)n/2

Z

Rn

✓
i
@

@pj
e�ipx

◆
f(x)dnx = i

@

@pj
f̂(p),

where interchanging the derivative and integral is permissible by Prob-
lem A.8. In particular, f̂(p) is di↵erentiable.

To see that f̂ 2 S(Rn) if f 2 S(Rn), we begin with the observation
that f̂ is bounded; in fact, kf̂k1  (2⇡)�n/2

kfk1. But then p↵(@� f̂)(p) =
i�|↵|�|�|(@↵x�f(x))^(p) is bounded since @↵x�f(x) 2 S(Rn) if f 2 S(Rn).

⇤

Hence we will sometimes write pf(x) for �i@f(x), where @ = (@1, . . . , @n)
is the gradient.

Two more simple properties are left as an exercise.

Lemma 7.2. Let f 2 S(Rn). Then

(f(x+ a))^(p) = eiapf̂(p), a 2 Rn, (7.5)

(f(�x))^(p) =
1

�n
f̂(

p

�
), � > 0. (7.6)

Next, we want to compute the inverse of the Fourier transform. For this
the following lemma will be needed.

Lemma 7.3. We have e�zx2/2
2 S(Rn) for Re(z) > 0 and

F(e�zx2/2)(p) =
1

zn/2
e�p2/(2z). (7.7)

Here zn/2 has to be understood as (
p
z)n, where the branch cut of the root

is chosen along the negative real axis.

Proof. Due to the product structure of the exponential, one can treat each
coordinate separately, reducing the problem to the case n = 1.
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Let �z(x) = exp(�zx2/2). Then �0z(x)+zx�z(x) = 0 and hence i(p�̂z(p)+
z�̂0z(p)) = 0. Thus �̂z(p) = c�1/z(p) and (Problem 7.1)

c = �̂z(0) =
1

p
2⇡

Z

R
exp(�zx2/2)dx =

1
p
z

at least for z > 0. However, since the integral is holomorphic for Re(z) > 0
by Problem A.10, this holds for all z with Re(z) > 0 if we choose the branch
cut of the root along the negative real axis. ⇤

Now we can show

Theorem 7.4. The Fourier transform F : S(Rn) ! S(Rn) is a bijection.
Its inverse is given by

F
�1(g)(x) ⌘ ǧ(x) =

1

(2⇡)n/2

Z

Rn
eipxg(p)dnp. (7.8)

We have F
2(f)(x) = f(�x) and thus F

4 = I.

Proof. Abbreviate �"(x) = exp(�"x2/2). By dominated convergence we
have

(f̂(p))_(x) =
1

(2⇡)n/2

Z

Rn
eipxf̂(p)dnp

= lim
"!0

1

(2⇡)n/2

Z

Rn
�"(p)e

ipxf̂(p)dnp

= lim
"!0

1

(2⇡)n

Z

Rn

Z

Rn
�"(p)e

ipxf(y)e�ipxdnydnp,

and, invoking Fubini and Lemma 7.2, we further see

= lim
"!0

1

(2⇡)n/2

Z

Rn
(�"(p)e

ipx)^(y)f(y)dny

= lim
"!0

1

(2⇡)n/2

Z

Rn

1

"n/2
�1/"(y � x)f(y)dny

= lim
"!0

1

(2⇡)n/2

Z

Rn
�1(z)f(x+

p
"z)dnz = f(x),

which finishes the proof, where we used the change of coordinates z = y�x
p
"

and again dominated convergence in the last two steps. ⇤

From Fubini’s theorem we also obtain Parseval’s identity
Z

Rn
|f̂(p)|2dnp =

1

(2⇡)n/2

Z

Rn

Z

Rn
f(x)⇤f̂(p)eipxdnp dnx

=

Z

Rn
|f(x)|2dnx (7.9)
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for f 2 S(Rn). Thus, by Theorem 0.26, we can extend F to L2(Rn) by
setting

f̂(p) = lim
R!1

1

(2⇡)n/2

Z

|x|R
e�ipxf(x)dnx, (7.10)

where the limit is to be understood in L2(Rn) (Problem 7.5). If f 2 L1(Rn)\
L2(Rn), we can omit the limit (why?) and f̂ is still given by (7.3).

Theorem 7.5. The Fourier transform F extends to a unitary operator F :
L2(Rn) ! L2(Rn). Its spectrum is given by

�(F) = {z 2 C|z4 = 1} = {1,�1, i,�i}. (7.11)

Proof. As already noted, F extends uniquely to a bounded operator on
L2(Rn). Moreover, the same is true for F

�1. Since Parseval’s identity
remains valid by continuity of the norm, this extension is a unitary operator.

It remains to compute the spectrum. In fact, if  n is a Weyl sequence,
then (F2 + z2)(F + z)(F � z) n = (F4

� z4) n = (1 � z4) n ! 0 implies
z4 = 1. Hence �(F) ✓ {z 2 C|z4 = 1}. We defer the proof for equality
to Section 8.3, where we will explicitly compute an orthonormal basis of
eigenfunctions. ⇤

Lemma 7.1 also allows us to extend di↵erentiation to a larger class. Let
us introduce the Sobolev space

Hr(Rn) = {f 2 L2(Rn)||p|rf̂(p) 2 L2(Rn)}. (7.12)

Then, every function in Hr(Rn) has partial derivatives up to order r, which
are defined via

@↵f = ((ip)↵f̂(p))_, f 2 Hr(Rn), |↵|  r. (7.13)

By Lemma 7.1 this definition coincides with the usual one for every f 2

S(Rn) and we have
Z

Rn
g(x)(@↵f)(x)d

nx = hg⇤, (@↵f)i = hĝ(p)⇤, (ip)↵f̂(p)i

= (�1)|↵|h(ip)↵ĝ(p)⇤, f̂(p)i = (�1)|↵|h@↵g
⇤, fi

= (�1)|↵|
Z

Rn
(@↵g)(x)f(x)d

nx, (7.14)

for f, g 2 Hr(Rn). Furthermore, recall that a function h 2 L1
loc(Rn) satisfy-

ing
Z

Rn
'(x)h(x)dnx = (�1)|↵|

Z

Rn
(@↵')(x)f(x)d

nx, ' 2 C1

c (Rn), (7.15)

is also called the weak derivative or the derivative in the sense of distri-
butions of f (by Lemma 0.37 such a function is unique if it exists). Hence,
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choosing g = ' in (7.14), we see that Hr(Rn) is the set of all functions hav-
ing partial derivatives (in the sense of distributions) up to order r, which
are in L2(Rn).

Finally, we note that on L1(Rn) we have

Lemma 7.6 (Riemann-Lebesgue). Let C1(Rn) denote the Banach space
of all continuous functions f : Rn

! C which vanish at 1 equipped with
the sup norm. Then the Fourier transform is a bounded injective map from
L1(Rn) into C1(Rn) satisfying

kf̂k1  (2⇡)�n/2
kfk1. (7.16)

Proof. Clearly we have f̂ 2 C1(Rn) if f 2 S(Rn). Moreover, since S(Rn)
is dense in L1(Rn), the estimate

sup
p

|f̂(p)| 
1

(2⇡)n/2
sup
p

Z

Rn
|e�ipxf(x)|dnx =

1

(2⇡)n/2

Z

Rn
|f(x)|dnx

shows that the Fourier transform extends to a continuous map from L1(Rn)
into C1(Rn).

To see that the Fourier transform is injective, suppose f̂ = 0. Then
Fubini implies

0 =

Z

Rn
'(x)f̂(x)dnx =

Z

Rn
'̂(x)f(x)dnx

for every ' 2 S(Rn). Hence Lemma 0.37 implies f = 0. ⇤

Note that F : L1(Rn) ! C1(Rn) is not onto (cf. Problem 7.7).

Another useful property is the convolution formula.

Lemma 7.7. The convolution

(f ⇤ g)(x) =

Z

Rn
f(y)g(x� y)dny =

Z

Rn
f(x� y)g(y)dny (7.17)

of two functions f, g 2 L1(Rn) is again in L1(Rn) and we have Young’s
inequality

kf ⇤ gk1  kfk1kgk1. (7.18)

Moreover, its Fourier transform is given by

(f ⇤ g)^(p) = (2⇡)n/2f̂(p)ĝ(p). (7.19)

Proof. The fact that f ⇤ g is in L1 together with Young’s inequality follows
by applying Fubini’s theorem to h(x, y) = f(x � y)g(y). For the last claim
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we compute

(f ⇤ g)^(p) =
1

(2⇡)n/2

Z

Rn
e�ipx

Z

Rn
f(y)g(x� y)dny dnx

=

Z

Rn
e�ipyf(y)

1

(2⇡)n/2

Z

Rn
e�ip(x�y)g(x� y)dnx dny

=

Z

Rn
e�ipyf(y)ĝ(p)dny = (2⇡)n/2f̂(p)ĝ(p),

where we have again used Fubini’s theorem. ⇤

In other words, L1(Rn) together with convolution as a product is a
Banach algebra (without identity). For the case of convolution on L2(Rn)
see Problem 7.9.

Problem 7.1. Show that
R
R exp(�x2/2)dx =

p
2⇡. (Hint: Square the inte-

gral and evaluate it using polar coordinates.)

Problem 7.2. Compute the Fourier transform of the following functions
f : R ! C:

(i) f(x) = �(�1,1)(x). (ii) f(p) = 1
p2+k2 , Re(k) > 0.

Problem 7.3. Suppose f(x) 2 L1(R) and g(x) = �ixf(x) 2 L1(R). Then
f̂ is di↵erentiable and f̂ 0 = ĝ.

Problem 7.4. A function f : Rn
! C is called spherically symmetric if

it is invariant under rotations; that is, f(Ox) = f(x) for all O 2 SO(Rn)
(equivalently, f depends only on the distance to the origin |x|). Show that the
Fourier transform of a spherically symmetric function is again spherically
symmetric.

Problem 7.5. Show (7.10). (Hint: First suppose f has compact support.
Then there is a sequence of functions fn 2 C1

c (Rn) converging to f in L2.
The support of these functions can be chosen inside a fixed set and hence
this sequence also converges to f in L1. Thus (7.10) follows for f 2 L2 with
compact support. To remove this restriction, use that the projection onto a
ball with radius R converges strongly to the identity as R ! 1.)

Problem 7.6. Show that C1(Rn) is indeed a Banach space. Show that
S(Rn) is dense.

Problem 7.7. Show that F : L1(Rn) ! C1(Rn) is not onto as follows:

(i) The range of F is dense.

(ii) F is onto if and only if it has a bounded inverse.

(iii) F has no bounded inverse.
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(Hint for (iii): Suppose ' is smooth with compact support in (0, 1) and
set fm(x) =

Pm
k=1 e

ikx'(x� k). Then kfmk1 = mk'k1 and kf̂mk1  const
since ' 2 S(R) and hence '(p)  const(1 + |p|)�2).

Problem 7.8. Show that the convolution of two S(Rn) functions is in
S(Rn).

Problem 7.9. Show that the convolution of two L2(Rn) functions is in
C1(Rn) and we have kf ⇤ gk1  kfk2kgk2.

Problem 7.10 (Wiener). Suppose f 2 L2(Rn). Then the set {f(x+ a)|a 2

Rn
} is total in L2(Rn) if and only if f̂(p) 6= 0 a.e. (Hint: Use Lemma 7.2

and the fact that a subspace is total if and only if its orthogonal complement
is zero.)

Problem 7.11. Suppose f(x)ek|x| 2 L1(R) for some k > 0. Then f̂(p) has
an analytic extension to the strip | Im(p)| < k.

7.2. The free Schrödinger operator

In Section 2.1 we have seen that the Hilbert space corresponding to one
particle in R3 is L2(R3). More generally, the Hilbert space for N particles
in Rd is L2(Rn), n = Nd. The corresponding nonrelativistic Hamilton
operator, if the particles do not interact, is given by

H0 = ��, (7.20)

where � is the Laplace operator

� =
nX

j=1

@2

@x2j
. (7.21)

Here we have chosen units such that all relevant physical constants disap-
pear; that is, ~ = 1 and the mass of the particles is equal to m = 1

2 . Be
aware that some authors prefer to use m = 1; that is, H0 = �

1
2�.

Our first task is to find a good domain such that H0 is a self-adjoint
operator.

By Lemma 7.1 we have that

�� (x) = (p2 ̂(p))_(x),  2 H2(Rn), (7.22)

and hence the operator

H0 = �� , D(H0) = H2(Rn), (7.23)

is unitarily equivalent to the maximally defined multiplication operator

(F H0F
�1)'(p) = p2'(p), D(p2) = {' 2 L2(Rn)|p2'(p) 2 L2(Rn)}.

(7.24)
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Theorem 7.8. The free Schrödinger operator H0 is self-adjoint and its
spectrum is characterized by

�(H0) = �ac(H0) = [0,1), �sc(H0) = �pp(H0) = ;. (7.25)

Proof. It su�ces to show that dµ is purely absolutely continuous for every
 . First observe that

h , RH0(z) i = h ̂, Rp2(z) ̂i =

Z

Rn

| ̂(p)|2

p2 � z
dnp =

Z

R

1

r2 � z
dµ̃ (r),

where

dµ̃ (r) = �[0,1)(r)r
n�1

✓Z

Sn�1
| ̂(r!)|2dn�1!

◆
dr.

Hence, after a change of coordinates, we have

h , RH0(z) i =

Z

R

1

�� z
dµ (�),

where

dµ (�) =
1

2
�[0,1)(�)�

n/2�1

✓Z

Sn�1
| ̂(

p

�!)|2dn�1!

◆
d�,

proving the claim. ⇤

Finally, we note that the compactly supported smooth functions are a
core for H0.

Lemma 7.9. The set C1
c (Rn) = {f 2 S(Rn)| supp(f) is compact} is a core

for H0.

Proof. It is not hard to see that S(Rn) is a core (Problem 7.12) and hence it
su�ces to show that the closure of H0|C1

c (Rn) contains H0|S(Rn). To see this,
let '(x) 2 C1

c (Rn) which is one for |x|  1 and vanishes for |x| � 2. Set
'n(x) = '( 1nx). Then  n(x) = 'n(x) (x) is in C1

c (Rn) for every  2 S(Rn)
and  n !  , respectively, � n ! � . ⇤

Note also that the quadratic form of H0 is given by

qH0( ) =
nX

j=1

Z

Rn
|@j (x)|

2dnx,  2 Q(H0) = H1(Rn). (7.26)

Problem 7.12. Show that S(Rn) is a core for H0. (Hint: Show that the
closure of H0|S(Rn) contains H0.)

Problem 7.13. Show that { 2 S(R)| (0) = 0} is dense but not a core for

H0 = �
d2

dx2 .
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7.3. The time evolution in the free case

Now let us look at the time evolution. We have

e�itH0 (x) = F
�1e�itp2 ̂(p). (7.27)

The right-hand side is a product and hence our operator should be express-
ible as an integral operator via the convolution formula. However, since
e�itp2 is not in L2, a more careful analysis is needed.

Consider

f"(p
2) = e�(it+")p2 , " > 0. (7.28)

Then f"(H0) ! e�itH0 by Theorem 3.1. Moreover, by Lemma 7.3 and
the convolution formula we have

f"(H0) (x) =
1

(4⇡(it+ "))n/2

Z

Rn
e
�

|x�y|2
4(it+") (y)dny (7.29)

and hence

e�itH0 (x) =
1

(4⇡it)n/2

Z

Rn
ei

|x�y|2
4t  (y)dny (7.30)

for t 6= 0 and  2 L1
\ L2. For general  2 L2 the integral has to be

understood as a limit.

Using this explicit form, it is not hard to draw some immediate conse-
quences. For example, if  2 L2(Rn)\L1(Rn), then  (t) 2 C(Rn) for t 6= 0
(use dominated convergence and continuity of the exponential) and satisfies

k (t)k1 
1

|4⇡t|n/2
k (0)k1. (7.31)

Thus we have spreading of wave functions in this case. Moreover, it is even
possible to determine the asymptotic form of the wave function for large t
as follows. Observe

e�itH0 (x) =
ei

x2

4t

(4⇡it)n/2

Z

Rn
ei

y2

4t  (y)ei
xy
2t dny

=

✓
1

2it

◆n/2

ei
x2

4t

✓
ei

y2

4t  (y)

◆^

(
x

2t
). (7.32)

Moreover, since exp(iy
2

4t ) (y) !  (y) in L2 as |t| ! 1 (dominated conver-
gence), we obtain

Lemma 7.10. For any  2 L2(Rn) we have

e�itH0 (x)�

✓
1

2it

◆n/2

ei
x2

4t  ̂(
x

2t
) ! 0 (7.33)

in L2 as |t| ! 1.
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Note that this result is not too surprising from a physical point of view.
In fact, if a classical particle starts at a point x(0) = x0 with velocity v = 2p
(recall that we use units where the mass is m = 1

2), then we will find it at
x = x0 + 2pt at time t. Dividing by 2t, we get x

2t = p + x0
2t ⇡ p for large t.

Hence the probability distribution for finding a particle at a point x at time
t should approach the probability distribution for the momentum at p = x

2t ;

that is, | (x, t)|2dnx = | ( x
2t)|

2 dnx
(2t)n . This could also be stated as follows:

The probability of finding the particle in a region ⌦ ✓ Rn is asymptotically
for |t| ! 1 equal to the probability of finding the momentum of the particle
in 1

2t⌦.

Next we want to apply the RAGE theorem in order to show that for any
initial condition, a particle will escape to infinity.

Lemma 7.11. Let g(x) be the multiplication operator by g and let f(p) be
the operator given by f(p) (x) = F

�1(f(p) ̂(p))(x). Denote by L1
1(Rn) the

bounded Borel functions which vanish at infinity. Then

f(p)g(x) and g(x)f(p) (7.34)

are compact if f, g 2 L1
1(Rn) and (extend to) Hilbert–Schmidt operators if

f, g 2 L2(Rn).

Proof. By symmetry it su�ces to consider g(x)f(p). Let f, g 2 L2. Then

g(x)f(p) (x) =
1

(2⇡)n/2

Z

Rn
g(x)f̌(x� y) (y)dny

shows that g(x)f(p) is Hilbert–Schmidt since g(x)f̌(x� y) 2 L2(Rn
⇥ Rn).

If f, g are bounded, then the functions fR(p) = �{p|p2R}(p)f(p) and
gR(x) = �{x|x2R}(x)g(x) are in L2. Thus gR(x)fR(p) is compact and by

kg(x)f(p)� gR(x)fR(p)k  kgk1kf � fRk1 + kg � gRk1kfRk1

it tends to g(x)f(p) in norm since f, g vanish at infinity. ⇤

In particular, this lemma implies that

�⌦(H0 + i)�1 (7.35)

is compact if ⌦ ✓ Rn is bounded and hence

lim
t!1

k�⌦e
�itH0 k2 = 0 (7.36)

for any  2 L2(Rn) and any bounded subset ⌦ of Rn. In other words, the
particle will eventually escape to infinity since the probability of finding the
particle in any bounded set tends to zero. (If  2 L1(Rn), this of course
also follows from (7.31).)
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7.4. The resolvent and Green’s function

Now let us compute the resolvent of H0. We will try to use an approach
similar to that for the time evolution in the previous section. However,
since it is highly nontrivial to compute the inverse Fourier transform of
exp(�"p2)(p2 � z)�1 directly, we will use a small ruse.

Note that

RH0(z) =

Z
1

0
ezte�tH0dt, Re(z) < 0, (7.37)

by Lemma 4.1. Moreover,

e�tH0 (x) =
1

(4⇡t)n/2

Z

Rn
e�

|x�y|2
4t  (y)dny, t > 0, (7.38)

by the same analysis as in the previous section. Hence, by Fubini, we have

RH0(z) (x) =

Z

Rn
G0(z, |x� y|) (y)dny, (7.39)

where

G0(z, r) =

Z
1

0

1

(4⇡t)n/2
e�

r2

4t +ztdt, r > 0, Re(z) < 0. (7.40)

The function G0(z, r) is calledGreen’s function ofH0. The integral can be
evaluated in terms of modified Bessel functions of the second kind as follows:
First of all it su�ces to consider z < 0 since the remaining values will follow
by analytic continuation. Then, making the substitution t = r

2
p
�z

es, we

obtain
Z

1

0

1

(4⇡t)n/2
e�

r2

4t +ztdt =
1

4⇡

✓p
�z

2⇡r

◆n
2�1 Z 1

�1

e�⌫se�x cosh(s)ds

=
1

2⇡

✓p
�z

2⇡r

◆n
2�1 Z 1

0
cosh(�⌫s)e�x cosh(s)ds,

(7.41)

where we have abbreviated x =
p
�zr and ⌫ = n

2 � 1. But the last integral
is given by the modified Bessel function K⌫(x) (see [1, (9.6.24)]) and thus

G0(z, r) =
1

2⇡

✓p
�z

2⇡r

◆n
2�1

Kn
2�1(

p
�zr). (7.42)

Note K⌫(x) = K�⌫(x) and K⌫(x) > 0 for ⌫, x 2 R. The functions K⌫(x)
satisfy the di↵erential equation (see [1, (9.6.1)])

✓
d2

dx2
+

1

x

d

dx
� 1�

⌫2

x2

◆
K⌫(x) = 0 (7.43)
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and have the asymptotics (see [1, (9.6.8) and (9.6.9)])

K⌫(x) =

⇢ �(⌫)
2

�
x
2

��⌫
+O(x�⌫+2), ⌫ > 0,

� log(x2 ) +O(1), ⌫ = 0,
(7.44)

for |x| ! 0 and (see [1, (9.7.2)])

K⌫(x) =

r
⇡

2x
e�x(1 +O(x�1)) (7.45)

for |x| ! 1. For more information see for example [1] or [59]. In particular,
G0(z, r) has an analytic continuation for z 2 C\[0,1) = ⇢(H0). Hence we
can define the right-hand side of (7.39) for all z 2 ⇢(H0) such that

Z

Rn

Z

Rn
'(x)G0(z, |x� y|) (y)dnydnx (7.46)

is analytic for z 2 ⇢(H0) and ', 2 S(Rn) (by Morera’s theorem). Since
it is equal to h', RH0(z) i for Re(z) < 0, it is equal to this function for all
z 2 ⇢(H0), since both functions are analytic in this domain. In particular,
(7.39) holds for all z 2 ⇢(H0).

If n is odd, we have the case of spherical Bessel functions which can be
expressed in terms of elementary functions. For example, we have

G0(z, r) =
1

2
p
�z

e�
p
�z r, n = 1, (7.47)

and

G0(z, r) =
1

4⇡r
e�

p
�z r, n = 3. (7.48)

Problem 7.14. Verify (7.39) directly in the case n = 1.



Chapter 8

Algebraic methods

8.1. Position and momentum

Apart from the Hamiltonian H0, which corresponds to the kinetic energy,
there are several other important observables associated with a single par-
ticle in three dimensions. Using the commutation relation between these
observables, many important consequences about these observables can be
derived.

First consider the one-parameter unitary group

(Uj(t) )(x) = e�itxj (x), 1  j  3. (8.1)

For  2 S(R3) we compute

lim
t!0

i
e�itxj (x)�  (x)

t
= xj (x) (8.2)

and hence the generator is the multiplication operator by the j’th coordinate
function. By Corollary 5.3 it is essentially self-adjoint on  2 S(R3). It is
customary to combine all three operators into one vector-valued operator
x, which is known as the position operator. Moreover, it is not hard
to see that the spectrum of xj is purely absolutely continuous and given
by �(xj) = R. In fact, let '(x) be an orthonormal basis for L2(R). Then
'i(x1)'j(x2)'k(x3) is an orthonormal basis for L2(R3) and x1 can be written
as an orthogonal sum of operators restricted to the subspaces spanned by
'j(x2)'k(x3). Each subspace is unitarily equivalent to L2(R) and x1 is
given by multiplication with the identity. Hence the claim follows (or use
Theorem 4.14).

Next, consider the one-parameter unitary group of translations

(Uj(t) )(x) =  (x� tej), 1  j  3, (8.3)

173
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where ej is the unit vector in the j’th coordinate direction. For  2 S(R3)
we compute

lim
t!0

i
 (x� tej)�  (x)

t
=

1

i

@

@xj
 (x) (8.4)

and hence the generator is pj = 1
i
@
@xj

. Again it is essentially self-adjoint

on  2 S(R3). Moreover, since it is unitarily equivalent to xj by virtue of
the Fourier transform, we conclude that the spectrum of pj is again purely
absolutely continuous and given by �(pj) = R. The operator p is known as
the momentum operator. Note that since

[H0, pj ] (x) = 0,  2 S(R3), (8.5)

we have
d

dt
h (t), pj (t)i = 0,  (t) = e�itH0 (0) 2 S(R3); (8.6)

that is, the momentum is a conserved quantity for the free motion. More
generally we have

Theorem 8.1 (Noether). Suppose A is a self-adjoint operator which com-
mutes with a self-adjoint operator H. Then D(A) is invariant under e�itH ,
that is, e�itH

D(A) = D(A), and A is a conserved quantity, that is,

h (t), A (t)i = h (0), A (0)i,  (t) = e�itH (0) 2 D(A). (8.7)

Proof. By the second part of Lemma 4.5 (with f(�) = � and B = e�itH) we
see D(A) = D(e�itHA) ✓ D(Ae�itH) = { |e�itH 2 D(A)} which implies
e�itH

D(A) ✓ D(A), and [e�itH , A] = 0 for  2 D(A). ⇤

Similarly one has

i[pj , xk] (x) = �jk (x),  2 S(R3), (8.8)

which is known as the Weyl relations. In terms of the corresponding
unitary groups they read

e�ispje�itxk = eist�jke�itxje�ispk . (8.9)

The Weyl relations also imply that the mean-square deviation of position
and momentum cannot be made arbitrarily small simultaneously:

Theorem 8.2 (Heisenberg Uncertainty Principle). Suppose A and B are
two symmetric operators. Then for any  2 D(AB) \D(BA) we have

� (A)� (B) �
1

2
|E ([A,B])| (8.10)

with equality if

(B � E (B)) = i�(A� E (A)) , � 2 R\{0}, (8.11)

or if  is an eigenstate of A or B.
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Proof. Let us fix  2 D(AB) \D(BA) and abbreviate

Â = A� E (A), B̂ = B � E (B).

Then � (A) = kÂ k, � (B) = kB̂ k and hence by Cauchy–Schwarz

|hÂ , B̂ i|  � (A)� (B).

Now note that

ÂB̂ =
1

2
{Â, B̂}+

1

2
[A,B], {Â, B̂} = ÂB̂ + B̂Â

where {Â, B̂} and i[A,B] are symmetric. So

|hÂ , B̂ i|2 = |h , ÂB̂ i|2 =
1

2
|h , {Â, B̂} i|2 +

1

2
|h , [A,B] i|2

which proves (8.10).

To have equality if  is not an eigenstate, we need B̂ = zÂ for
equality in Cauchy–Schwarz and h , {Â, B̂} i = 0. Inserting the first into
the second requirement gives 0 = (z � z⇤)kÂ k2 and shows Re(z) = 0. ⇤

In the case of position and momentum we have (k k = 1)

� (pj)� (xk) �
�jk
2

(8.12)

and the minimum is attained for the Gaussian wave packets

 (x) =

✓
�

⇡

◆n/4

e�
�
2 |x�x0|

2
�ip0x, (8.13)

which satisfy E (x) = x0 and E (p) = p0, respectively, � (pj)2 = �
2 and

� (xk)2 =
1
2� .

Problem 8.1. Check that (8.13) realizes the minimum.

8.2. Angular momentum

Now consider the one-parameter unitary group of rotations

(Uj(t) )(x) =  (Mj(t)x), 1  j  3, (8.14)

where Mj(t) is the matrix of rotation around ej by an angle of t. For
 2 S(R3) we compute

lim
t!0

i
 (Mi(t)x)�  (x)

t
=

3X

j,k=1

"ijkxjpk (x), (8.15)

where

"ijk =

8
<

:

1 if ijk is an even permutation of 123,
�1 if ijk is an odd permutation of 123,
0 otherwise.

(8.16)
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Again one combines the three components into one vector-valued operator
L = x ^ p, which is known as the angular momentum operator. Since
ei2⇡Lj = I, we see that the spectrum is a subset of Z. In particular, the
continuous spectrum is empty. We will show below that we have �(Lj) = Z.
Note that since

[H0, Lj ] (x) = 0,  2 S(R3), (8.17)

we again have

d

dt
h (t), Lj (t)i = 0,  (t) = e�itH0 (0) 2 S(R3); (8.18)

that is, the angular momentum is a conserved quantity for the free motion
as well.

Moreover, we even have

[Li,Kj ] (x) = i
3X

k=1

"ijkKk (x),  2 S(R3),Kj 2 {Lj , pj , xj}, (8.19)

and these algebraic commutation relations are often used to derive informa-
tion on the point spectra of these operators. In this respect the domain

D = span{x↵e�
x2

2 |↵ 2 Nn
0} ⇢ S(Rn) (8.20)

is often used. It has the nice property that the finite dimensional subspaces

Dk = span{x↵e�
x2

2 | |↵|  k} (8.21)

are invariant under Lj (and hence they reduce Lj).

Lemma 8.3. The subspace D ⇢ L2(Rn) defined in (8.20) is dense.

Proof. By Lemma 1.10 it su�ces to consider the case n = 1. Suppose
h', i = 0 for every  2 D. Then

1
p
2⇡

Z
'(x)e�

x2

2

kX

j=1

(itx)j

j!
dx = 0

for any finite k and hence also in the limit k ! 1 by the dominated conver-

gence theorem. But the limit is the Fourier transform of '(x)e�
x2

2 , which
shows that this function is zero. Hence '(x) = 0. ⇤

Since D is invariant under the unitary groups generated by Lj , the op-
erators Lj are essentially self-adjoint on D by Corollary 5.3.

Introducing L2 = L2
1 + L2

2 + L2
3, it is straightforward to check

[L2, Lj ] (x) = 0,  2 S(R3). (8.22)

Moreover, Dk is invariant under L2 and L3 and hence Dk reduces L2 and
L3. In particular, L2 and L3 are given by finite matrices on Dk. Now
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let Hm = Ker(L3 � m) and denote by Pk the projector onto Dk. Since
L2 and L3 commute on Dk, the space PkHm is invariant under L2, which
shows that we can choose an orthonormal basis consisting of eigenfunctions
of L2 for PkHm. Increasing k, we get an orthonormal set of simultaneous
eigenfunctions whose span is equal to D. Hence there is an orthonormal
basis of simultaneous eigenfunctions of L2 and L3.

Now let us try to draw some further consequences by using the commuta-
tion relations (8.19). (All commutation relations below hold for  2 S(R3).)
Denote by Hl,m the set of all functions in D satisfying

L3 = m , L2 = l(l + 1) . (8.23)

By L2
� 0 and �(L3) ✓ Z we can restrict our attention to the case l � 0

and m 2 Z.
First introduce two new operators

L± = L1 ± iL2, [L3, L±] = ±L±. (8.24)

Then, for every  2 Hl,m we have

L3(L± ) = (m± 1)(L± ), L2(L± ) = l(l + 1)(L± ); (8.25)

that is, L±Hl,m ! Hl,m±1. Moreover, since

L2 = L2
3 ± L3 + L⌥L±, (8.26)

we obtain

kL± k
2 = h , L⌥L± i = (l(l + 1)�m(m± 1))k k (8.27)

for every  2 Hl,m. If  6= 0, we must have l(l + 1)�m(m± 1) � 0, which
shows Hl,m = {0} for |m| > l. Moreover, L±Hl,m ! Hl,m±1 is injective
unless |m| = l. Hence we must have Hl,m = {0} for l 62 N0.

Up to this point we know �(L2) ✓ {l(l+1)|l 2 N0}, �(L3) ✓ Z. In order
to show that equality holds in both cases, we need to show that Hl,m 6= {0}
for l 2 N0, m = �l,�l + 1, . . . , l � 1, l. First of all we observe

 0,0(x) =
1

⇡3/4
e�

x2

2 2 H0,0. (8.28)

Next, we note that (8.19) implies

[L3, x±] = ±x±, x± = x1 ± ix2,

[L±, x±] = 0, [L±, x⌥] = ±2x3,

[L2, x±] = 2x±(1± L3)⌥ 2x3L±. (8.29)

Hence if  2 Hl,l, then (x1 ± ix2) 2 Hl±1,l±1. Thus

 l,l(x) =
1
p
l!
(x1 ± ix2)

l 0,0(x) 2 Hl,l, (8.30)
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respectively,

 l,m(x) =

s
(l +m)!

(l �m)!(2l)!
Ll�m
�  l,l(x) 2 Hl,m. (8.31)

The constants are chosen such that k l,mk = 1.

In summary,

Theorem 8.4. There exists an orthonormal basis of simultaneous eigenvec-
tors for the operators L2 and Lj. Moreover, their spectra are given by

�(L2) = {l(l + 1)|l 2 N0}, �(L3) = Z. (8.32)

We will give an alternate derivation of this result in Section 10.3.

8.3. The harmonic oscillator

Finally, let us consider another important model whose algebraic structure
is similar to those of the angular momentum, the harmonic oscillator

H = H0 + !2x2, ! > 0. (8.33)

We will choose as domain

D(H) = D = span{x↵e�
x2

2 |↵ 2 N3
0} ✓ L2(R3) (8.34)

from our previous section.

We will first consider the one-dimensional case. Introducing

A± =
1
p
2

✓
p
!x⌥

1
p
!

d

dx

◆
, D(A±) = D, (8.35)

we have

[A�, A+] = 1 (8.36)

and

H = !(2N + 1), N = A+A�, D(N) = D, (8.37)

for any function in D. In particular, note that D is invariant under A±.

Moreover, since

[N,A±] = ±A±, (8.38)

we see that N = n implies NA± = (n± 1)A± . Moreover, kA+ k2 =
h , A�A+ i = (n+1)k k2, respectively, kA� k2 = nk k2, in this case and
hence we conclude that �p(N) ✓ N0.

If N 0 = 0, then we must have A� = 0 and the normalized solution
of this last equation is given by

 0(x) =
⇣!
⇡

⌘1/4
e�

!x2

2 2 D. (8.39)
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Hence

 n(x) =
1

p
n!
An

+ 0(x) (8.40)

is a normalized eigenfunction of N corresponding to the eigenvalue n. More-
over, since

 n(x) =
1

p
2n n!

⇣!
⇡

⌘1/4
Hn(

p
!x)e�

!x2

2 (8.41)

where Hn(x) is a polynomial of degree n given by

Hn(x) = e
x2

2

✓
x�

d

dx

◆n

e�
x2

2 = (�1)nex
2 dn

dxn
e�x2

, (8.42)

we conclude span{ n} = D. The polynomials Hn(x) are called Hermite
polynomials.

In summary,

Theorem 8.5. The harmonic oscillator H is essentially self-adjoint on D

and has an orthonormal basis of eigenfunctions

 n1,n2,n3(x) =  n1(x1) n2(x2) n3(x3), (8.43)

with  nj (xj) from (8.41). The spectrum is given by

�(H) = {(2n+ 3)!|n 2 N0}. (8.44)

Finally, there is also a close connection with the Fourier transformation.
Without restriction we choose ! = 1 and consider only one-dimension. Then
it easy to verify that H commutes with the Fourier transformation,

FH = HF , (8.45)

on D. Moreover, by FA± = ⌥iA±F we even infer

F n =
1

p
n!
FAn

+ 0 =
(�i)n
p
n!

An
+F 0 = (�i)n n, (8.46)

since F 0 =  0 by Lemma 7.3. In particular,

�(F) = {z 2 C|z4 = 1}. (8.47)

8.4. Abstract commutation

The considerations of the previous section can be generalized as follows.
First of all, the starting point was a factorization ofH according toH = A⇤A
(note that A± from the previous section are adjoint to each other when
restricted to D). Then it turned out that commuting both operators just
corresponds to a shift of H; that is, AA⇤ = H + c. Hence one could exploit
the close spectral relation of A⇤A and AA⇤ to compute both the eigenvalues
and eigenvectors.
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More generally, let A be a closed operator and recall that H0 = A⇤A is a
self-adjoint operator (cf. Problem 2.12) with Ker(H0) = Ker(A). Similarly,
H1 = AA⇤ is a self-adjoint operator with Ker(H1) = Ker(A⇤).

Theorem 8.6. Let A be a closed operator. The operators H0 = A⇤A
��
Ker(A)?

and H1 = AA⇤
��
Ker(A⇤)?

are unitarily equivalent.

If H0 0 = E 0,  0 2 D(H0), then  1 = A 0 2 D(H1) with H1 1 =  1

and k 1k =
p
Ek 0k. Moreover,

RH1(z) ◆
1

z
(ARH0(z)A

⇤
� 1) , RH0(z) ◆

1

z
(A⇤RH1(z)A� 1) . (8.48)

Proof. Introducing |A| = H1/2
0 , we have the polar decomposition (Prob-

lem 3.11)
A = U |A|,

where
U : Ker(A)? ! Ker(A⇤)?

is unitary. Taking adjoints, we have (Problem 2.3)

A⇤ = |A|U⇤

and thus H1 = AA⇤ = U |A||A|U⇤ = UH0U⇤ shows the claimed unitary
equivalence.

The claims about the eigenvalues are straightforward (for the norm note
A 0 =

p
EU 0). To see the connection between the resolvents, abbreviate

P1 = PH1({0}). Then

RH1(z) = RH1(z)(1� P1) +
1

z
P1 = URH0U

⇤ +
1

z
P1

◆
1

z

⇣
U(|H0|

1/2RH0 |H0|
1/2

� 1)U⇤ + P1

⌘

=
1

z
(ARH0A

⇤ + (1� P1) + P1) =
1

z
(ARH0A

⇤ + 1) ,

where we have used UU⇤ = 1� P1. ⇤

We will use this result to compute the eigenvalues and eigenfunctions of
the hydrogen atom in Section 10.4. In the physics literature this approach
is also known as supersymmetric quantum mechanics.

Problem 8.2. Show that H0 = �
d2

dx2 + q can formally (i.e., ignoring do-

mains) be written as H0 = AA⇤, where A = �
d
dx + �, if the di↵erential

equation  00 + q = 0 has a positive solution. Compute H1 = A⇤A. (Hint:

� =  0

 .)

Problem 8.3. Take H0 = �
d2

dx2 + �, � > 0, and compute H1. What about
domains?



Chapter 9

One-dimensional
Schrödinger operators

9.1. Sturm–Liouville operators

In this section we want to illustrate some of the results obtained thus far by
investigating a specific example, the Sturm–Liouville equation

⌧f(x) =
1

r(x)

✓
�

d

dx
p(x)

d

dx
f(x) + q(x)f(x)

◆
, f, pf 0

2 ACloc(I). (9.1)

The case p = r = 1 can be viewed as the model of a particle in one-
dimension in the external potential q. Moreover, the case of a particle in
three dimensions can in some situations be reduced to the investigation of
Sturm–Liouville equations. In particular, we will see how this works when
explicitly solving the hydrogen atom.

The suitable Hilbert space is

L2((a, b), r(x)dx), hf, gi =

Z b

a
f(x)⇤g(x)r(x)dx, (9.2)

where I = (a, b) ✓ R is an arbitrary open interval.

We require

(i) p�1
2 L1

loc(I), positive,

(ii) q 2 L1
loc(I), real-valued,

(iii) r 2 L1
loc(I), positive.

181



182 9. One-dimensional Schrödinger operators

If a is finite and if p�1, q, r 2 L1((a, c)) (c 2 I), then the Sturm–Liouville
equation (9.1) is called regular at a. Similarly for b. If it is regular at both
a and b, it is called regular.

The maximal domain of definition for ⌧ in L2(I, r dx) is given by

D(⌧) = {f 2 L2(I, r dx)|f, pf 0
2 ACloc(I), ⌧f 2 L2(I, r dx)}. (9.3)

It is not clear that D(⌧) is dense unless (e.g.) p 2 ACloc(I), p0, q 2 L2
loc(I),

r�1
2 L1

loc(I) since C1
0 (I) ⇢ D(⌧) in this case. We will defer the general

case to Lemma 9.4 below.

Since we are interested in self-adjoint operators H associated with (9.1),
we perform a little calculation. Using integration by parts (twice), we obtain
the Lagrange identity (a < c < d < b)

Z d

c
g⇤(⌧f) rdy = Wd(g

⇤, f)�Wc(g
⇤, f) +

Z d

c
(⌧g)⇤f rdy, (9.4)

for f, g, pf 0, pg0 2 ACloc(I), where

Wx(f1, f2) =
⇣
p(f1f

0

2 � f 0

1f2)
⌘
(x) (9.5)

is called the modified Wronskian.

Equation (9.4) also shows that the Wronskian of two solutions of ⌧u = zu
is constant

Wx(u1, u2) = W (u1, u2), ⌧u1,2 = zu1,2. (9.6)

Moreover, it is nonzero if and only if u1 and u2 are linearly independent
(compare Theorem 9.1 below).

If we choose f, g 2 D(⌧) in (9.4), then we can take the limits c ! a and
d ! b, which results in

hg, ⌧fi = Wb(g
⇤, f)�Wa(g

⇤, f) + h⌧g, fi, f, g 2 D(⌧). (9.7)

Here Wa,b(g⇤, f) has to be understood as a limit.

Finally, we recall the following well-known result from ordinary di↵er-
ential equations.

Theorem 9.1. Suppose rg 2 L1
loc(I). Then there exists a unique solution

f, pf 0
2 ACloc(I) of the di↵erential equation

(⌧ � z)f = g, z 2 C, (9.8)

satisfying the initial condition

f(c) = ↵, (pf 0)(c) = �, ↵,� 2 C, c 2 I. (9.9)

In addition, f is entire with respect to z.
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Proof. Introducing

u =

✓
f
pf 0

◆
, v =

✓
0
rg

◆
,

we can rewrite (9.8) as the linear first order system

u0 �Au = v, A(x) =

✓
0 p�1(x)

q(x)� z r(x) 0

◆
.

Integrating with respect to x, we see that this system is equivalent to the
Volterra integral equation

u�Ku = w, (Ku)(x) =

Z x

c
A(y)u(y)dy, w(x) =

✓
↵
�

◆
+

Z x

c
v(y)dy.

We will choose some d 2 (c, b) and consider the integral operator K in the
Banach space C([c, d]). Then for any h 2 C([c, d]) and x 2 [c, d] we have
the estimate

|Kn(h)(x)| 
a1(x)n

n!
khk, a1(x) =

Z x

c
a(y)dy, a(x) = kA(x)k,

which follows from induction

|Kn+1(h)(x)| =

����
Z x

c
A(y)Kn(h)(y)dy

���� 
Z x

c
a(y)|Kn(h)(y)|dy

 khk

Z x

c
a(y)

a1(y)n

n!
dy =

a1(x)n+1

(n+ 1)!
khk.

Hence the unique solution of our integral equation is given by the Neumann
series (show this)

u(x) =
1X

n=0

Kn(w)(x).

To see that the solution u(x) is entire with respect to z, note that the partial
sums are entire (in fact polynomial) in z and hence so is the limit by uniform
convergence with respect to z in compact sets. An analogous argument for
d 2 (a, c) finishes the proof. ⇤

Note that f, pf 0 can be extended continuously to a regular endpoint.

Lemma 9.2. Suppose u1, u2 are two solutions of (⌧ �z)u = 0 which satisfy
W (u1, u2) = 1. Then any other solution of (9.8) can be written as (↵,� 2 C)

f(x) = u1(x)
⇣
↵+

Z x

c
u2g rdy

⌘
+ u2(x)

⇣
� �

Z x

c
u1g rdy

⌘
,

f 0(x) = u01(x)
⇣
↵+

Z x

c
u2g rdy

⌘
+ u02(x)

⇣
� �

Z x

c
u1g rdy

⌘
. (9.10)

Note that the constants ↵, � coincide with those from Theorem 9.1 if u1(c) =
(pu02)(c) = 1 and (pu01)(c) = u2(c) = 0.
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Proof. It su�ces to check ⌧f � z f = g. Di↵erentiating the first equation
of (9.10) gives the second. Next we compute

(pf 0)0 = (pu01)
0

⇣
↵+

Z
u2g rdy

⌘
+ (pu02)

0

⇣
� �

Z
u1g rdy

⌘
�W (u1, u2)gr

= (q � zr)u1
⇣
↵+

Z
u2 grdy

⌘
+ (q � zr)u2

⇣
� �

Z
u1 gdy

⌘
� gr

= (q � zr)f � gr

which proves the claim. ⇤

Now we want to obtain a symmetric operator and hence we choose

A0f = ⌧f, D(A0) = D(⌧) \ACc(I), (9.11)

where ACc(I) denotes the functions in AC(I) with compact support. This
definition clearly ensures that the Wronskian of two such functions vanishes
on the boundary, implying that A0 is symmetric by virtue of (9.7). Our first
task is to compute the closure of A0 and its adjoint. For this the following
elementary fact will be needed.

Lemma 9.3. Suppose V is a vector space and l, l1, . . . , ln are linear func-
tionals (defined on all of V ) such that

Tn
j=1Ker(lj) ✓ Ker(l). Then l =Pn

j=0 ↵jlj for some constants ↵j 2 C.

Proof. First of all it is no restriction to assume that the functionals lj are
linearly independent. Then the map L : V ! Cn, f 7! (l1(f), . . . , ln(f)) is
surjective (since x 2 Ran(L)? implies

Pn
j=1 xjlj(f) = 0 for all f). Hence

there are vectors fk 2 V such that lj(fk) = 0 for j 6= k and lj(fj) = 1. Then
f�

Pn
j=1 lj(f)fj 2

Tn
j=1Ker(lj) and hence l(f)�

Pn
j=1 lj(f)l(fj) = 0. Thus

we can choose ↵j = l(fj). ⇤

Now we are ready to prove

Lemma 9.4. The operator A0 is densely defined and its closure is given by

A0f = ⌧f, D(A0) = {f 2 D(⌧) |Wa(f, g) = Wb(f, g) = 0, 8g 2 D(⌧)}.
(9.12)

Its adjoint is given by

A⇤

0f = ⌧f, D(A⇤

0) = D(⌧). (9.13)

Proof. We start by computing A⇤
0 and ignore the fact that we do not know

whether D(A0) is dense for now.

By (9.7) we have D(⌧) ✓ D(A⇤
0) and it remains to show D(A⇤

0) ✓ D(⌧).
If h 2 D(A⇤

0), we must have

hh,A0fi = hk, fi, 8f 2 D(A0),
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for some k 2 L2(I, r dx). Using (9.10), we can find a h̃ such that ⌧ h̃ = k
and from integration by parts we obtain

Z b

a
(h(x)� h̃(x))⇤(⌧f)(x)r(x)dx = 0, 8f 2 D(A0). (9.14)

Clearly we expect that h� h̃ will be a solution of ⌧u = 0 and to prove this,
we will invoke Lemma 9.3. Therefore we consider the linear functionals

l(g) =

Z b

a
(h(x)� h̃(x))⇤g(x)r(x)dx, lj(g) =

Z b

a
uj(x)

⇤g(x)r(x)dx,

on L2
c(I, r dx), where uj are two solutions of ⌧u = 0 with W (u1, u2) 6= 0.

Then we have Ker(l1) \ Ker(l2) ✓ Ker(l). In fact, if g 2 Ker(l1) \ Ker(l2),
then

f(x) = u1(x)

Z x

a
u2(y)g(y)r(y)dy + u2(x)

Z b

x
u1(y)g(y)r(y)dy

is in D(A0) and g = ⌧f 2 Ker(l) by (9.14). Now Lemma 9.3 implies
Z b

a
(h(x)� h̃(x) + ↵1u1(x) + ↵2u2(x))

⇤g(x)r(x)dx = 0, 8g 2 L2
c(I, rdx)

and hence h = h̃+ ↵1u1 + ↵2u2 2 D(⌧).

Now what if D(A0) were not dense? Then there would be some freedom
in the choice of k since we could always add a component in D(A0)?. So
suppose we have two choices k1 6= k2. Then by the above calculation, there
are corresponding functions h̃1 and h̃2 such that h = h̃1 +↵1,1u1 +↵1,2u2 =
h̃2 + ↵2,1u1 + ↵2,2u2. In particular, h̃1 � h̃2 is in the kernel of ⌧ and hence
k1 = ⌧ h̃1 = ⌧ h̃2 = k2, a contradiction to our assumption.

Next we turn to A0. Denote the set on the right-hand side of (9.12) by
D. Then we have D ✓ D(A⇤⇤

0 ) = A0 by (9.7). Conversely, since A0 ✓ A⇤
0,

we can use (9.7) to conclude

Wa(f, h) +Wb(f, h) = 0, f 2 D(A0), h 2 D(A⇤

0).

Now replace h by a h̃ 2 D(A⇤
0) which coincides with h near a and vanishes

identically near b (Problem 9.1). Then Wa(f, h) = Wa(f, h̃) +Wb(f, h̃) = 0.
Finally, Wb(f, h) = �Wa(f, h) = 0 shows f 2 D. ⇤

Example. If ⌧ is regular at a, then Wa(f, g) = 0 for all g 2 D(⌧) if and
only if f(a) = (pf 0)(a) = 0. This follows since we can prescribe the values
of g(a), (pg0)(a) for g 2 D(⌧) arbitrarily. ⇧

This result shows that any self-adjoint extension of A0 must lie between
A0 and A⇤

0. Moreover, self-adjointness seems to be related to the Wronskian
of two functions at the boundary. Hence we collect a few properties first.
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Lemma 9.5. Suppose v 2 D(⌧) with Wa(v⇤, v) = 0 and suppose there is a
f̂ 2 D(⌧) with Wa(v⇤, f̂) 6= 0. Then, for f, g 2 D(⌧), we have

Wa(v, f) = 0 , Wa(v, f
⇤) = 0 (9.15)

and

Wa(v, f) = Wa(v, g) = 0 ) Wa(g
⇤, f) = 0. (9.16)

Proof. For all f1, . . . , f4 2 D(⌧) we have the Plücker identity

Wx(f1, f2)Wx(f3, f4) +Wx(f1, f3)Wx(f4, f2) +Wx(f1, f4)Wx(f2, f3) = 0
(9.17)

which remains valid in the limit x ! a. Choosing f1 = v, f2 = f, f3 =
v⇤, f4 = f̂ , we infer (9.15). Choosing f1 = f, f2 = g⇤, f3 = v, f4 = f̂ , we
infer (9.16). ⇤

Problem 9.1. Given ↵,�, �, �, show that there is a function f in D(⌧)
restricted to [c, d] ✓ (a, b) such that f(c) = ↵, (pf 0)(c) = � and f(d) = �,
(pf 0)(c) = �. (Hint: Lemma 9.2.)

Problem 9.2. Let A0 = �
d2

dx2 , D(A0) = {f 2 H2[0, 1]|f(0) = f(1) = 0}
and B = q, D(B) = {f 2 L2(0, 1)|qf 2 L2(0, 1)}. Find a q 2 L1(0, 1) such
that D(A0) \D(B) = {0}. (Hint: Problem 0.30.)

Problem 9.3. Let � 2 L1
loc(I). Define

A± = ±
d

dx
+ �, D(A±) = {f 2 L2(I)|f 2 AC(I), ±f 0 + �f 2 L2(I)}

and A0,± = A±|ACc(I). Show A⇤
0,± = A⌥ and

D(A0,±) = {f 2 D(A±)| lim
x!a,b

f(x)g(x) = 0, 8g 2 D(A⌥)}.

In particular, show that the limits above exist.

Problem 9.4 (Liouville normal form). Show that every Sturm–Liouville
equation can be transformed into one with r = p = 1 as follows: Show that
the transformation U : L2((a, b), r dx) ! L2(0, c), c =

R b
a

r(t)
p(t)dt, defined via

u(x) 7! v(y), where

y(x) =

Z x

a

s
r(t)

p(t)
dt, v(y) = 4

p
r(x(y))p(x(y))u(x(y)),

is unitary. Moreover, if p, r, p0, r0 2 AC(a, b), then

�(pu0)0 + qu = r�u

transforms into

�v00 +Qv = �v,
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where

Q = q �
(pr)1/4

r

�
p((pr)�1/4)0

�0
.

9.2. Weyl’s limit circle, limit point alternative

Inspired by Lemma 9.5, we make the following definition: We call ⌧ limit
circle (l.c.) at a if there is a v 2 D(⌧) with Wa(v⇤, v) = 0 such that
Wa(v, f) 6= 0 for at least one f 2 D(⌧). Otherwise ⌧ is called limit point
(l.p.) at a and similarly for b.

Example. If ⌧ is regular at a, it is limit circle at a. Since

Wa(v, f) = (pf 0)(a)v(a)� (pv0)(a)f(a), (9.18)

any real-valued v with (v(a), (pv0)(a)) 6= (0, 0) works. ⇧

Note that if Wa(f, v) 6= 0, then Wa(f,Re(v)) 6= 0 or Wa(f, Im(v)) 6= 0.
Hence it is no restriction to assume that v is real and Wa(v⇤, v) = 0 is
trivially satisfied in this case. In particular, ⌧ is limit point if and only if
Wa(f, g) = 0 for all f, g 2 D(⌧).

Theorem 9.6. If ⌧ is l.c. at a, then let v 2 D(⌧) with Wa(v⇤, v) = 0 and
Wa(v, f) 6= 0 for some f 2 D(⌧). Similarly, if ⌧ is l.c. at b, let w be an
analogous function. Then the operator

A : D(A) ! L2(I, r dx)
f 7! ⌧f

(9.19)

with
D(A) = {f 2 D(⌧)| Wa(v, f) = 0 if l.c. at a

Wb(w, f) = 0 if l.c. at b}
(9.20)

is self-adjoint. Moreover, the set

D1 = {f 2 D(⌧)| 9x0 2 I : 8x 2 (a, x0), Wx(v, f) = 0,
9x1 2 I : 8x 2 (x1, b), Wx(w, f) = 0}

(9.21)

is a core for A.

Proof. By Lemma 9.5, A is symmetric and hence A ✓ A⇤
✓ A⇤

0. Let g 2

D(A⇤). As in the computation of A0 we conclude Wa(f, g) = Wb(f, g) = 0
for all f 2 D(A). Moreover, we can choose f such that it coincides with v
near a and hence Wa(v, g) = 0. Similarly Wb(w, g) = 0; that is, g 2 D(A).

To see thatD1 is a core, letA1 be the corresponding operator and observe
that the argument from above, with A1 in place of A, shows A⇤

1 = A. ⇤

The name limit circle, respectively, limit point, stems from the original
approach of Weyl, who considered the set of solutions ⌧u = zu, z 2 C\R,
which satisfy Wx(u⇤, u) = 0. They can be shown to lie on a circle which
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converges to a circle, respectively, a point, as x ! a or x ! b (see Prob-
lem 9.9).

Before proceeding, let us shed some light on the number of possible
boundary conditions. Suppose ⌧ is l.c. at a and let u1, u2 be two solutions
of ⌧u = 0 with W (u1, u2) = 1. Abbreviate

BCj
x(f) = Wx(uj , f), f 2 D(⌧). (9.22)

Let v be as in Theorem 9.6. Then, using Lemma 9.5, it is not hard to see
that

Wa(v, f) = 0 , cos(↵)BC1
a(f)� sin(↵)BC2

a(f) = 0, (9.23)

where tan(↵) = �
BC1

a(v)
BC2

a(v)
. Hence all possible boundary conditions can be

parametrized by ↵ 2 [0,⇡). If ⌧ is regular at a and if we choose u1(a) =
(pu02)(a) = 1 and (pu01)(a) = u2(a) = 0, then

BC1
a(f) = f(a), BC2

a(f) = (pf 0)(a) (9.24)

and the boundary condition takes the simple form

sin(↵)(pf 0)(a)� cos(↵)f(a) = 0. (9.25)

The most common choice of ↵ = 0 is known as the Dirichlet boundary
condition f(a) = 0. The choice ↵ = ⇡/2 is known as the Neumann
boundary condition (pf 0)(a) = 0.

Finally, note that if ⌧ is l.c. at both a and b, then Theorem 9.6 does not
give all possible self-adjoint extensions. For example, one could also choose

BC1
a(f) = ei↵BC1

b (f), BC2
a(f) = ei↵BC2

b (f). (9.26)

The case ↵ = 0 gives rise to periodic boundary conditions in the regular
case.

Next we want to compute the resolvent of A.

Lemma 9.7. Suppose z 2 ⇢(A). Then there exists a solution ua(z, x) of
(⌧ � z)u = g which is in L2((a, c), r dx) and which satisfies the boundary
condition at a if ⌧ is l.c. at a. Similarly, there exists a solution ub(z, x) with
the analogous properties near b.

The resolvent of A is given by

(A� z)�1g(x) =

Z b

a
G(z, x, y)g(y)r(y)dy, (9.27)

where

G(z, x, y) =
1

W (ub(z), ua(z))

⇢
ub(z, x)ua(z, y), x � y,
ua(z, x)ub(z, y), x  y.

(9.28)
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Proof. Let g 2 L2
c(I, r dx) be real-valued and consider f = (A � z)�1g 2

D(A). Since (⌧ � z)f = 0 near a, respectively, b, we obtain ua(z, x) by
setting it equal to f near a and using the di↵erential equation to extend it
to the rest of I. Similarly we obtain ub. The only problem is that ua or ub
might be identically zero. Hence we need to show that this can be avoided
by choosing g properly.

Fix z and let g be supported in (c, d) ⇢ I. Since (⌧ � z)f = g, we have

f(x) = u1(x)

✓
↵+

Z x

a
u2gr dy

◆
+ u2(x)

✓
� +

Z b

x
u1gr dy

◆
. (9.29)

Near a (x < c) we have f(x) = ↵u1(x) + �̃u2(x) and near b (x > d) we have

f(x) = ↵̃u1(x) + �u2(x), where ↵̃ = ↵+
R b
a u2gr dy and �̃ = � +

R b
a u1gr dy.

If f vanishes identically near both a and b, we must have ↵ = � = ↵̃ = �̃ = 0
and thus ↵ = � = 0 and

R b
a uj(y)g(y)r(y)dy = 0, j = 1, 2. This case can

be avoided by choosing a suitable g and hence there is at least one solution,
say ub(z).

Now choose u1 = ub and consider the behavior near b. If u2 is not square
integrable on (d, b), we must have � = 0 since �u2 = f � ↵̃ub is. If u2 is
square integrable, we can find two functions in D(⌧) which coincide with ub
and u2 near b. Since W (ub, u2) = 1, we see that ⌧ is l.c. at a and hence
0 = Wb(ub, f) = Wb(ub, ↵̃ub + �u2) = �. Thus � = 0 in both cases and we
have

f(x) = ub(x)

✓
↵+

Z x

a
u2gr dy

◆
+ u2(x)

Z b

x
ubgr dy.

Now choosing g such that
R b
a ubgr dy 6= 0, we infer the existence of ua(z).

Choosing u2 = ua and arguing as before, we see ↵ = 0 and hence

f(x) = ub(x)

Z x

a
ua(y)g(y)r(y)dy + ua(x)

Z b

x
ub(y)g(y)r(y)dy

=

Z b

a
G(z, x, y)g(y)r(y)dy

for any g 2 L2
c(I, r dx). Since this set is dense, the claim follows. ⇤

Example. If ⌧ is regular at a with a boundary condition as in the pre-
vious example, we can choose ua(z, x) to be the solution corresponding to
the initial conditions (ua(z, a), (pu0a)(z, a)) = (sin(↵), cos(↵)). In particular,
ua(z, x) exists for all z 2 C.

If ⌧ is regular at both a and b, there is a corresponding solution ub(z, x),
again for all z. So the only values of z for which (A � z)�1 does not exist
must be those with W (ub(z), ua(z)) = 0. However, in this case ua(z, x)
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and ub(z, x) are linearly dependent and ua(z, x) = �ub(z, x) satisfies both
boundary conditions. That is, z is an eigenvalue in this case.

In particular, regular operators have pure point spectrum. We will see
in Theorem 9.10 below that this holds for any operator which is l.c. at both
endpoints. ⇧

In the previous example ua(z, x) is holomorphic with respect to z and
satisfies ua(z, x)⇤ = ua(z⇤, x) (since it corresponds to real initial conditions
and our di↵erential equation has real coe�cients). In general we have:

Lemma 9.8. Suppose z 2 ⇢(A). Then ua(z, x) from the previous lemma
can be chosen locally holomorphic with respect to z such that

ua(z, x)
⇤ = ua(z

⇤, x) (9.30)

and similarly for ub(z, x).

Proof. Since this is a local property near a, we can assume b is regular
and choose ub(z, x) such that (ub(z, b), (pu0b)(z, b)) = (sin(�),� cos(�)) as in
the example above. In addition, choose a second solution vb(z, x) such that
(vb(z, b), (pv0b)(z, b)) = (cos(�), sin(�)) and observe W (ub(z), vb(z)) = 1. If
z 2 ⇢(A), z is no eigenvalue and hence ua(z, x) cannot be a multiple of
ub(z, x). Thus we can set

ua(z, x) = vb(z, x) +m(z)ub(z, x)

and it remains to show that m(z) is holomorphic with m(z)⇤ = m(z⇤).

Choosing h with compact support in (a, c) and g with support in (c, b),
we have

hh, (A� z)�1gi = hh, ua(z)ihg
⇤, ub(z)i

= (hh, vb(z)i+m(z)hh, ub(z)i)hg
⇤, ub(z)i

(with a slight abuse of notation since ub, vb might not be square integrable).
Choosing (real-valued) functions h and g such that hh, ub(z)ihg⇤, ub(z)i 6= 0,
we can solve for m(z):

m(z) =
hh, (A� z)�1gi � hh, vb(z)ihg⇤, ub(z)i

hh, ub(z)ihg⇤, ub(z)i
.

This finishes the proof. ⇤

Example. We already know that ⌧ = �
d2

dx2 on I = (�1,1) gives rise to
the free Schrödinger operator H0. Furthermore,

u±(z, x) = e⌥
p
�zx, z 2 C, (9.31)

are two linearly independent solutions (for z 6= 0) and since Re(
p
�z) > 0

for z 2 C\[0,1), there is precisely one solution (up to a constant multiple)
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which is square integrable near ±1, namely u±. In particular, the only
choice for ua is u� and for ub is u+ and we get

G(z, x, y) =
1

2
p
�z

e�
p
�z|x�y| (9.32)

which we already found in Section 7.4. ⇧

If, as in the previous example, there is only one square integrable solu-
tion, there is no choice for G(z, x, y). But since di↵erent boundary condi-
tions must give rise to di↵erent resolvents, there is no room for boundary
conditions in this case. This indicates a connection between our l.c., l.p.
distinction and square integrability of solutions.

Theorem 9.9 (Weyl alternative). The operator ⌧ is l.c. at a if and only if
for one z0 2 C all solutions of (⌧ � z0)u = 0 are square integrable near a.
This then holds for all z 2 C and similarly for b.

Proof. If all solutions are square integrable near a, ⌧ is l.c. at a since the
Wronskian of two linearly independent solutions does not vanish.

Conversely, take two functions v, ṽ 2 D(⌧) with Wa(v, ṽ) 6= 0. By con-
sidering real and imaginary parts, it is no restriction to assume that v and
ṽ are real-valued. Thus they give rise to two di↵erent self-adjoint operators
A and Ã (choose any fixed w for the other endpoint). Let ua and ũa be the
corresponding solutions from above. Then W (ua, ũa) 6= 0 (since otherwise
A = Ã by Lemma 9.5) and thus there are two linearly independent solutions
which are square integrable near a. Since any other solution can be written
as a linear combination of those two, every solution is square integrable near
a.

It remains to show that all solutions of (⌧ � z)u = 0 for all z 2 C are
square integrable near a if ⌧ is l.c. at a. In fact, the above argument ensures
this for every z 2 ⇢(A) \ ⇢(Ã), that is, at least for all z 2 C\R.

Suppose (⌧ � z)u = 0 and choose two linearly independent solutions uj ,
j = 1, 2, of (⌧ � z0)u = 0 with W (u1, u2) = 1. Using (⌧ � z0)u = (z � z0)u
and (9.10), we have (a < c < x < b)

u(x) = ↵u1(x) + �u2(x) + (z � z0)

Z x

c
(u1(x)u2(y)� u1(y)u2(x))u(y)r(y) dy.

Since uj 2 L2((c, b), rdx), we can find a constant M � 0 such that

Z b

c
|u1,2(y)|

2r(y) dy  M.
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Now choose c close to b such that |z � z0|M2
 1/4. Next, estimating the

integral using Cauchy–Schwarz gives
���
Z x

c
(u1(x)u2(y)� u1(y)u2(x))u(y)r(y) dy

���
2



Z x

c
|u1(x)u2(y)� u1(y)u2(x)|

2r(y) dy

Z x

c
|u(y)|2r(y) dy

 M
⇣
|u1(x)|

2 + |u2(x)|
2
⌘Z x

c
|u(y)|2r(y) dy

and henceZ x

c
|u(y)|2r(y) dy  (|↵|2 + |�|2)M + 2|z � z0|M

2
Z x

c
|u(y)|2r(y) dy

 (|↵|2 + |�|2)M +
1

2

Z x

c
|u(y)|2r(y) dy.

Thus Z x

c
|u(y)|2r(y) dy  2(|↵|2 + |�|2)M

and since u 2 ACloc(I), we have u 2 L2((c, b), r dx) for every c 2 (a, b). ⇤

Now we turn to the investigation of the spectrum of A. If ⌧ is l.c. at
both endpoints, then the spectrum of A is very simple

Theorem 9.10. If ⌧ is l.c. at both endpoints, then the resolvent is a Hilbert–
Schmidt operator; that is,

Z b

a

Z b

a
|G(z, x, y)|2r(y)dy r(x)dx < 1. (9.33)

In particular, the spectrum of any self-adjoint extensions is purely discrete
and the eigenfunctions (which are simple) form an orthonormal basis.

Proof. This follows from the estimate
Z b

a

⇣Z x

a
|ub(x)ua(y)|

2r(y)dy +

Z b

x
|ub(y)ua(x)|

2r(y)dy
⌘
r(x)dx

 2

Z b

a
|ua(y)|

2r(y)dy

Z b

a
|ub(y)|

2r(y)dy,

which shows that the resolvent is Hilbert–Schmidt and hence compact. ⇤

Note that all eigenvalues are simple. If ⌧ is l.p. at one endpoint, this is
clear, since there is at most one solution of (⌧ � �)u = 0 which is square
integrable near this endpoint. If ⌧ is l.c., this also follows since the fact that
two solutions of (⌧ � �)u = 0 satisfy the same boundary condition implies
that their Wronskian vanishes.
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If ⌧ is not l.c., the situation is more complicated and we can only say
something about the essential spectrum.

Theorem 9.11. All self-adjoint extensions have the same essential spec-
trum. Moreover, if Aac and Acb are self-adjoint extensions of ⌧ restricted to
(a, c) and (c, b) (for any c 2 I), then

�ess(A) = �ess(Aac) [ �ess(Acb). (9.34)

Proof. Since (⌧ � i)u = 0 has two linearly independent solutions, the defect
indices are at most two (they are zero if ⌧ is l.p. at both endpoints, one if
⌧ is l.c. at one and l.p. at the other endpoint, and two if ⌧ is l.c. at both
endpoints). Hence the first claim follows from Theorem 6.20.

For the second claim restrict ⌧ to the functions with compact support
in (a, c) [ (c, d). Then, this operator is the orthogonal sum of the operators
A0,ac and A0,cb. Hence the same is true for the adjoints and hence the defect
indices of A0,ac � A0,cb are at most four. Now note that A and Aac � Acb

are both self-adjoint extensions of this operator. Thus the second claim also
follows from Theorem 6.20. ⇤

In particular, this result implies that for the essential spectrum only the
behaviour near the endpoints a and b is relevant.

Another useful result to determine if q is relatively compact is the fol-
lowing:

Lemma 9.12. Suppose k 2 L2
loc((a, b), r dx). Then kRA(z) is Hilbert–

Schmidt if and only if

kkRA(z)k
2
2 =

1

Im(z)

Z b

a
|k(x)|2 Im(G(z, x, x))r(x)dx (9.35)

is finite.

Proof. From the first resolvent formula we have

G(z, x, y)�G(z0, x, y) = (z � z0)

Z b

a
G(z, x, t)G(z0, t, y)r(t)dt.

Setting x = y and z0 = z⇤, we obtain

Im(G(z, x, x)) = Im(z)

Z b

a
|G(z, x, t)|2r(t)dt. (9.36)

Using this last formula to compute the Hilbert–Schmidt norm proves the
lemma. ⇤

Problem 9.5. Compute the spectrum and the resolvent of ⌧ = �
d2

dx2 , I =
(0,1) defined on D(A) = {f 2 D(⌧)|f(0) = 0}.
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Problem 9.6. Suppose ⌧ is given on (a,1), where a is a regular endpoint.
Suppose there are two solutions u± of ⌧u = zu satisfying r(x)1/2|u±(x)| 
Ce⌥↵x for some C,↵ > 0. Then z is not in the essential spectrum of any self-
adjoint operator corresponding to ⌧ . (Hint: You can take any self-adjoint
extension, say the one for which ua = u� and ub = u+. Write down what
you expect the resolvent to be and show that it is a bounded operator by
comparison with the resolvent from the previous problem.)

Problem 9.7. Suppose a is regular and limx!b q(x)/r(x) = 1. Show that
�ess(A) = ; for every self-adjoint extension. (Hint: Fix some positive con-
stant n and choose c 2 (a, b) such that q(x)/r(x) � n in (c, b) and use
Theorem 9.11.)

Problem 9.8 (Approximation by regular operators). Fix functions v, w 2

D(⌧) as in Theorem 9.6. Pick Im = (cm, dm) with cm # a, dm " b and define

Am : D(Am) ! L2(Im, r dr)
f 7! ⌧f

,

where

D(Am) = {f 2 L2(Im, r dr)| f, pf 0
2 AC(Im), ⌧f 2 L2(Im, r dr),

Wcm(v, f) = Wdm(w, f) = 0}.

Then Am converges to A in the strong resolvent sense as m ! 1. (Hint:
Lemma 6.36.)

Problem 9.9 (Weyl circles). Fix z 2 C\R and c 2 (a, b). Introduce

[u]x =
W (u, u⇤)x
z � z⇤

2 R

and use (9.4) to show that

[u]x = [u]c +

Z x

c
|u(y)|2 r(y)dy, (⌧ � z)u = 0.

Hence [u]x is increasing and exists if and only if u 2 L2((c, b), r dx).

Let u1,2 be two solutions of (⌧ � z)u = 0 which satisfy [u1]c = [u2]c = 0
and W (u1, u2) = 1. Then, all (nonzero) solutions u of (⌧ � z)u = 0 which
satisfy [u]b = 0 can be written as

u = u2 +mu1, m 2 C,
up to a complex multiple (note [u1]x > 0 for x > c).

Show that

[u2 +mu1]x = [u1]x
⇣
|m�M(x)|2 �R(x)2

⌘
,

where

M(x) = �
W (u2, u⇤1)x
W (u1, u⇤1)x
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and

R(x)2 =
⇣
|W (u2, u

⇤

1)x|
2 +W (u2, u

⇤

2)xW (u1, u
⇤

1)x
⌘⇣

|z � z⇤|[u1]x
⌘�2

=
⇣
|z � z⇤|[u1]x

⌘�2
.

Hence the numbers m for which [u]x = 0 lie on a circle which either converges
to a circle (if limx!bR(x) > 0) or to a point (if limx!bR(x) = 0) as x ! b.
Show that ⌧ is l.c. at b in the first case and l.p. in the second case.

9.3. Spectral transformations I

In this section we want to provide some fundamental tools for investigating
the spectra of Sturm–Liouville operators and, at the same time, give some
nice illustrations of the spectral theorem.

Example. Consider again ⌧ = �
d2

dx2 on I = (�1,1). From Section 7.2
we know that the Fourier transform maps the associated operator H0 to the
multiplication operator with p2 in L2(R). To get multiplication by �, as in
the spectral theorem, we set p =

p
� and split the Fourier integral into a

positive and negative part, that is,

(Uf)(�) =

 R
R ei

p
�xf(x) dxR

R e�i
p
�xf(x) dx

!
, � 2 �(H0) = [0,1). (9.37)

Then

U : L2(R) !
2M

j=1

L2(R,
�[0,1)(�)

2
p
�

d�) (9.38)

is the spectral transformation whose existence is guaranteed by the spectral
theorem (Lemma 3.4). Note, however, that the measure is not finite. This
can be easily fixed if we replace exp(±i

p
�x) by �(�) exp(±i

p
�x). ⇧

Note that in the previous example the kernel e±i
p
�x of the integral trans-

form U is just a pair of linearly independent solutions of the underlying
di↵erential equation (though no eigenfunctions, since they are not square
integrable).

More generally, if

U : L2(I, r dx) ! L2(R, dµ), f(x) 7!

Z

I
u(�, x)f(x)r(x) dx (9.39)

is an integral transformation which maps a self-adjoint Sturm–Liouville op-
erator A to multiplication by �, then its kernel u(�, x) is a solution of the
underlying di↵erential equation. This formally follows from UAf = �Uf
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which implies

0 =

Z

I
u(�, x)(⌧ � �)f(x)r(x) dx =

Z

I
(⌧ � �)u(�, x)f(x)r(x) dx (9.40)

and hence (⌧ � �)u(�, .) = 0.

Lemma 9.13. Suppose

U : L2(I, r dx) !
kM

j=1

L2(R, dµj) (9.41)

is a spectral mapping as in Lemma 3.4. Then U is of the form

Uf(x) =

Z b

a
u(�, x)f(x)r(x) dx, (9.42)

where u(�, x) = (u1(�, x), . . . , uk(�, x)) is measurable and for a.e. � (with
respect to µj) and each uj(�, .) is a solution of ⌧uj = �uj which satisfies the
boundary conditions of A (if any). Here the integral has to be understood asR b
a dx = limc#a,d"b

R d
c dx with limit taken in

L
j L

2(R, dµj).

The inverse is given by

(U�1F )(x) =
kX

j=1

Z

R
uj(�, x)

⇤Fj(�)dµj(�). (9.43)

Again the integrals have to be understood as
R
R dµj = limR!1

R R
�R dµj with

limits taken in L2(I, r dx).

If the spectral measures are ordered, then the solutions uj(�), 1  j  l,
are linearly independent for a.e. � with respect to µl. In particular, for
ordered spectral measures we always have k  2 and even k = 1 if ⌧ is l.c.
at one endpoint.

Proof. Using UjRA(z) =
1

��zUj , we have

Ujf(x) = (�� z)Uj

Z b

a
G(z, x, y)f(y)r(y) dy.

If we restrict RA(z) to a compact interval [c, d] ⇢ (a, b), then RA(z)�[c,d]

is Hilbert–Schmidt since G(z, x, y)�[c,d](y) is square integrable over (a, b)⇥
(a, b). Hence Uj�[c,d] = (�� z)UjRA(z)�[c,d] is Hilbert–Schmidt as well and

by Lemma 6.9 there is a corresponding kernel u[c,d]j (�, y) such that

(Uj�[c,d]f)(�) =

Z b

a
u[c,d]j (�, x)f(x)r(x) dx.
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Now take a larger compact interval [ĉ, d̂] ◆ [c, d]. Then the kernels coincide

on [c, d], u[c,d]j (�, .) = u[ĉ,d̂]j (�, .)�[c,d], since we have Uj�[c,d] = Uj�[ĉ,d̂]�[c,d].

In particular, there is a kernel uj(�, x) such that

Ujf(x) =

Z b

a
uj(�, x)f(x)r(x) dx

for every f with compact support in (a, b). Since functions with compact
support are dense and Uj is continuous, this formula holds for any f provided
the integral is understood as the corresponding limit.

Using the fact that U is unitary, hF ,Ugi = hU�1F , gi, we see

X

j

Z

R
Fj(�)

⇤

Z b

a
uj(�, x)g(x)r(x) dx =

Z b

a
(U�1F )(x)⇤g(x)r(x) dx.

Interchanging integrals on the right-hand side (which is permitted at least
for g, F with compact support), the formula for the inverse follows.

Next, from UjAf = �Ujf we have
Z b

a
uj(�, x)(⌧f)(x)r(x) dx = �

Z b

a
uj(�, x)f(x)r(x) dx

for a.e. � and every f 2 D(A0). Restricting everything to [c, d] ⇢ (a, b),
the above equation implies uj(�, .)|[c,d] 2 D(A⇤

cd,0) and A⇤

cd,0uj(�, .)|[c,d] =
�uj(�, .)|[c,d]. In particular, uj(�, .) is a solution of ⌧uj = �uj . Moreover, if
⌧ is l.c. near a, we can choose c = a and allow all f 2 D(⌧) which satisfy
the boundary condition at a and vanish identically near b.

Finally, assume the µj are ordered and fix l  k. Suppose

lX

j=1

cj(�)uj(�, x) = 0.

Then we have
lX

j=1

cj(�)Fj(�) = 0, Fj = Ujf,

for every f . Since U is surjective, we can prescribe Fj arbitrarily on �(µl),
e.g., Fj(�) = 1 for j = j0 and Fj(�) = 0 otherwise, which shows cj0(�) = 0.
Hence the solutions uj(�, x), 1  j  l, are linearly independent for � 2

�(µl) which shows k  2 since there are at most two linearly independent
solutions. If ⌧ is l.c. and uj(�, x) must satisfy the boundary condition, there
is only one linearly independent solution and thus k = 1. ⇤

Note that since we can replace uj(�, x) by �j(�)uj(�, x) where |�j(�)| =
1, it is no restriction to assume that uj(�, x) is real-valued.
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For simplicity we will only pursue the case where one endpoint, say a,
is regular. The general case can often be reduced to this case and will be
postponed until Section 9.6.

We choose a boundary condition

cos(↵)f(a)� sin(↵)p(a)f 0(a) = 0 (9.44)

and introduce two solution s(z, x) and c(z, x) of ⌧u = zu satisfying the
initial conditions

s(z, a) = sin(↵), p(a)s0(z, a) = cos(↵),

c(z, a) = cos(↵), p(a)c0(z, a) = � sin(↵). (9.45)

Note that s(z, x) is the solution which satisfies the boundary condition at
a; that is, we can choose ua(z, x) = s(z, x). In fact, if ⌧ is not regular
at a but only l.c., everything below remains valid if one chooses s(z, x) to
be a solution satisfying the boundary condition at a and c(z, x) a linearly
independent solution with W (c(z), s(z)) = 1.

Moreover, in our previous lemma we have u1(�, x) = �a(�)s(�, x) and
using the rescaling dµ(�) = |�a(�)|2dµa(�) and (U1f)(�) = �a(�)(Uf)(�),
we obtain a unitary map

U : L2(I, r dx) ! L2(R, dµ), (Uf)(�) =

Z b

a
s(�, x)f(x)r(x)dx (9.46)

with inverse

(U�1F )(x) =

Z

R
s(�, x)F (�)dµ(�). (9.47)

Note, however, that while this rescaling gets rid of the unknown factor �a(�),
it destroys the normalization of the measure µ. For µ1 we know µ1(R) (if
the corresponding vector is normalized), but µ might not even be bounded!
In fact, it turns out that µ is indeed unbounded.

So up to this point we have our spectral transformation U which maps A
to multiplication by �, but we know nothing about the measure µ. Further-
more, the measure µ is the object of desire since it contains all the spectral
information of A. So our next aim must be to compute µ. If A has only
pure point spectrum (i.e., only eigenvalues), this is straightforward as the
following example shows.

Example. Suppose E 2 �p(A) is an eigenvalue. Then s(E, x) is the cor-
responding eigenfunction and the same is true for SE(�) = (Us(E))(�). In
particular, �{E}(A)s(E, x) = s(E, x) shows SE(�) = (U�{E}(A)s(E))(�) =
�{E}(�)SE(�); that is,

SE(�) =

⇢
ks(E)k2, � = E,
0, � 6= 0.

(9.48)
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Moreover, since U is unitary, we have

ks(E)k2 =

Z b

a
s(E, x)2r(x)dx =

Z

R
SE(�)

2dµ(�) = ks(E)k4µ({E}); (9.49)

that is, µ({E}) = ks(E)k�2. In particular, if A has pure point spectrum
(e.g., if ⌧ is limit circle at both endpoints), we have

dµ(�) =
1X

j=1

1

ks(Ej)k2
d⇥(�� Ej), �p(A) = {Ej}

1

j=1, (9.50)

where d⇥ is the Dirac measure centered at 0. For arbitrary A, the above
formula holds at least for the pure point part µpp. ⇧

In the general case we have to work a bit harder. Since c(z, x) and s(z, x)
are linearly independent solutions,

W (c(z), s(z)) = 1, (9.51)

we can write ub(z, x) = �b(z)(c(z, x) +mb(z)s(z, x)), where

mb(z) =
cos(↵)p(a)u0b(z, a) + sin(↵)ub(z, a)

cos(↵)ub(z, a)� sin(↵)p(a)u0b(z, a)
, z 2 ⇢(A), (9.52)

is known as the Weyl–Titchmarsh m-function. Note that mb(z) is holo-
morphic in ⇢(A) and that

mb(z)
⇤ = mb(z

⇤) (9.53)

since the same is true for ub(z, x) (the denominator in (9.52) only vanishes if
ub(z, x) satisfies the boundary condition at a, that is, if z is an eigenvalue).
Moreover, the constant �b(z) is of no importance and can be chosen equal
to one,

ub(z, x) = c(z, x) +mb(z)s(z, x). (9.54)

Lemma 9.14. The Weyl m-function is a Herglotz function and satisfies

Im(mb(z)) = Im(z)

Z b

a
|ub(z, x)|

2r(x) dx, (9.55)

where ub(z, x) is normalized as in (9.54).

Proof. Given two solutions u(x), v(x) of ⌧u = zu, ⌧v = ẑv, respectively, it
is straightforward to check

(ẑ � z)

Z x

a
u(y)v(y)r(y) dy = Wx(u, v)�Wa(u, v)

(clearly it is true for x = a; now di↵erentiate with respect to x). Now choose
u(x) = ub(z, x) and v(x) = ub(z, x)⇤ = ub(z⇤, x),

�2 Im(z)

Z x

a
|ub(z, y)|

2r(y) dy = Wx(ub(z), ub(z)
⇤)� 2 Im(mb(z)),



200 9. One-dimensional Schrödinger operators

and observe that Wx(ub, u⇤b) vanishes as x " b, since both ub and u⇤b are in
D(⌧) near b. ⇤

Lemma 9.15. Let

G(z, x, y) =

(
s(z, x)ub(z, y), y � x,

s(z, y)ub(z, x), y  x,
(9.56)

be the Green function of A. Then

(UG(z, x, .))(�) =
s(�, x)

�� z
and (Up(x)@xG(z, x, .))(�) =

p(x)s0(�, x)

�� z
(9.57)

for every x 2 (a, b) and every z 2 ⇢(A).

Proof. First of all note that G(z, x, .) 2 L2((a, b), r dx) for every x 2 (a, b)
and z 2 ⇢(A). Moreover, from RA(z)f = U�1 1

��zUf we have

Z b

a
G(z, x, y)f(y)r(y) dy =

Z

R

s(�, x)F (�)

�� z
dµ(�), (9.58)

where F = Uf . Here equality is to be understood in L2, that is, for a.e.
x. However, the left-hand side is continuous with respect to x and so is the
right-hand side, at least if F has compact support. Since this set is dense,
the first equality follows. Similarly, the second follows after di↵erentiating
(9.58) with respect to x. ⇤

Corollary 9.16. We have

(Uub(z))(�) =
1

�� z
, (9.59)

where ub(z, x) is normalized as in (9.54).

Proof. Choosing x = a in the lemma, we obtain the claim from the first
identity if sin(↵) 6= 0 and from the second if cos(↵) 6= 0. ⇤

Now combining Lemma 9.14 and Corollary 9.16, we infer from unitarity
of U that

Im(mb(z)) = Im(z)

Z b

a
|ub(z, x)|

2r(x) dx = Im(z)

Z

R

1

|�� z|2
dµ(�) (9.60)

and since a holomorphic function is determined up to a real constant by its
imaginary part, we obtain

Theorem 9.17. The Weyl m-function is given by

mb(z) = d+

Z

R

✓
1

�� z
�

�

1 + �2

◆
dµ(�), d 2 R, (9.61)
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and

d = Re(mb(i)),

Z

R

1

1 + �2
dµ(�) = Im(mb(i)) < 1. (9.62)

Moreover, µ is given by the Stieltjes inversion formula

µ(�) = lim
�#0

lim
"#0

1

⇡

Z �+�

�
Im(mb(�+ i"))d�, (9.63)

where

Im(mb(�+ i")) = "

Z b

a
|ub(�+ i", x)|2r(x) dx. (9.64)

Proof. Choosing z = i in (9.60) shows (9.62) and hence the right-hand side
of (9.61) is a well-defined holomorphic function in C\R. By

Im(
1

�� z
�

�

1 + �2
) =

Im(z)

|�� z|2

its imaginary part coincides with that of mb(z) and hence equality follows.
The Stieltjes inversion formula follows as in the case where the measure is
bounded. ⇤

Example. Consider ⌧ = �
d2

dx2 on I = (0,1). Then

c(z, x) = cos(↵) cos(
p
zx)�

sin(↵)
p
z

sin(
p
zx) (9.65)

and

s(z, x) = sin(↵) cos(
p
zx) +

cos(↵)
p
z

sin(
p
zx). (9.66)

Moreover,

ub(z, x) = ub(z, 0)e
�
p
�zx (9.67)

and thus

mb(z) =
sin(↵)�

p
�z cos(↵)

cos(↵) +
p
�z sin(↵)

, (9.68)

respectively,

dµ(�) =

p
�

⇡(cos(↵)2 + � sin(↵)2)
d�. (9.69)

⇧

Note that if ↵ 6= 0, we even have
R

1
|��z|dµ(�) < 0 in the previous

example and hence

mb(z) = � cot(↵) +

Z

R

1

�� z
dµ(�) (9.70)

in this case (the factor � cot(↵) follows by considering the limit |z| ! 1

of both sides). Formally this even follows in the general case by choosing
x = a in ub(z, x) = (U�1 1

��z )(x); however, since we know equality only for
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a.e. x, a more careful analysis is needed. We will address this problem in
the next section.

Problem 9.10. Show

mb,↵(z) =
cos(↵� �)mb,�(z) + sin(↵� �)

cos(↵� �)� sin(↵� �)mb,�(z)
. (9.71)

(Hint: The case � = 0 is (9.52).)

Problem 9.11. Let �0(x), ✓0(x) be two real-valued solutions of ⌧u = �0u
for some fixed �0 2 R such that W (✓0,�0) = 1. We will call ⌧ quasi-regular
at a if the limits

lim
x!a

Wx(�0, u(z)), lim
x!a

Wx(✓0, u(z)) (9.72)

exist for every solution u(z) of ⌧u = zu. Show that this definition is inde-
pendent of �0 (Hint: Plücker’s identity). Show that ⌧ is quasi-regular at a
if it is l.c. at a.

Introduce

�(z, x) = Wa(c(z),�0)s(z, x)�Wa(s(z),�0)c(z, x),

✓(z, x) = Wa(s(z), ✓0)c(z, x)�Wa(c(z), ✓0)s(z, x), (9.73)

where c(z, x) and s(z, x) are chosen with respect to some base point c 2 (a, b),
and a singular Weyl m-function Mb(z) such that

 (z, x) = ✓(z, x) +Mb(z)�(z, x) 2 L2(c, b). (9.74)

Show that all claims from this section still hold true in this case for the
operator associated with the boundary condition Wa(�0, f) = 0 if ⌧ is l.c. at
a.

9.4. Inverse spectral theory

In this section we want to show that the Weyl m-function (respectively,
the corresponding spectral measure) uniquely determines the operator. For
simplicity we only consider the case p = r ⌘ 1.

We begin with some asymptotics for large z away from the spectrum.
We recall that

p
z always denotes the branch with arg(z) 2 (�⇡,⇡]. We will

write c(z, x) = c↵(z, x) and s(z, x) = s↵(z, x) to display the dependence on
↵ whenever necessary.

We first observe (Problem 9.12)
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Lemma 9.18. For ↵ = 0 we have

c0(z, x) = cosh(
p
�z(x� a)) +O(

1
p
�z

e
p
�z(x�a)),

s0(z, x) =
1

p
�z

sinh(
p
�z(x� a)) +O(

1

z
e
p
�z(x�a)), (9.75)

uniformly for x 2 (a, c) as |z| ! 1.

Note that for z 2 C\[0,1) this can be written as

c0(z, x) =
1

2
e
p
�z(x�a)(1 +O(

1
p
�z

)),

s0(z, x) =
1

2
p
�z

e
p
�z(x�a)(1 +O(

1

z
)), (9.76)

for Im(z) ! 1 and for z = � 2 [0,1) we have

c0(�, x) = cos(
p

�(x� a)) +O(
1
p
�
),

s0(�, x) =
1
p
�
sin(

p

�(x� a)) +O(
1

�
), (9.77)

as �! 1.

From this lemma we obtain

Lemma 9.19. The Weyl m-function satisfies

mb(z) =

(
� cot(↵) +O( 1

p
�z

), ↵ 6= 0,

�
p
�z +O(1), ↵ = 0,

(9.78)

as z ! 1 in any sector |Re(z)|  C| Im(z)|.

Proof. As in the proof of Theorem 9.17 we obtain from Lemma 9.15

G(z, x, x) = d(x) +

Z

R

✓
1

�� z
�

�

1 + �2

◆
s(�, x)2dµ(�).

Hence, since the integrand converges pointwise to 0, dominated convergence
(Problem 9.13) implies G(z, x, x) = o(z) as z ! 1 in any sector |Re(z)| 
C| Im(z)|. Now solving G(z, x, y) = s(z, x)ub(z, x) for mb(z) and using the
asymptotic expansions from Lemma 9.18, we see

mb(z) = �
c(z, x)

s(z, x)
+ o(ze�2

p
�z(x�a))

from which the claim follows. ⇤

Note that assuming q 2 Ck([a, b)), one can obtain further asymptotic
terms in Lemma 9.18 and hence also in the expansion of mb(z).

The asymptotics of mb(z) in turn tell us more about L2(R, dµ).
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Lemma 9.20. Let

F (z) = d+

Z

R

✓
1

�� z
�

�

1 + �2

◆
dµ(�)

be a Herglotz function. Then, for any 0 < � < 2, we have
Z

R

dµ(�)

1 + |�|�
< 1 ()

Z
1

1

Im(F (iy))

y�
dy < 1. (9.79)

Proof. First of all note that we can split F (z) = F1(z) + F2(z) according
to dµ = �[�1,1]dµ + (1 + �[�1,1])dµ. The part F1(z) corresponds to a finite
measure and does not contribute by Theorem 3.20. Hence we can assume
that µ is not supported near 0. Then Fubini shows
Z

1

0

Im(F (iy))

y�
dy =

Z
1

0

Z

R

y1��

�2 + y2
dµ(�)dy =

⇡/2

sin(�⇡/2)

Z

R

1

|�|�
dµ(�),

which proves the claim. Here we have used (Problem 9.14)
Z

1

0

y1��

�2 + y2
dy =

⇡/2

|�|� sin(�⇡/2)
.

⇤

For the case � = 0 see Theorem 3.20 and for the case � = 2 see Prob-
lem 9.15.

Corollary 9.21. We have

G(z, x, y) =

Z

R

s(�, x)s(�, y)

�� z
dµ(�), (9.80)

where the integrand is integrable. Moreover, for any " > 0 we have

G(z, x, y) = O(z�1/2+"e�
p
�z|y�x|), (9.81)

as z ! 1 in any sector |Re(z)|  C| Im(z)|.

Proof. The previous lemma implies
R
s(�, x)2(1+|�|)�dµ(�) < 1 for � > 1

2 .
This already proves the first part and also the second in the case x = y, and
hence the result follows from |�� z|�1

 const Im(z)�1/2+"(1+ �2)�1/4�"/2

(Problem 9.13) in any sector |Re(z)|  C| Im(z)|. But the case x = y implies

ub(z, x) = O(z�1/2+"e�
p
�z(a�x)),

which in turn implies the x 6= y case. ⇤

Now we come to our main result of this section:
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Theorem 9.22. Suppose ⌧j, j = 0, 1, are given on (a, b) and both are regular
at a. Moreover, Aj are some self-adjoint operators associated with ⌧j and
the same boundary condition at a.

Let c 2 (0, b). Then q0(x) = q1(x) for x 2 (a, c) if and only if for every
" > 0 we have that m1,b(z)�m0,b(z) = O(e�2(a�")Re(

p
�z)) as z ! 1 along

some nonreal ray.

Proof. By (9.75) we have s1(z, x)/s0(z, x) ! 1 as z ! 1 along any nonreal
ray. Moreover, (9.81) in the case y = x shows s0(z, x)u1,b(z, x) ! 0 and
s1(z, x)u0,b(z, x) ! 0 as well. In particular, the same is true for the di↵erence

s1(z, x)c0(z, x)� s0(z, x)c1(z, x) + (m1,b(z)�m0,b(z))s0(z, x)s1(z, x).

Since the first two terms cancel for x 2 (a, c), (9.75) implies m1,b(z) �

m0,b(z) = O(e�2(a�")Re(
p
�z)).

To see the converse, first note that the entire function

s1(z, x)c0(z, x)� s0(z, x)c1(z, x) =s1(z, x)u0,b(z, x)� s0(z, x)u1,b(z, x)

� (m1,b(z)�m0,b(z))s0(z, x)s1(z, x)

vanishes as z ! 1 along any nonreal ray for fixed x 2 (a, c) by the same
arguments used before together with the assumption on m1,b(z) �m0,b(z).
Moreover, by (9.75) this function has an order of growth  1/2 and thus
by the Phragmén–Lindelöf theorem (e.g., [53, Thm. 4.3.4]) is bounded on
all of C. By Liouville’s theorem it must be constant and since it vanishes
along rays, it must be zero; that is, s1(z, x)c0(z, x) = s0(z, x)c1(z, x) for all
z 2 C and x 2 (a, c). Di↵erentiating this identity with respect to x and us-
ing W (cj(z), sj(z)) = 1 shows s1(z, x)2 = s0(z, x)2. Taking the logarithmic
derivative further gives s01(z, x)/s1(z, x) = s00(z, x)/s0(z, x) and di↵erentiat-
ing once more shows s001(z, x)/s1(z, x) = s000(z, x)/s0(z, x). This finishes the
proof since qj(x) = z + s00j (z, x)/sj(z, x). ⇤

Problem 9.12. Prove Lemma 9.18. (Hint: Without loss set a = 0. Now
use that

c(z, x) = cos(↵) cosh(
p
�zx)�

sin(↵)
p
�z

sinh(
p
�zx)

�
1

p
�z

Z x

0
sinh(

p
�z(x� y))q(y)c(z, y)dy

by Lemma 9.2 and consider c̃(z, x) = e�
p
�zxc(z, x).)

Problem 9.13. Show
����

1

�� z

���� 
2

p
1 + �2

|z|

Im(z)
(9.82)
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and ����
1

�� z
�

�

1 + �2

���� 
2

1 + �2
(1 + |z|)|z|

Im(z)
(9.83)

for any � 2 R. (Hint: To obtain the first, search for the maximum as
a function of � (cf. also Problem 3.7). The second then follows from the
first.)

Problem 9.14. Show
Z

1

0

y1��

1 + y2
dy =

⇡/2

sin(�⇡/2)
, � 2 (0, 2),

by proving Z
1

�1

e↵x

1 + ex
dx =

⇡

sin(�⇡)
, ↵ 2 (0, 1).

(Hint: To compute the last integral, use a contour consisting of the straight
lines connecting the points �R, R, R+2⇡i, �R+2⇡i. Evaluate the contour
integral using the residue theorem and let R ! 1. Show that the contribu-
tions from the vertical lines vanish in the limit and relate the integrals along
the horizontal lines.)

Problem 9.15. In Lemma 9.20 we assumed 0 < � < 2. Show that in the
case � = 2 we have

Z

R

log(1 + �2)

1 + �2
dµ(�) < 1 ()

Z
1

1

Im(F (iy))

y2
dy < 1.

(Hint:
R
1

1
y�1

�2+y2dy = log(1+�2)
2�2 .)

9.5. Absolutely continuous spectrum

In this section we will show how to locate the absolutely continuous spec-
trum. We will again assume that a is a regular endpoint. Moreover, we
assume that b is l.p. since otherwise the spectrum is discrete and there will
be no absolutely continuous spectrum.

In this case we have seen in the Section 9.3 that A is unitarily equivalent
to multiplication by � in the space L2(R, dµ), where µ is the measure asso-
ciated to the Weyl m-function. Hence by Theorem 3.23 we conclude that
the set

Ms = {�| lim sup
"#0

Im(mb(�+ i")) = 1} (9.84)

is a support for the singularly continuous part and

Mac = {�|0 < lim sup
"#0

Im(mb(�+ i")) < 1} (9.85)
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is a minimal support for the absolutely continuous part. Moreover, �(Aac)
can be recovered from the essential closure of Mac; that is,

�(Aac) = M
ess
ac . (9.86)

Compare also Section 3.2.

We now begin our investigation with a crucial estimate on Im(mb(�+i")).
Set

kfk(a,x) =

sZ x

a
|f(y)|2r(y)dy, x 2 (a, b). (9.87)

Lemma 9.23. Let

" = (2ks(�)k(1,x)kc(�)k(a,x))
�1 (9.88)

and note that since b is l.p., there is a one-to-one correspondence between
" 2 (0,1) and x 2 (a, b). Then

5�
p
24  |mb(�+ i")|

ks(�)k(a,x)
kc(�)k(a,x)

 5 +
p
24. (9.89)

Proof. Let x > a. Then by Lemma 9.2

u+(�+ i", x) = c(�, x)�mb(�+ i")s(�, x)

� i"

Z x

a

�
c(�, x)s(�, y)� c(�, y)s(�, x)

�
u+(�+ i", y)r(y)dy.

Hence one obtains after a little calculation (as in the proof of Theorem 9.9)

kc(�)�mb(�+ i")s(�)k(a,x) kub(�+ i")k(a,x)

+ 2"ks(�)k(a,x)kc(�)k(a,x)kub(�+ i")k(a,x).

Using the definition of " and (9.55), we obtain

kc(�)�mb(�+ i")s(�)k2(a,x)  4kub(�+ i")k2(a,x)

 4kub(�+ i")k2(a,b) =
4

"
Im(mb(�+ i"))

 8ks(�)k(a,x)kc(�)k(a,x) Im(mb(�+ i")).

Combining this estimate with

kc(�)�mb(�+ i")s(�)k2(a,x) �
⇣
kc(�)k(a,x) � |mb(�+ i")|ks(�)k(a,x)

⌘2

shows (1� t)2  8t, where t = |mb(�+ i")|ks(�)k(a,x)kc(�)k
�1
(a,x). ⇤

We now introduce the concept of subordinacy. A nonzero solution u of
⌧u = zu is called sequentially subordinate at b with respect to another
solution v if

lim inf
x!b

kuk(a,x)
kvk(a,x)

= 0. (9.90)
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If the lim inf can be replaced by a lim, the solution is called subordinate.
Both concepts will eventually lead to the same results (cf. Remark 9.26
below). We will work with (9.90) since this will simplify proofs later on and
hence we will drop the additional sequentially.

It is easy to see that if u is subordinate with respect to v, then it is
subordinate with respect to any linearly independent solution. In particular,
a subordinate solution is unique up to a constant. Moreover, if a solution
u of ⌧u = �u, � 2 R, is subordinate, then it is real up to a constant, since
both the real and the imaginary parts are subordinate. For z 2 C\R we
know that there is always a subordinate solution near b, namely ub(z, x).
The following result considers the case z 2 R.

Lemma 9.24. Let � 2 R. There is a subordinate solution u(�) near b if
and only if there is a sequence "n # 0 such that mb(� + i"n) converges to a
limit in R [ {1} as n ! 1. Moreover,

lim
n!1

mb(�+ i"n) =
cos(↵)p(a)u0(�, a) + sin(↵)u(�, a)

cos(↵)u(�, a)� sin(↵)p(a)u0(�, a)
(9.91)

in this case (compare (9.52)).

Proof. We will consider the number ↵ fixing the boundary condition as a
parameter and write s↵(z, x), c↵(z, x), mb,↵, etc., to emphasize the depen-
dence on ↵.

Every solution can (up to a constant) be written as s�(�, x) for some
� 2 [0,⇡). But by Lemma 9.23, s�(�, x) is subordinate if and only there is
a sequence "n # 0 such that limn!1mb,�(�+ i"n) = 1 and by (9.71) this is
the case if and only if

lim
n!1

mb,↵(�+i"n) = lim
n!1

cos(↵� �)mb,�(�+ i"n) + sin(↵� �)

cos(↵� �)� sin(↵� �)mb,�(�+ i"n)
= cot(↵��)

is a number in R [ {1}. ⇤

We are interested in N(⌧), the set of all � 2 R for which no subordinate
solution exists, that is,

N(⌧) = {� 2 R|No solution of ⌧u = �u is subordinate at b} (9.92)

and the set
S↵(⌧) = {�| s(�, x) is subordinate at b}. (9.93)

From the previous lemma we obtain

Corollary 9.25. We have � 2 N(⌧) if and only if

lim inf
"#0

Im(mb(�+ i")) > 0 and lim sup
"#0

|mb(�+ i")| < 1.

Similarly, � 2 S↵(⌧) if and only if lim sup"#0 |mb(�+ i")| = 1.
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Remark 9.26. Since the set, for which the limit lim"#0mb(�+ i") does not
exist, is of zero spectral and Lebesgue measure (Corollary 3.25), changing
the lim in (9.90) to a lim inf will a↵ect N(⌧) only on such a set (which
is irrelevant for our purpose). Moreover, by (9.71) the set where the limit
exists (finitely or infinitely) is independent of the boundary condition ↵.

Then, as a consequence of the previous corollary, we have

Theorem 9.27. The set N(⌧) ✓ Mac is a minimal support for the absolutely
continuous spectrum of H. In particular,

�ac(H) = N(⌧)
ess

. (9.94)

Moreover, the set S↵(⌧) ◆ Ms is a minimal support for the singular spectrum
of H.

Proof. By our corollary we have N(⌧) ✓ Mac. Moreover, if � 2 Mac\N(⌧),
then either 0 = lim inf Im(mb) < lim sup Im(mb) or lim supRe(mb) = 1.
The first case can only happen on a set of Lebesgue measure zero by Theo-
rem 3.23 and the same is true for the second by Corollary 3.25.

Similarly, by our corollary we also have S↵(⌧) ◆ Ms and � 2 S↵(⌧)\Ms

happens precisely when lim supRe(mb) = 1 which can only happen on a
set of Lebesgue measure zero by Corollary 3.25. ⇤

Note that if (�1,�2) ✓ N(⌧), then the spectrum of any self-adjoint
extension H of ⌧ is purely absolutely continuous in the interval (�1,�2).

Example. Consider H0 = �
d2

dx2 on (0,1) with a Dirichlet boundary con-
dition at x = 0. Then it is easy to check H0 � 0 and N(⌧0) = (0,1). Hence
�ac(H0) = [0,1). Moreover, since the singular spectrum is supported on
[0,1)\N(⌧0) = {0}, we see �sc(H0) = ; (since the singular continuous spec-
trum cannot be supported on a finite set) and �pp(H0) ✓ {0}. Since 0 is no
eigenvalue, we have �pp(H0) = ;. ⇧

Problem 9.16. Determine the spectrum of H0 = �
d2

dx2 on (0,1) with a
general boundary condition (9.44) at a = 0.

9.6. Spectral transformations II

In Section 9.3 we have looked at the case of one regular endpoint. In this
section we want to remove this restriction. In the case of a regular endpoint
(or more generally an l.c. endpoint), the choice of u(�, x) in Lemma 9.13 was
dictated by the fact that u(�, x) is required to satisfy the boundary condition
at the regular (l.c.) endpoint. We begin by showing that in the general case
we can choose any pair of linearly independent solutions. We will choose
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some arbitrary point c 2 I and two linearly independent solutions according
to the initial conditions

c(z, c) = 1, p(c)c0(z, c) = 0, s(z, c) = 0, p(c)s0(z, c) = 1. (9.95)

We will abbreviate

s(z, x) =

✓
c(z, x)
s(z, x)

◆
. (9.96)

Lemma 9.28. There is measure dµ(�) and a nonnegative matrix R(�) with
trace one such that

U : L2(I, r dx) ! L2(R, R dµ)

f(x) 7!
R b
a s(�, x)f(x)r(x) dx

(9.97)

is a spectral mapping as in Lemma 9.13. As before, the integral has to be
understood as

R b
a dx = limc#a,d"b

R d
c dx with limit taken in L2(R, R dµ), where

L2(R, R dµ) is the Hilbert space of all C2-valued measurable functions with
scalar product

hf, gi =

Z

R
f⇤Rg dµ. (9.98)

The inverse is given by

(U�1F )(x) =

Z

R
s(�, x)R(�)F (�)dµ(�). (9.99)

Proof. Let U0 be a spectral transformation as in Lemma 9.13 with corre-
sponding real solutions uj(�, x) and measures dµj(x), 1  j  k. Without
loss of generality we can assume k = 2 since we can always choose dµ2 = 0
and u2(�, x) such that u1 and u2 are linearly independent.

Now define the 2⇥ 2 matrix C(�) via
✓
u1(�, x)
u2(�, x)

◆
= C(�)

✓
c(�, x)
s(�, x)

◆

and note that C(�) is nonsingular since u1, u2 as well as s, c are linearly
independent.

Set dµ̃ = dµ1 + dµ2. Then dµj = rjdµ̃ and we can introduce R̃ =
C⇤
� r1 0

0 r2

�
C. By construction R̃ is a (symmetric) nonnegative matrix. More-

over, since C(�) is nonsingular, tr(R̃) is positive a.e. with respect to µ̃. Thus
we can set R = tr(R̃)�1R̃ and dµ = tr(R̃)�1dµ̃.

This matrix gives rise to an operator

C : L2(R, R dµ) !
M

j

L2(R, dµj), F (�) 7! C(�)F (�),

which, by our choice of Rdµ, is norm preserving. By CU = U0 it is onto
and hence it is unitary (this also shows that L2(R, R dµ) is a Hilbert space,
i.e., complete).
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It is left as an exercise to check that C maps multiplication by � in
L2(R, R dµ) to multiplication by � in

L
j L

2(R, dµj) and the formula for

U�1. ⇤

Clearly the matrix-valued measure Rdµ contains all the spectral in-
formation of A. Hence it remains to relate it to the resolvent of A as in
Section 9.3

For our base point x = c there are corresponding Weyl m-functions
ma(z) and mb(z) such that

ua(z) = c(z, x)�ma(z)s(z, x), ub(z) = c(z, x) +mb(z)s(z, x). (9.100)

The di↵erent sign in front of ma(z) is introduced such that ma(z) will again
be a Herglotz function. In fact, this follows using reflection at c, x � c 7!

�(x�c), which will interchange the roles of ma(z) and mb(z). In particular,
all considerations from Section 9.3 hold for ma(z) as well.

Furthermore, we will introduce the Weyl M-matrix

M(z) =
1

ma(z) +mb(z)

✓
�1 (ma(z)�mb(z))/2

(ma(z)�mb(z))/2 ma(z)mb(z)

◆
.

(9.101)
Note det(M(z)) = �

1
4 . Since

ma(z) = �
p(c)u0a(z, c)

ua(z, c)
and mb(z) =

p(c)u0b(z, c)

ub(z, c)
, (9.102)

it follows that W (ua(z), ub(z)) = ma(z) +mb(z) and

M(z) =

lim
x,y!c

✓
G(z, x, x) (p(x)@x + p(y)@y)G(z, x, y)/2

(p(x)@x + p(y)@y)G(z, x, y)/2 p(x)@xp(y)@yG(z, x, y)

◆
,

(9.103)

where G(z, x, y) is the Green function of A. The limit is necessary since
@xG(z, x, y) has di↵erent limits as y ! x from y > x, respectively, y < x.

We begin by showing

Lemma 9.29. Let U be the spectral mapping from the previous lemma.
Then

(UG(z, x, .))(�) =
1

�� z
s(�, x),

(Up(x)@xG(z, x, .))(�) =
1

�� z
p(x)s0(�, x) (9.104)

for every x 2 (a, b) and every z 2 ⇢(A).
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Proof. First of all note that G(z, x, .) 2 L2((a, b), r dx) for every x 2 (a, b)
and z 2 ⇢(A). Moreover, from RA(z)f = U�1 1

��zUf we have
Z b

a
G(z, x, y)f(y)r(y)dy =

Z

R

1

�� z
s(�, x)R(�)F (�)dµ(�)

where F = Uf . Now proceed as in the proof of Lemma 9.15. ⇤

With the aid of this lemma we can now show

Theorem 9.30. The Weyl M -matrix is given by

M(z) = D +

Z

R

✓
1

�� z
�

�

1 + �2

◆
R(�)dµ(�), Djk 2 R, (9.105)

and

D = Re(M(i)),

Z

R

1

1 + �2
R(�)dµ(�) = Im(M(i)), (9.106)

where

Re(M(z)) =
1

2

�
M(z)+M⇤(z)

�
, Im(M(z)) =

1

2

�
M(z)�M⇤(z)

�
. (9.107)

Proof. By the previous lemma we have
Z b

a
|G(z, c, y)|2r(y)dy =

Z

R

1

|z � �|2
R11(�)dµ(�).

Moreover by (9.28), (9.55), and (9.100) we infer
Z b

a
|G(z, c, y)|2r(y)dy =

1

|W (ua, ub)|2

⇣
|ub(z, c)|

2
Z c

a
|ua(z, y)|

2r(y)dy

+ |ua(z, c)|
2
Z b

c
|ub(z, y)|

2r(y)dy
⌘
=

Im(M11(z))

Im(z)
.

Similarly we obtain
Z

R

1

|z � �|2
R22(�)dµ(�) =

Im(M22(z))

Im(z)

and Z

R

1

|z � �|2
R12(�)dµ(�) =

Im(M12(z))

Im(z)
.

Hence the result follows as in the proof of Theorem 9.17. ⇤

Now we are also able to extend Theorem 9.27. Note that by

tr(M(z)) = M11(z) +M22(z) = d+

Z

R

✓
1

�� z
�

�

1 + �2

◆
dµ(�) (9.108)

(with d = tr(D) 2 R) we have that the set

Ms = {�| lim sup
"#0

Im(tr(M(�+ i"))) = 1} (9.109)
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is a support for the singularly continuous part and

Mac = {�|0 < lim sup
"#0

Im(tr(M(�+ i"))) < 1} (9.110)

is a minimal support for the absolutely continuous part.

Theorem 9.31. The set Na(⌧)[Nb(⌧) ✓ Mac is a minimal support for the
absolutely continuous spectrum of H. In particular,

�ac(H) = Na(⌧) [Nb(⌧)
ess

. (9.111)

Moreover, the set [

↵2[0,⇡)

Sa,↵(⌧) \ Sb,↵(⌧) ◆ Ms (9.112)

is a support for the singular spectrum of H.

Proof. By Corollary 9.25 we have 0 < lim inf Im(ma) and lim sup |ma| < 1

if and only if � 2 Na(⌧) and similarly for mb.

Now suppose � 2 Na(⌧). Then lim sup |M11| < 1 since lim sup |M11| =
1 is impossible by 0 = lim inf |M�1

11 | = lim inf |ma+mb| � lim inf Im(ma) >
0. Similarly lim sup |M22| < 1. Moreover, if lim sup |mb| < 1, we also have

lim inf Im(M11) = lim inf
Im(ma +mb)

|ma +mb|
2

�
lim inf Im(ma)

lim sup |ma|
2 + lim sup |mb|

2
> 0

and if lim sup |mb| = 1, we have

lim inf Im(M22) = lim inf Im

 
ma

1 + ma
mb

!
� lim inf Im(ma) > 0.

Thus Na(⌧) ✓ Mac and similarly Nb(⌧) ✓ Mac.

Conversely, let � 2 Mac. By Corollary 3.25 we can assume that the
limits limma and limmb both exist and are finite after disregarding a set of
Lebesgue measure zero. For such �, lim Im(M11) and lim Im(M22) both exist
and are finite. Moreover, either lim Im(M11) > 0, in which case lim Im(ma+
mb) > 0, or lim Im(M11) = 0, in which case

0 < lim Im(M22) = lim
|ma|

2 Im(mb) + |mb|
2 Im(ma)

|ma|
2 + |mb|

2
= 0

yields a contradiction. Thus � 2 Na(⌧)[Nb(⌧) and the first part is proven.

To prove the second part, let � 2 Ms. If lim sup Im(M11) = 1, we have
lim sup |M11| = 1 and thus lim inf |ma + mb| = 0. But this implies that
there is some subsequence such that limmb = � limma = cot(↵) 2 R[{1}.
Similarly, if lim sup Im(M22) = 1, we have lim inf |m�1

a +m�1
b | = 0 and there

is some subsequence such that limm�1
b = � limm�1

a = tan(↵) 2 R [ {1}.
This shows Ms ✓

S
↵ Sa,↵(⌧) \ Sb,↵(⌧). ⇤
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Problem 9.17. Show

R(�)dµac(�) =

0

@
Im(ma(�)+mb(�))
|ma(�)|2+|mb(�)|2

Im(ma(�)m⇤
b (�))

|ma(�)|2+|mb(�)|2
Im(ma(�)m⇤

b (�))
|ma(�)|2+|mb(�)|2

|ma(�)|2 Im(mb(�))+|mb(�)|2 Im(ma(�))
|ma(�)|2+|mb(�)|2

1

A d�

⇡
,

where ma(�) = lim"#0ma(�+ i") and similarly for mb(�).

Moreover, show that the choice of solutions
✓
ub(�, x)
ua(�, x)

◆
= V (�)

✓
c(�, x)
s(�, x)

◆
,

where

V (�) =
1

ma(�) +mb(�)

✓
1 mb(�)
1 �ma(�)

◆
,

diagonalizes the absolutely continuous part,

V �1(�)⇤R(�)V (�)�1dµac(�) =
1

⇡

✓
Im(ma(�)) 0

0 Im(mb(�))

◆
d�.

9.7. The spectra of one-dimensional Schrödinger operators

In this section we want to look at the case of one-dimensional Schrödinger
operators; that is, r = p = 1 on (a, b) = (0,1).

Recall that

H0 = �
d2

dx2
, D(H0) = H2(R), (9.113)

is self-adjoint and

qH0(f) = kf 0
k
2, Q(H0) = H1(R). (9.114)

Hence we can try to apply the results from Chapter 6. We begin with a
simple estimate:

Lemma 9.32. Suppose f 2 H1(0, 1). Then

sup
x2[0,1]

|f(x)|2  "

Z 1

0
|f 0(x)|2dx+ (1 +

1

"
)

Z 1

0
|f(x)|2dx (9.115)

for every " > 0.

Proof. First note that

|f(x)|2 = |f(c)|2 + 2

Z x

c
Re(f(t)⇤f 0(t))dt  |f(c)|2 + 2

Z 1

0
|f(t)f 0(t)|dt

 |f(c)|2 + "

Z 1

0
|f 0(t)|2dt+

1

"

Z 1

0
|f(t)|2dt

for any c 2 [0, 1]. But by the mean value theorem there is a c 2 (0, 1) such

that |f(c)|2 =
R 1
0 |f(t)|2dt. ⇤
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As a consequence we obtain

Lemma 9.33. Suppose q 2 L2
loc(R) and

sup
n2Z

Z n+1

n
|q(x)|2dx < 1. (9.116)

Then q is relatively bounded with respect to H0 with bound zero.

Similarly, if q 2 L1
loc(R) and

sup
n2Z

Z n+1

n
|q(x)|dx < 1. (9.117)

Then q is relatively form bounded with respect to H0 with bound zero.

Proof. Let Q be in L2
loc(R) and abbreviate M = supn2Z

R n+1
n |Q(x)|2dx.

Using the previous lemma, we have for f 2 H1(R) that

kQfk2 
X

n2Z

Z n+1

n
|Q(x)f(x)|2dx  M

X

n2Z
sup

x2[n,n+1]
|f(x)|2

 M

✓
"

Z n+1

n
|f 0(x)|2dx+ (1 +

1

"
)

Z n+1

n
|f(x)|2dx

◆

= M
�
"kf 0

k
2 + (1 +

1

"
)kfk2

�
.

Choosing Q = |q|1/2, this already proves the form case since kf 0
k
2 = qH0(f).

Choosing Q = q and observing qH0(f) = hf,H0fi  kH0fkkfk for f 2

H2(R) shows the operator case. ⇤

Hence in both cases H0 + q is a well-defined (semi-bounded) operator
defined as operator sum on D(H0 + q) = D(H0) = H2(R) in the first case
and as form sum on Q(H0 + q) = Q(H0) = H1(R) in the second case. Note
also that the first case implies the second one since by Cauchy–Schwarz we
have Z n+1

n
|q(x)|dx 

Z n+1

n
|q(x)|2dx. (9.118)

This is not too surprising since we already know how to turn H0 + q into
a self-adjoint operator without imposing any conditions on q (except for
L1
loc(R)) at all. However, we get at least a simple description of the (form)

domains and by requiring a bit more, we can even compute the essential
spectrum of the perturbed operator.

Lemma 9.34. Suppose q 2 L1(R). Then the resolvent di↵erence of H0 and
H0 + q is trace class.

Proof. UsingG0(z, x, x) = 1/(2
p
�z), Lemma 9.12 implies that |q|1/2RH0(z)

is Hilbert–Schmidt and hence the result follows from Lemma 6.29. ⇤
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Lemma 9.35. Suppose q 2 L1
loc(R) and

lim
|n|!1

Z n+1

n
|q(x)|dx = 0. (9.119)

Then RH0+q(z) � RH0(z) is compact and hence �ess(H0 + q) = �ess(H0) =
[0,1).

Proof. By Weyl’s theorem it su�ces to show that the resolvent di↵erence is
compact. Let qn(x) = q(x)�R\[�n,n](x). Then RH0+q(z)�RH0+qn(z) is trace
class, which can be shown as in the previous theorem since q�qn has compact
support (no information on the corresponding diagonal Green’s function is
needed since by continuity it is bounded on every compact set). Moreover,
by the proof of Lemma 9.33, qn is form bounded with respect to H0 with
constants a = Mn and b = 2Mn, where Mn = sup|m|�n

Rm+1
m |q(x)|2dx.

Hence by Theorem 6.25 we see

RH0+qn(��) = RH0(��)
1/2(1� Cqn(�))

�1RH0(��)
1/2, � > 2,

with kCqn(�)k  Mn. So we conclude

RH0+qn(��)�RH0(��) = �RH0(��)
1/2Cqn(�)(1� Cqn(�))

�1RH0(��)
1/2,

� > 2, which implies that the sequence of compact operators RH0+q(��)�
RH0+qn(��) converges to RH0+q(��) � RH0(��) in norm, which implies
that the limit is also compact and finishes the proof. ⇤

Using Lemma 6.23, respectively, Corollary 6.27, we even obtain

Corollary 9.36. Let q = q1+ q2 where q1 and q2 satisfy the assumptions of
Lemma 9.33 and Lemma 9.35, respectively. Then H0+q1+q2 is self-adjoint
and �ess(H0 + q1 + q2) = �ess(H0 + q1).

This result applies for example in the case where q2 is a decaying per-
turbation of a periodic potential q1.

Finally we turn to the absolutely continuous spectrum.

Lemma 9.37. Suppose q = q1+q2, where q1 2 L1(0,1) and q2 2 AC[0,1)
with q02 2 L1(0,1) and limx!1 q2(x) = 0. Then there are two solutions
u±(�, x) of ⌧u = �u, � > 0, of the form

u±(�, x) = (1 + o(1))u0,±(�, x), u0±(�, x) = (1 + o(1))u00,±(�, x) (9.120)

as x ! 1, where

u0,±(�, x) = exp

✓
±i

Z x

0

p
�� q2(y)dy

◆
. (9.121)
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Proof. We will omit the dependence on � for notational simplicity. More-
over, we will choose x so large that Wx(u�, u+) = 2i

p
�� q2(x) 6= 0. Write

u(x) = U0(x)a(x), U0(x) =

✓
u0,+(x) u0,+(x)
u00,�(x) u00,�(x)

◆
, a(x) =

✓
a+(x)
a�(x)

◆
.

Then

u0(x) =

✓
0 1

q(x)� � 0

◆
u(x)

+

✓
0 0

q+(x)u0,+(x) q�(x)u0,�(x)

◆
a(x) + U0(x)a

0(x),

where

q±(x) = q1(x)± i
q02(x)p
�� q2(x)

.

Hence u(x) will solve ⌧u = �u if

a0(x) =
1

Wx(u�, u+)

✓
q+(x) q�(x)u0,�(x)2

�q+(x)u0,+(x)2 �q�(x)

◆
a(x).

Since the coe�cient matrix of this linear system is integrable, the claim
follows by a simple application of Gronwall’s inequality. ⇤

Theorem 9.38 (Weidmann). Let q1 and q2 be as in the previous lemma
and suppose q = q1 + q2 satisfies the assumptions of Lemma 9.35. Let
H = H0+q1+q2. Then �ac(H) = [0,1), �sc(H) = ;, and �p(H) ✓ (�1, 0].

Proof. By the previous lemma there is no subordinate solution for � > 0 on
(0,1) and hence 0 < Im(mb(�+i0)) < 1. Similarly, there is no subordinate
solution (�1, 0) and hence 0 < Im(ma(�+i0)) < 1. Thus the same is true
for the diagonal entries Mjj(z) of the Weyl M -matrix, 0 < Im(Mjj(� +
i0)) < 1, and hence dµ is purely absolutely continuous on (0,1). Since
�ess(H) = [0,1), we conclude �ac(H) = [0,1) and �sc(H) ✓ {0}. Since
the singular continuous part cannot live on a single point, we are done. ⇤

Note that the same results hold for operators on [0,1) rather than R.
Moreover, observe that the conditions from Lemma 9.37 are only imposed
near +1 but not near �1. The conditions from Lemma 9.35 are only used
to ensure that there is no essential spectrum in (�1, 0).

Having dealt with the essential spectrum, let us next look at the discrete
spectrum. In the case of decaying potentials, as in the previous theorem,
one key question is if the number of eigenvalues below the essential spectrum
is finite or not.

As preparation, we shall prove Sturm’s comparison theorem:
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Theorem 9.39 (Sturm). Let ⌧0, ⌧1 be associated with q0 � q1 on (a, b),
respectively. Let (c, d) ✓ (a, b) and ⌧0u = 0, ⌧1v = 0. Suppose at each end
of (c, d) either Wx(u, v) = 0 or, if c, d 2 (a, b), u = 0. Then v is either a
multiple of u in (c, d) or v must vanish at some point in (c, d).

Proof. By decreasing d to the first zero of u in (c, d] (and perhaps flipping
signs), we can suppose u > 0 on (c, d). If v has no zeros in (c, d), we can
suppose v > 0 on (c, d) again by perhaps flipping signs. At each endpoint,
W (u, v) vanishes or else u = 0, v > 0, and u0(c) > 0 (or u0(d) < 0). Thus,
Wc(u, v)  0, Wd(u, v) � 0. But this is inconsistent with

Wd(u, v)�Wc(u, v) =

Z d

c
(q0(t)� q1(t))u(t)v(t) dt, (9.122)

unless both sides vanish. ⇤

In particular, choosing q0 = q� �0 and q1 = q� �1, this result holds for
solutions of ⌧u = �0u and ⌧v = �1v.

Now we can prove

Theorem 9.40. Suppose q satisfies (9.117) such that H is semi-bounded
and Q(H) = H1(R). Let �0 < · · · < �n < · · · be its eigenvalues below
the essential spectrum and  0, . . . , n, . . . the corresponding eigenfunctions.
Then  n has n zeros.

Proof. We first prove that  n has at least n zeros and then that if  n has
m zeros, then (�1,�n] has at least (m+ 1) eigenvalues. If  n has m zeros
at x1, x2, . . . , xm and we let x0 = a, xm+1 = b, then by Theorem 9.39,  n+1

must have at least one zero in each of (x0, x1), (x1, x2), . . . , (xm, xm+1); that
is,  n+1 has at least m+1 zeros. It follows by induction that  n has at least
n zeros.

On the other hand, if  n has m zeros x1, . . . , xm, define

⌘j(x) =

(
 n(x), xj  x  xj+1,

0 otherwise,
j = 0, . . . ,m, (9.123)

where we set x0 = �1 and xm+1 = 1. Then ⌘j is in the form domain
of H and satisfies h⌘j , H⌘ji = �n k⌘jk2. Hence if ⌘ =

Pm
j=0 cj⌘j , then

h⌘, H⌘i = �nk⌘k2 and it follows by Theorem 4.12 (i) that there are at least
m+ 1 eigenvalues in (�1,�n]. ⇤

Note that by Theorem 9.39, the zeros of  n interlace the zeros of  n.
The second part of the proof also shows

Corollary 9.41. Let H be as in the previous theorem. If the Weyl solution
u±(�, .) has m zeros, then dimRan(�1,�)(H) � m. In particular, � below
the spectrum of H implies that u±(�, .) has no zeros.
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The equation (⌧��)u is called oscillating if one solution has an infinite
number of zeros. Theorem 9.39 implies that this is then true for all solu-
tions. By our previous considerations this is the case if and only if �(H) has
infinitely many points below �. Hence it remains to find a good oscillation
criterion.

Theorem 9.42 (Kneser). Consider q on (0,1). Then

lim inf
x!1

�
x2q(x)

�
> �

1

4
implies nonoscillation of ⌧ near 1 (9.124)

and

lim sup
x!1

�
x2q(x)

�
< �

1

4
implies oscillation of ⌧ near 1. (9.125)

Proof. The key idea is that the equation

⌧0 = �
d2

dx2
+

µ

x2

is of Euler type. Hence it is explicitly solvable with a fundamental system
given by

x
1
2±

q
µ+ 1

4 .

There are two cases to distinguish. If µ � �1/4, all solutions are nonoscil-
latory. If µ < �1/4, one has to take real/imaginary parts and all solutions
are oscillatory. Hence a straightforward application of Sturm’s comparison
theorem between ⌧0 and ⌧ yields the result. ⇤
Corollary 9.43. Suppose q satisfies (9.117). Then H has finitely many
eigenvalues below the infimum of the essential spectrum 0 if

lim
|x|!1

inf
�
x2q(x)

�
> �

1

4
(9.126)

and infinitely many if

lim
|x|!1

sup
�
x2q(x)

�
< �

1

4
. (9.127)

Problem 9.18. Show that if q is relatively bounded with respect to H0, then
necessarily q 2 L2

loc(R) and (9.116) holds. Similarly, if q is relatively form
bounded with respect to H0, then necessarily q 2 L1

loc(R) and (9.117) holds.

Problem 9.19. Suppose q 2 L1(R) and consider H = �
d2

dx2 + q. Show
that inf �(H) 

R
R q(x)dx. In particular, there is at least one eigenvalue

below the essential spectrum if
R
R q(x)dx < 0. (Hint: Let ' 2 C1

c (R) with
'(x) = 1 for |x|  1 and investigate qH('n), where 'n(x) = '(x/n).)





Chapter 10

One-particle
Schrödinger operators

10.1. Self-adjointness and spectrum

Our next goal is to apply these results to Schrödinger operators. The Hamil-
tonian of one particle in d dimensions is given by

H = H0 + V, (10.1)

where V : Rd
! R is the potential energy of the particle. We are mainly

interested in the case 1  d  3 and want to find classes of potentials which
are relatively bounded, respectively, relatively compact. To do this, we need
a better understanding of the functions in the domain of H0.

Lemma 10.1. Suppose n  3 and  2 H2(Rn). Then  2 C1(Rn) and for
any a > 0 there is a b > 0 such that

k k1  akH0 k+ bk k. (10.2)

Proof. The important observation is that (p2 + �2)�1
2 L2(Rn) if n  3.

Hence, since (p2 + �2) ̂ 2 L2(Rn), the Cauchy–Schwarz inequality

k ̂k1 = k(p2 + �2)�1(p2 + �2) ̂(p)k1

 k(p2 + �2)�1
k k(p2 + �2) ̂(p)k

shows  ̂ 2 L1(Rn). But now everything follows from the Riemann-Lebesgue
lemma, that is,

k k1  (2⇡)�n/2
k(p2 + �2)�1

k(kp2 ̂(p)k+ �2k ̂(p)k)

= (�/2⇡)n/2k(p2 + 1)�1
k(��2

kH0 k+ k k),

which finishes the proof. ⇤

221
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Now we come to our first result.

Theorem 10.2. Let V be real-valued and V 2 L1
1(Rn) if n > 3 and V 2

L1
1(Rn)+L2(Rn) if n  3. Then V is relatively compact with respect to H0.

In particular,

H = H0 + V, D(H) = H2(Rn), (10.3)

is self-adjoint, bounded from below and

�ess(H) = [0,1). (10.4)

Moreover, C1
c (Rn) is a core for H.

Proof. Our previous lemma shows D(H0) ✓ D(V ). Moreover, invoking
Lemma 7.11 with f(p) = (p2 � z)�1 and g(x) = V (x) (note that f 2

L1
1(Rn) \ L2(Rn) for n  3) shows that V is relatively compact. Since

C1
c (Rn) is a core for H0 by Lemma 7.9, the same is true for H by the

Kato–Rellich theorem. ⇤

Observe that since C1
c (Rn) ✓ D(H0), we must have V 2 L2

loc(Rn) if
D(V ) ✓ D(H0).

10.2. The hydrogen atom

We begin with the simple model of a single electron in R3 moving in the
external potential V generated by a nucleus (which is assumed to be fixed
at the origin). If one takes only the electrostatic force into account, then
V is given by the Coulomb potential and the corresponding Hamiltonian is
given by

H(1) = ���
�

|x|
, D(H(1)) = H2(R3). (10.5)

If the potential is attracting, that is, if � > 0, then it describes the hydrogen
atom and is probably the most famous model in quantum mechanics.

We have chosen as domain D(H(1)) = D(H0) \D( 1
|x|) = D(H0) and by

Theorem 10.2 we conclude that H(1) is self-adjoint. Moreover, Theorem 10.2
also tells us

�ess(H
(1)) = [0,1) (10.6)

and that H(1) is bounded from below,

E0 = inf �(H(1)) > �1. (10.7)

If �  0, we have H(1)
� 0 and hence E0 = 0, but if � > 0, we might have

E0 < 0 and there might be some discrete eigenvalues below the essential
spectrum.
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In order to say more about the eigenvalues of H(1), we will use the fact
that both H0 and V (1) = ��/|x| have a simple behavior with respect to
scaling. Consider the dilation group

U(s) (x) = e�ns/2 (e�sx), s 2 R, (10.8)

which is a strongly continuous one-parameter unitary group. The generator
can be easily computed:

D (x) =
1

2
(xp+ px) (x) = (xp�

in

2
) (x),  2 S(Rn). (10.9)

Now let us investigate the action of U(s) on H(1):

H(1)(s) = U(�s)H(1)U(s) = e�2sH0 + e�sV (1), D(H(1)(s)) = D(H(1)).
(10.10)

Now suppose H = � . Then

h , [U(s), H] i = hU(�s) , H i � hH , U(s) i = 0 (10.11)

and hence

0 = lim
s!0

1

s
h , [U(s), H] i = lim

s!0
hU(�s) ,

H �H(s)

s
 i

= h , (2H0 + V (1)) i. (10.12)

Thus we have proven the virial theorem.

Theorem 10.3. Suppose H = H0 + V with U(�s)V U(s) = e�sV . Then
any normalized eigenfunction  corresponding to an eigenvalue � satisfies

� = �h , H0 i =
1

2
h , V  i. (10.13)

In particular, all eigenvalues must be negative.

This result even has some further consequences for the point spectrum
of H(1).

Corollary 10.4. Suppose � > 0. Then

�p(H
(1)) = �d(H

(1)) = {Ej�1}j2N0 , E0 < Ej < Ej+1 < 0, (10.14)

with limj!1Ej = 0.

Proof. Choose  2 C1
c (R\{0}) and set  (s) = U(�s) . Then

h (s), H(1) (s)i = e�2s
h , H0 i+ e�s

h , V (1) i

which is negative for s large. Now choose a sequence sn ! 1 such that
we have supp( (sn)) \ supp( (sm)) = ; for n 6= m. Then Theorem 4.12
(i) shows that rank(PH(1)((�1, 0))) = 1. Since each eigenvalue Ej has
finite multiplicity (it lies in the discrete spectrum), there must be an infinite
number of eigenvalues which accumulate at 0. ⇤
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If �  0, we have �d(H(1)) = ; since H(1)
� 0 in this case.

Hence we have obtained quite a complete picture of the spectrum of
H(1). Next, we could try to compute the eigenvalues of H(1) (in the case
� > 0) by solving the corresponding eigenvalue equation, which is given by
the partial di↵erential equation

�� (x)�
�

|x|
 (x) = � (x). (10.15)

For a general potential this is hopeless, but in our case we can use the rota-
tional symmetry of our operator to reduce our partial di↵erential equation
to ordinary ones.

First of all, it suggests itself to switch from Cartesian coordinates x =
(x1, x2, x3) to spherical coordinates (r, ✓,') defined by

x1 = r sin(✓) cos('), x2 = r sin(✓) sin('), x3 = r cos(✓), (10.16)

where r 2 [0,1), ✓ 2 [0,⇡], and ' 2 (�⇡,⇡]. This change of coordinates
corresponds to a unitary transform

L2(R3) ! L2((0,1), r2dr)⌦ L2((0,⇡), sin(✓)d✓)⌦ L2((0, 2⇡), d'). (10.17)

In these new coordinates (r, ✓,') our operator reads

H(1) = �
1

r2
@

@r
r2
@

@r
+

1

r2
L2 + V (r), V (r) = �

�

r
, (10.18)

where

L2 = L2
1 + L2

2 + L2
3 = �

1

sin(✓)

@

@✓
sin(✓)

@

@✓
�

1

sin(✓)2
@2

@'2
. (10.19)

(Recall the angular momentum operators Lj from Section 8.2.)

Making the product ansatz (separation of variables)

 (r, ✓,') = R(r)⇥(✓)�('), (10.20)

we obtain the three Sturm–Liouville equations
✓
�

1

r2
d

dr
r2

d

dr
+

l(l + 1)

r2
+ V (r)

◆
R(r) = �R(r),

1

sin(✓)

✓
�

d

d✓
sin(✓)

d

d✓
+

m2

sin(✓)

◆
⇥(✓) = l(l + 1)⇥(✓),

�
d2

d'2
�(') = m2�('). (10.21)

The form chosen for the constants l(l + 1) and m2 is for convenience later
on. These equations will be investigated in the following sections.

Problem 10.1. Generalize the virial theorem to the case U(�s)V U(s) =
e�↵sV , ↵ 2 R\{0}. What about Corollary 10.4?
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10.3. Angular momentum

We start by investigating the equation for �(') which is associated with the
Sturm–Liouville equation

⌧� = ��00, I = (0, 2⇡). (10.22)

Since we want  defined via (10.20) to be in the domain of H0 (in particular
continuous), we choose periodic boundary conditions the Sturm–Liouville
equation

A� = ⌧�, D(A) = {� 2 L2(0, 2⇡)| � 2 AC1[0, 2⇡],
�(0) = �(2⇡),�0(0) = �0(2⇡)}.

(10.23)

From our analysis in Section 9.1 we immediately obtain

Theorem 10.5. The operator A defined via (10.22) is self-adjoint. Its
spectrum is purely discrete, that is,

�(A) = �d(A) = {m2
|m 2 Z}, (10.24)

and the corresponding eigenfunctions

�m(') =
1

p
2⇡

eim', m 2 Z, (10.25)

form an orthonormal basis for L2(0, 2⇡).

Note that except for the lowest eigenvalue, all eigenvalues are twice de-
generate.

We note that this operator is essentially the square of the angular mo-
mentum in the third coordinate direction, since in polar coordinates

L3 =
1

i

@

@'
. (10.26)

Now we turn to the equation for ⇥(✓):

⌧m⇥(✓) =
1

sin(✓)

✓
�

d

d✓
sin(✓)

d

d✓
+

m2

sin(✓)

◆
⇥(✓), I = (0,⇡),m 2 N0.

(10.27)

For the investigation of the corresponding operator we use the unitary
transform

L2((0,⇡), sin(✓)d✓) ! L2((�1, 1), dx), ⇥(✓) 7! f(x) = ⇥(arccos(x)).
(10.28)

The operator ⌧ transforms to the somewhat simpler form

⌧m = �
d

dx
(1� x2)

d

dx
�

m2

1� x2
. (10.29)
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The corresponding eigenvalue equation

⌧mu = l(l + 1)u (10.30)

is the associated Legendre equation. For l 2 N0 it is solved by the
associated Legendre functions [1, (8.6.6)]

Pm
l (x) = (�1)m(1� x2)m/2 dm

dxm
Pl(x), |m|  l, (10.31)

where the

Pl(x) =
1

2ll!

dl

dxl
(x2 � 1)l, l 2 N0, (10.32)

are the Legendre polynomials [1, (8.6.18)] (Problem 10.2). Moreover,
note that the Pl(x) are (nonzero) polynomials of degree l and since ⌧m
depends only on m2, there must be a relation between Pm

l (x) and P�m
l (x).

In fact, (Problem 10.3)

P�m
l (x) = (�1)m

(l +m)!

(l �m)!
Pm
l . (10.33)

A second, linearly independent, solution is given by

Qm
l (x) = Pm

l (x)

Z x

0

dt

(1� t2)Pm
l (t)2

. (10.34)

In fact, for every Sturm–Liouville equation, v(x) = u(x)
R x dt

p(t)u(t)2 satisfies

⌧v = 0 whenever ⌧u = 0. Now fix l = 0 and note P0(x) = 1. For m = 0 we
have Q0

0 = arctanh(x) 2 L2 and so ⌧0 is l.c. at both endpoints. For m > 0
we have Qm

0 = (x± 1)�m/2(C +O(x± 1)) which shows that it is not square
integrable. Thus ⌧m is l.c. for m = 0 and l.p. for m > 0 at both endpoints.
In order to make sure that the eigenfunctions for m = 0 are continuous (such
that  defined via (10.20) is continuous), we choose the boundary condition
generated by P0(x) = 1 in this case:

Amf = ⌧mf,

D(Am) = {f 2 L2(�1, 1)| f 2 AC1(�1, 1), ⌧mf 2 L2(�1, 1),
limx!±1(1� x2)f 0(x) = 0 if m = 0}.

(10.35)

Theorem 10.6. The operator Am, m 2 N0, defined via (10.35) is self-
adjoint. Its spectrum is purely discrete, that is,

�(Am) = �d(Am) = {l(l + 1)|l 2 N0, l � m}, (10.36)

and the corresponding eigenfunctions

ul,m(x) =

s
2l + 1

2

(l �m)!

(l +m)!
Pm
l (x), l 2 N0, l � m, (10.37)

form an orthonormal basis for L2(�1, 1).
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Proof. By Theorem 9.6, Am is self-adjoint. Moreover, Pm
l is an eigenfunc-

tion corresponding to the eigenvalue l(l+1) and it su�ces to show that the
Pm
l form a basis. To prove this, it su�ces to show that the functions Pm

l (x)
are dense. Since (1 � x2) > 0 for x 2 (�1, 1), it su�ces to show that the
functions (1 � x2)�m/2Pm

l (x) are dense. But the span of these functions
contains every polynomial. Every continuous function can be approximated
by polynomials (in the sup norm, Theorem 0.15, and hence in the L2 norm)
and since the continuous functions are dense, so are the polynomials.

For the normalization of the eigenfunctions see Problem 10.7, respec-
tively, [1, (8.14.13)]. ⇤

Returning to our original setting, we conclude that the

⇥m
l (✓) =

s
2l + 1

2

(l +m)!

(l �m)!
Pm
l (cos(✓)), |m|  l, (10.38)

form an orthonormal basis for L2((0,⇡), sin(✓)d✓) for any fixed m 2 N0.

Theorem 10.7. The operator L2 on L2((0,⇡), sin(✓)d✓) ⌦ L2((0, 2⇡)) has
a purely discrete spectrum given

�(L2) = {l(l + 1)|l 2 N0}. (10.39)

The spherical harmonics

Y m
l (✓,') = ⇥m

l (✓)�m(') =

s
2l + 1

4⇡

(l �m)!

(l +m)!
Pm
l (cos(✓))eim', |m|  l,

(10.40)
form an orthonormal basis and satisfy L2Y m

l = l(l + 1)Y m
l and L3Y m

l =
mY m

l .

Proof. Everything follows from our construction, if we can show that the
Y m
l form a basis. But this follows as in the proof of Lemma 1.10. ⇤

Note that transforming the Y m
l back to cartesian coordinates gives

Y ±m
l (x) = (�1)m

s
2l + 1

4⇡

(l � |m|)!

(l + |m|)!
P̃m
l (

x3
r
)

✓
x1 ± ix2

r

◆m

, r = |x|,

(10.41)
where P̃m

l is a polynomial of degree l �m given by

P̃m
l (x) = (1� x2)�m/2Pm

l (x) =
dl+m

dxl+m
(1� x2)l. (10.42)

In particular, the Y m
l are smooth away from the origin and by construction

they satisfy

��Y m
l =

l(l + 1)

r2
Y m
l . (10.43)
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Problem 10.2. Show that the associated Legendre functions satisfy the
di↵erential equation (10.30). (Hint: Start with the Legendre polynomials
(10.32) which correspond to m = 0. Set v(x) = (x2 � 1)l and observe
(x2 � 1)v0(x) = 2lx v(x). Then di↵erentiate this identity l + 1 times using
Leibniz’s rule. For the case of the associated Legendre functions, substitute
v(x) = (1 � x2)m/2u(x) in (10.30) and di↵erentiate the resulting equation
once.)

Problem 10.3. Show (10.33). (Hint: Write (x2 � 1)l = (x � 1)l(x + 1)l

and use Leibniz’s rule.)

Problem 10.4 (Orthogonal polynomials). Suppose the monic polynomials
Pj(x) = xj +�jxj�1+ . . . are orthogonal with respect to the weight function
w(x):

Z b

a
Pi(x)Pj(x)w(x)dx =

(
↵2
j , i = j,

0, otherwise.

Note that they are uniquely determined by the Gram–Schmidt procedure.
Let P̄j(x) = ↵�1

j P (x) and show that they satisfy the three term recurrence
relation

ajP̄j+1(x) + bjP̄j(x) + aj�1P̄j�1(x) = xP̄j(x),

where

aj =

Z b

a
xP̄j+1(x)P̄j(x)w(x)dx, bj =

Z b

a
xP̄j(x)

2w(x)dx.

Moreover, show

aj =
↵j+1

↵j
, bj = �j � �j+1.

(Note that w(x)dx could be replaced by a measure dµ(x).)

Problem 10.5. Consider the orthogonal polynomials with respect to the
weight function w(x) as in the previous problem. Suppose |w(x)|  Ce�k|x|

for some C, k > 0. Show that the orthogonal polynomials are dense in
L2(R, w(x)dx). (Hint: It su�ces to show that

R
f(x)xjw(x)dx = 0 for

all j 2 N0 implies f = 0. Consider the Fourier transform of f(x)w(x) and
note that it has an analytic extension by Problem 7.11. Hence this Fourier
transform will be zero if, e.g., all derivatives at p = 0 are zero (cf. Prob-
lem 7.3).)

Problem 10.6. Show

Pl(x) =

bl/2cX

k=0

(�1)k(2l � 2k)!

2lk!(l � k)!(l � 2k)!
xl�2k.
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Moreover, by Problem 10.4 there is a recurrence relation of the form Pl+1(x) =
(ãl + b̃lx)Pl(x) + c̃lPl�1(x). Find the coe�cients by comparing the highest
powers in x and conclude

(l + 1)Pl+1(x) = (2l + 1)xPl(x)� lPl�1.

Use this to prove Z 1

�1
Pl(x)

2dx =
2

2l + 1
.

Problem 10.7. Prove
Z 1

�1
Pm
l (x)2dx =

2

2l + 1

(l +m)!

(l �m)!
.

(Hint: Use (10.33) to compute
R 1
�1 P

m
l (x)P�m

l (x)dx by integrating by parts
until you can use the case m = 0 from the previous problem.)

10.4. The eigenvalues of the hydrogen atom

Now we want to use the considerations from the previous section to decom-
pose the Hamiltonian of the hydrogen atom. In fact, we can even admit any
spherically symmetric potential V (x) = V (|x|) with

V (r) 2 L1

1(R) + L2((0,1), r2dr) (10.44)

such that Theorem 10.2 holds.

The important observation is that the spaces

Hl,m = { (x) = R(r)Y m
l (✓,')|R(r) 2 L2((0,1), r2dr)} (10.45)

with corresponding projectors

Pm
l  (r, ✓,') =

✓Z 2⇡

0

Z ⇡

0
 (r, ✓0,'0)Y m

l (✓0,'0) sin(✓0)d✓0 d'0

◆
Y m
l (✓,')

(10.46)
reduce our operator H = H0 + V . By Lemma 2.24 it su�ces to check
this for H restricted to C1

c (R3), which is straightforward. Hence, again by
Lemma 2.24,

H = H0 + V =
M

l,m

H̃l, (10.47)

where

H̃lR(r) = ⌧̃lR(r), ⌧̃l = �
1

r2
d

dr
r2

d

dr
+

l(l + 1)

r2
+ V (r),

D(Hl) ✓ L2((0,1), r2dr). (10.48)

Using the unitary transformation

L2((0,1), r2dr) ! L2((0,1)), R(r) 7! u(r) = rR(r), (10.49)
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our operator transforms to

Alf = ⌧lf, ⌧l = �
d2

dr2
+

l(l + 1)

r2
+ V (r),

D(Al) = Pm
l D(H) ✓ L2((0,1)). (10.50)

It remains to investigate this operator (that its domain is indeed independent
of m follows from the next theorem).

Theorem 10.8. The domain of the operator Al is given by

D(Al) = {f 2 L2(I)| f, f 0
2 AC(I), ⌧f 2 L2(I),

limr!0(f(r)� rf 0(r)) = 0 if l = 0},
(10.51)

where I = (0,1). Moreover,

�ess(Al) = �ac(Al) = [0,1), �sc(Al) = ;, �p ⇢ (�1, 0]. (10.52)

Proof. By construction of Al we know that it is self-adjoint and satisfies
�ess(Al) ✓ [0,1) (Problem 10.8). By Lemma 9.37 we have (0,1) ✓ N1(⌧l)
and hence Theorem 9.31 implies �ac(Al) = [0,1), �sc(Al) = ;, and �p ⇢

(�1, 0]. So it remains to compute the domain. We know at least D(Al) ✓
D(⌧) and since D(H) = D(H0), it su�ces to consider the case V = 0. In this

case the solutions of �u00(r)+ l(l+1)
r2 u(r) = 0 are given by u(r) = ↵rl+1+�r�l.

Thus we are in the l.p. case at 1 for any l 2 N0. However, at 0 we are in
the l.p. case only if l > 0; that is, we need an additional boundary condition
at 0 if l = 0. Since we need R(r) = u(r)

r to be bounded (such that (10.20)
is in the domain of H0, that is, continuous), we have to take the boundary
condition generated by u(r) = r. ⇤

Finally let us turn to some explicit choices for V , where the correspond-
ing di↵erential equation can be explicitly solved. The simplest case is V = 0.
In this case the solutions of

� u00(r) +
l(l + 1)

r2
u(r) = zu(r) (10.53)

are given by

u(r) = ↵ z�l/2r jl(
p
zr) + � z(l+1)/2r yl(

p
zr), (10.54)

where jl(r) and yl(r) are the spherical Bessel, respectively, spherical
Neumann, functions

jl(r) =

r
⇡

2r
Jl+1/2(r) = (�r)l

✓
1

r

d

dr

◆l sin(r)

r
,

yl(r) =

r
⇡

2r
Yl+1/2(r) = �(�r)l

✓
1

r

d

dr

◆l cos(r)

r
. (10.55)
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Note that z�l/2r jl(
p
zr) and z(l+1)/2r yl(

p
zr) are entire as functions of z

and their Wronskian is given by W (z�l/2r jl(
p
zr), z(l+1)/2r yl(

p
zr)) = 1.

See [1, Sects. 10.1 and 10.3]. In particular,

ua(z, r) =
r

zl/2
jl(

p
zr) =

2ll!

(2l + 1)!
rl+1(1 +O(r2)),

ub(z, r) =
p
�zr

�
jl(i

p
�zr) + iyl(i

p
�zr)

�
= e�

p
�zr+il⇡/2(1 +O(

1

r
))

(10.56)

are the functions which are square integrable and satisfy the boundary con-
dition (if any) near a = 0 and b = 1, respectively.

The second case is that of our Coulomb potential

V (r) = �
�

r
, � > 0, (10.57)

where we will try to compute the eigenvalues plus corresponding eigenfunc-
tions. It turns out that they can be expressed in terms of the Laguerre
polynomials ([1, (22.2.13)])

Lj(r) =
er

j!

dj

drj
e�rrj (10.58)

and the generalized Laguerre polynomials ([1, (22.2.12)])

L(k)
j (r) = (�1)k

dk

drk
Lj+k(r). (10.59)

Note that the L(k)
j (r) are polynomials of degree j � k which are explicitly

given by

L(k)
j (r) =

jX

i=0

(�1)i
✓
j + k

j � i

◆
ri

i!
(10.60)

and satisfy the di↵erential equation (Problem 10.9)

r y00(r) + (k + 1� r)y0(r) + j y(r) = 0. (10.61)

Moreover, they are orthogonal in the Hilbert space L2((0,1), rke�rdr) (Prob-
lem 10.10):

Z
1

0
L(k)
j (r)L(k)

j (r)rke�rdr =

(
(j+k)!

j! , i = j,

0, otherwise.
(10.62)

Theorem 10.9. The eigenvalues of H(1) are explicitly given by

En = �

✓
�

2(n+ 1)

◆2

, n 2 N0. (10.63)
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An orthonormal basis for the corresponding eigenspace is given by the (n+1)2

functions

 n,l,m(x) = Rn,l(r)Y
m
l (x), |m|  l  n, (10.64)

where

Rn,l(r) =

s
�3(n� l)!

2(n+ 1)4(n+ l + 1)!

✓
�r

n+ 1

◆l

e
�

�r
2(n+1)L(2l+1)

n�l (
�r

n+ 1
).

(10.65)

In particular, the lowest eigenvalue E0 = �
�2

4 is simple and the correspond-

ing eigenfunction  000(x) =
q

�3

2 e
��r/2 is positive.

Proof. Since all eigenvalues are negative, we need to look at the equation

�u00(r) + (
l(l + 1)

r2
�
�

r
)u(r) = �u(r)

for � < 0. Introducing new variables x = 2
p
�� r and v(x) = ex/2

xl+1u(
x

2
p
��

),

this equation transforms into Kummer’s equation

xv00(x) + (k + 1� x)v0(x) + j v(x) = 0, k = 2l + 1, j =
�

2
p
��

� (l + 1).

Now let us search for a solution which can be expanded into a convergent
power series

v(x) =
1X

i=0

vix
i, v0 = 1. (10.66)

The corresponding u(r) is square integrable near 0 and satisfies the boundary
condition (if any). Thus we need to find those values of � for which it is
square integrable near +1.

Substituting the ansatz (10.66) into our di↵erential equation and com-
paring powers of x gives the following recursion for the coe�cients

vi+1 =
(i� j)

(i+ 1)(i+ k + 1)
vi

and thus

vi =
1

i!

i�1Y

`=0

`� j

`+ k + 1
.

Now there are two cases to distinguish. If j 2 N0, then vi = 0 for i > j and
v(x) is a polynomial; namely

v(x) =

✓
j + k

j

◆�1

L(k)
j (x).
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In this case u(r) is square integrable and hence an eigenfunction correspond-
ing to the eigenvalue �j = �( �

2(n+1))
2, n = j + l. This proves the formula

for Rn,l(r) except for the normalization which follows from (Problem 10.11)
Z

1

0
L(k)
j (r)2rk+1e�rdr =

(j + k)!

j!
(2j + k + 1). (10.67)

It remains to show that we have found all eigenfunctions, that is, that there
are no other square integrable solutions. Otherwise, if j 62 N, we have
vi+1

vi
�

(1�")
i+1 for i su�ciently large. Hence by adding a polynomial to v(x)

(and perhaps flipping its sign), we can get a function ṽ(x) such that ṽi �
(1�")i

i! for all i. But then ṽ(x) � exp((1 � ")x) and thus the corresponding
u(r) is not square integrable near +1. ⇤

Finally, let us also look at an alternative algebraic approach for com-
puting the eigenvalues and eigenfunctions of Al based on the commutation
methods from Section 8.4. We begin by introducing

Qlf = �
d

dr
+

l + 1

r
�

�

2(l + 1)
,

D(Ql) = {f 2 L2((0,1))|f 2 AC((0,1)), Qlf 2 L2((0,1))}. (10.68)

Then (Problem 9.3) Ql is closed and its adjoint is given by

Q⇤

l f =
d

dr
+

l + 1

r
�

�

2(l + 1)
,

D(Q⇤

l ) = {f 2 L2((0,1))| f 2 AC((0,1)), Q⇤

l f 2 L2((0,1)),
limx!0,1 f(x)g(x) = 0, 8g 2 D(Ql)}.

(10.69)

It is straightforward to check

Ker(Ql) = span{ul,0}, Ker(Q⇤

l ) = {0}, (10.70)

where

ul,0(r) =
1p

(2l + 2)!

✓
�

l + 1

◆(l+1)+1/2

rl+1e
�

�
2(l+1) r (10.71)

is normalized.

Theorem 10.10. The radial Schrödinger operator Al satisfies

Al = Q⇤

lQl � c2l , Al+1 = QlQ
⇤

l � c2l , (10.72)

where

cl =
�

2(l + 1)
. (10.73)
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Proof. Equality is easy to check for f 2 AC2 with compact support. Hence
Q⇤

lQl � c2l is a self-adjoint extension of ⌧l restricted to this set. If l > 0,
there is only one self-adjoint extension and equality follows. If l = 0, we
know u0,0 2 D(Q⇤

lQl) and since Al is the only self-adjoint extension with
u0,0 2 D(Al), equality follows in this case as well. ⇤

Hence, as a consequence of Theorem 8.6 we see �(Al) = �(Al+1)[{�c2l },
or, equivalently,

�p(Al) = {�c2j |j � l} (10.74)

if we use that �p(Al) ⇢ (�1, 0), which already follows from the virial the-
orem. Moreover, using Ql, we can turn any eigenfunction of Hl into one
of Hl+1. However, we only know the lowest eigenfunction ul,0, which is
mapped to 0 by Ql. On the other hand, we can also use Q⇤

l to turn an
eigenfunction of Hl+1 into one of Hl. Hence Q⇤

l ul+1,0 will give the second
eigenfunction of Hl. Proceeding inductively, the normalized eigenfunction
of Hl corresponding to the eigenvalue �c2l+j is given by

ul,j =

 
j�1Y

k=0

(cl+j � cl+k)

!�1

Q⇤

lQ
⇤

l+1 · · ·Q
⇤

l+j�1ul+j,0. (10.75)

The connection with Theorem 10.9 is given by

Rn,l(r) =
1

r
ul,n�l(r). (10.76)

Problem 10.8. Let A =
L

nAn. Then
S

n �ess(An) ✓ �ess(A).

Problem 10.9. Show that the generalized Laguerre polynomials satisfy the
di↵erential equation (10.61). (Hint: Start with the Laguerre polynomials
(10.58) which correspond to k = 0. Set v(r) = rje�r and observe r v0(r) =
(j � r)v(r). Then di↵erentiate this identity j + 1 times using Leibniz’s
rule. For the case of the generalized Laguerre polynomials, start with the
di↵erential equation for Lj+k(r) and di↵erentiate k times.)

Problem 10.10. Show that the di↵erential equation (10.58) can be rewritten
in Sturm–Liouville form as

�r�ker
d

dr
rk+1e�r d

dr
u = ju.

We have found one entire solution in the proof of Theorem 10.9. Show that
any linearly independent solution behaves like log(r) if k = 0, respectively,
like r�k otherwise. Show that it is l.c. at the endpoint r = 0 if k = 0 and
l.p. otherwise.
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Let H = L2((0,1), rke�rdr). The operator

Akf = ⌧f = �r�ker
d

dr
rk+1e�r d

dr
f,

D(Ak) = {f 2 H| f 2 AC1(0,1), ⌧kf 2 H,
limr!0 rf 0(r) = 0 if k = 0}

for k 2 N0 is self-adjoint. Its spectrum is purely discrete, that is,

�(Ak) = �d(Ak) = N0, (10.77)

and the corresponding eigenfunctions

L(k)
j (r), j 2 N0, (10.78)

form an orthogonal base for H. (Hint: Compare the argument for the asso-
ciated Legendre equation and Problem 10.5.)

Problem 10.11. By Problem 10.4 there is a recurrence relation of the form

L(k)
j+1(r) = (ãj + b̃jr)L

(k)
j (r) + c̃jL

(k)
j�1(r). Find the coe�cients by comparing

the highest powers in r and conclude

L(k)
j+1(r) =

1

1 + j

⇣
(2j + k + 1� r)L(k)

j (r)� (j + k)L(k)
j�1(r)

⌘
.

Use this to prove (10.62) and (10.67).

10.5. Nondegeneracy of the ground state

The lowest eigenvalue (below the essential spectrum) of a Schrödinger op-
erator is called the ground state. Since the laws of physics state that a
quantum system will transfer energy to its surroundings (e.g., an atom emits
radiation) until it eventually reaches its ground state, this state is in some
sense the most important state. We have seen that the hydrogen atom has
a nondegenerate (simple) ground state with a corresponding positive eigen-
function. In particular, the hydrogen atom is stable in the sense that there
is a lowest possible energy. This is quite surprising since the corresponding
classical mechanical system is not — the electron could fall into the nucleus!

Our aim in this section is to show that the ground state is simple with a
corresponding positive eigenfunction. Note that it su�ces to show that any
ground state eigenfunction is positive since nondegeneracy then follows for
free: two positive functions cannot be orthogonal.

To set the stage, let us introduce some notation. Let H = L2(Rn). We
call f 2 L2(Rn) positive if f � 0 a.e. and f 6⌘ 0. We call f strictly posi-
tive if f > 0 a.e. A bounded operator A is called positivity preserving if
f � 0 implies Af � 0 and positivity improving if f � 0 implies Af > 0.
Clearly A is positivity preserving (improving) if and only if hf,Agi � 0
(> 0) for f, g � 0.
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Example. Multiplication by a positive function is positivity preserving (but
not improving). Convolution with a strictly positive function is positivity
improving. ⇧

We first show that positivity improving operators have positive eigen-
functions.

Theorem 10.11. Suppose A 2 L(L2(Rn)) is a self-adjoint, positivity im-
proving and real (i.e., it maps real functions to real functions) operator. If
kAk is an eigenvalue, then it is simple and the corresponding eigenfunction
is strictly positive.

Proof. Let  be an eigenfunction. It is no restriction to assume that  is
real (since A is real, both real and imaginary part of  are eigenfunctions

as well). We assume k k = 1 and denote by  ± = f±kf |
2 the positive and

negative parts of  . Then by |A | = |A + � A �|  A + + A � = A| |
we have

kAk = h , A i  h| |, |A |i  h| |, A| |i  kAk;

that is, h , A i = h| |, A| |i and thus

h +, A �i =
1

4
(h| |, A| |i � h , A i) = 0.

Consequently  � = 0 or  + = 0 since otherwise A � > 0 and hence also
h +, A �i > 0. Without restriction  =  + � 0 and since A is positivity
increasing, we even have  = kAk

�1A > 0. ⇤

So we need a positivity improving operator. By (7.38) and (7.39) both
e�tH0 , t > 0, and R�(H0), � < 0, are since they are given by convolution
with a strictly positive function. Our hope is that this property carries over
to H = H0 + V .

Theorem 10.12. Suppose H = H0 + V is self-adjoint and bounded from
below with C1

c (Rn) as a core. If E0 = min�(H) is an eigenvalue, it is
simple and the corresponding eigenfunction is strictly positive.

Proof. We first show that e�tH , t > 0, is positivity preserving. If we set
Vn = V �{x| |V (x)|n}, then Vn is bounded and Hn = H0 + Vn is positivity

preserving by the Trotter product formula since both e�tH0 and e�tV are.
Moreover, we have Hn ! H for  2 C1

c (Rn) (note that necessarily
V 2 L2

loc) and hence Hn
sr
! H in the strong resolvent sense by Lemma 6.36.

Hence e�tHn
s
! e�tH by Theorem 6.31, which shows that e�tH is at least

positivity preserving (since 0 cannot be an eigenvalue of e�tH , it cannot map
a positive function to 0).
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Next I claim that for  positive the closed set

N( ) = {' 2 L2(Rn) |' � 0, h', e�sH i = 0 8s � 0}

is just {0}. If ' 2 N( ), we have by e�sH � 0 that 'e�sH = 0. Hence
etVn'e�sH = 0; that is, etVn' 2 N( ). In other words, both etVn and e�tH

leave N( ) invariant and invoking Trotter’s formula again, the same is true
for

e�t(H�Vn) = s-lim
k!1

⇣
e�

t
kHe

t
kVn

⌘k
.

Since e�t(H�Vn) s
! e�tH0 , we finally obtain that e�tH0 leaves N( ) invariant,

but this operator is positivity increasing and thus N( ) = {0}.

Now it remains to use (7.37), which shows

h', RH(�) i =

Z
1

0
e�th', e�tH idt > 0, � < E0,

for ',  positive. So RH(�) is positivity increasing for � < E0.

If  is an eigenfunction of H corresponding to E0, it is an eigenfunction
of RH(�) corresponding to 1

E0��
and the claim follows since kRH(�)k =

1
E0��

. ⇤

The assumptions are for example satisfied for the potentials V considered
in Theorem 10.2.





Chapter 11

Atomic Schrödinger
operators

11.1. Self-adjointness

In this section we want to have a look at the Hamiltonian corresponding to
more than one interacting particle. It is given by

H = �

NX

j=1

�j +
NX

j<k

Vj,k(xj � xk). (11.1)

We first consider the case of two particles, which will give us a feeling
for how the many particle case di↵ers from the one particle case and how
the di�culties can be overcome.

We denote the coordinates corresponding to the first particle by x1 =
(x1,1, x1,2, x1,3) and those corresponding to the second particle by x2 =
(x2,1, x2,2, x2,3). If we assume that the interaction is again of the Coulomb
type, the Hamiltonian is given by

H = ��1 ��2 �
�

|x1 � x2|
, D(H) = H2(R6). (11.2)

Since Theorem 10.2 does not allow singularities for n � 3, it does not tell
us whether H is self-adjoint or not. Let

(y1, y2) =
1
p
2

✓
I I
�I I

◆
(x1, x2). (11.3)

239
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Then H reads in this new coordinate system as

H = (��1) + (��2 �
�/

p
2

|y2|
). (11.4)

In particular, it is the sum of a free particle plus a particle in an external
Coulomb field. From a physics point of view, the first part corresponds to
the center of mass motion and the second part to the relative motion.

Using that �/(
p
2|y2|) has (��2)-bound 0 in L2(R3), it is not hard to

see that the same is true for the (��1 ��2)-bound in L2(R6) (details will
follow in the next section). In particular, H is self-adjoint and semi-bounded
for any � 2 R. Moreover, you might suspect that �/(

p
2|y2|) is relatively

compact with respect to ��1��2 in L2(R6) since it is with respect to ��2

in L2(R6). However, this is not true! This is due to the fact that �/(
p
2|y2|)

does not vanish as |y| ! 1.

Let us look at this problem from the physical view point. If � 2 �ess(H),
this means that the movement of the whole system is somehow unbounded.
There are two possibilities for this.

First, both particles are far away from each other (such that we can
neglect the interaction) and the energy corresponds to the sum of the kinetic
energies of both particles. Since both can be arbitrarily small (but positive),
we expect [0,1) ✓ �ess(H).

Secondly, both particles remain close to each other and move together.
In the last set of coordinates this corresponds to a bound state of the second
operator. Hence we expect [�0,1) ✓ �ess(H), where �0 = ��2/8 is the
smallest eigenvalue of the second operator if the forces are attracting (� � 0)
and �0 = 0 if they are repelling (�  0).

It is not hard to translate this intuitive idea into a rigorous proof. Let
 1(y1) be a Weyl sequence corresponding to � 2 [0,1) for ��1 and let
 2(y2) be a Weyl sequence corresponding to �0 for ��2��/(

p
2|y2|). Then,

 1(y1) 2(y2) is a Weyl sequence corresponding to � + �0 for H and thus
[�0,1) ✓ �ess(H). Conversely, we have ��1 � 0, respectively, ��2 �

�/(
p
2|y2|) � �0, and hence H � �0. Thus we obtain

�(H) = �ess(H) = [�0,1), �0 =

⇢
��2/8, � � 0,
0, �  0.

(11.5)

Clearly, the physically relevant information is the spectrum of the operator
��2��/(

p
2|y2|) which is hidden by the spectrum of ��1. Hence, in order

to reveal the physics, one first has to remove the center of mass motion.

To avoid clumsy notation, we will restrict ourselves to the case of one
atom with N electrons whose nucleus is fixed at the origin. In particular,
this implies that we do not have to deal with the center of mass motion
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encountered in our example above. In this case the Hamiltonian is given by

H(N) = �

NX

j=1

�j �

NX

j=1

Vne(xj) +
NX

j=1

NX

j<k

Vee(xj � xk),

D(H(N)) = H2(R3N ), (11.6)

where Vne describes the interaction of one electron with the nucleus and Vee

describes the interaction of two electrons. Explicitly we have

Vj(x) =
�j
|x|

, �j > 0, j = ne, ee. (11.7)

We first need to establish the self-adjointness of H(N) = H0 + V (N). This
will follow from Kato’s theorem.

Theorem 11.1 (Kato). Let Vk 2 L1
1(Rd) + L2(Rd), d  3, be real-valued

and let Vk(y(k)) be the multiplication operator in L2(Rn), n = Nd, obtained
by letting y(k) be the first d coordinates of a unitary transform of Rn. Then
Vk is H0 bounded with H0-bound 0. In particular,

H = H0 +
X

k

Vk(y
(k)), D(H) = H2(Rn), (11.8)

is self-adjoint and C1
0 (Rn) is a core.

Proof. It su�ces to consider one k. After a unitary transform of Rn we can
assume y(1) = (x1, . . . , xd) since such transformations leave both the scalar
product of L2(Rn) and H0 invariant. Now let  2 S(Rn). Then

kVk k
2
 a2

Z

Rn
|�1 (x)|

2dnx+ b2
Z

Rn
| (x)|2dnx,

where �1 =
Pd

j=1 @
2/@2xj , by our previous lemma. Hence we obtain

kVk k
2
 a2

Z

Rn
|

dX

j=1

p2j  ̂(p)|
2dnp+ b2k k2

 a2
Z

Rn
|

nX

j=1

p2j  ̂(p)|
2dnp+ b2k k2

= a2kH0 k
2 + b2k k2,

which implies that Vk is relatively bounded with bound 0. The rest follows
from the Kato–Rellich theorem. ⇤

So V (N) is H0 bounded with H0-bound 0 and thus H(N) = H0 + V (N)

is self-adjoint on D(H(N)) = D(H0).
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11.2. The HVZ theorem

The considerations of the beginning of this section show that it is not so
easy to determine the essential spectrum of H(N) since the potential does
not decay in all directions as |x| ! 1. However, there is still something we
can do. Denote the infimum of the spectrum of H(N) by �N . Then, let us
split the system into H(N�1) plus a single electron. If the single electron is
far away from the remaining system such that there is little interaction, the
energy should be the sum of the kinetic energy of the single electron and
the energy of the remaining system. Hence, arguing as in the two electron
example of the previous section, we expect

Theorem 11.2 (HVZ). Let H(N) be the self-adjoint operator given in (11.6).
Then H(N) is bounded from below and

�ess(H
(N)) = [�N�1,1), (11.9)

where �N�1 = min�(H(N�1)) < 0.

In particular, the ionization energy (i.e., the energy needed to remove
one electron from the atom in its ground state) of an atom with N electrons
is given by �N � �N�1.

Our goal for the rest of this section is to prove this result which is due
to Zhislin, van Winter, and Hunziker and is known as the HVZ theorem. In
fact there is a version which holds for general N -body systems. The proof
is similar but involves some additional notation.

The idea of proof is the following. To prove [�N�1,1) ✓ �ess(H(N)),
we choose Weyl sequences for H(N�1) and ��N and proceed according to
our intuitive picture from above. To prove �ess(H(N)) ✓ [�N�1,1), we
will localize H(N) on sets where one electron is far away from the nucleus
whenever some of the others are. On these sets, the interaction term between
this electron and the nucleus is decaying and hence does not contribute to
the essential spectrum. So it remain to estimate the infimum of the spectrum
of a system where one electron does not interact with the nucleus. Since the
interaction term with the other electrons is positive, we can finally estimate
this infimum by the infimum of the case where one electron is completely
decoupled from the rest.

We begin with the first inclusion. Let  N�1(x1, . . . , xN�1)2H2(R3(N�1))
such that k N�1

k = 1, k(H(N�1)
� �N�1) N�1

k  " and  1
2 H2(R3)

such that k 1
k = 1, k(��N � �) 1

k  " for some � � 0. Now consider
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 r(x1, . . . , xN ) =  N�1(x1, . . . , xN�1) 1
r (xN ),  1

r (xN ) =  1(xN � r). Then

k(H(N)
� �� �N�1) rk k(H(N�1)

� �N�1) N�1
kk 1

rk

+ k N�1
kk(��N � �) 1

rk

+ k(VN �

N�1X

j=1

VN,j) rk, (11.10)

where VN = Vne(xN ) and VN,j = Vee(xN � xj). Using the fact that

(VN �
PN�1

j=1 VN,j) N�1
2 L2(R3N ) and | 1

r | ! 0 pointwise as |r| ! 1

(by Lemma 10.1), the third term can be made smaller than " by choosing
|r| large (dominated convergence). In summary,

k(H(N)
� �� �N�1) rk  3" (11.11)

proving [�N�1,1) ✓ �ess(H(N)).

The second inclusion is more involved. We begin with a localization
formula.

Lemma 11.3 (IMS localization formula). Suppose �j 2 C1(Rn), 1  j 

m, is such that
mX

j=1

�j(x)
2 = 1, x 2 Rn. (11.12)

Then

� =
mX

j=1

�
�j�(�j ) + |@�j |

2 
�
,  2 H2(Rn). (11.13)

Proof. The proof follows from a straightforward computation using the
identities

P
j �j@k�j = 0 and

P
j((@k�j)

2 + �j@2k�j) = 0 which follow by
di↵erentiating (11.12). ⇤

Now we will choose �j , 1  j  N , in such a way that, for x outside
some ball, x 2 supp(�j) implies that the j’th particle is far away from the
nucleus.

Lemma 11.4. Fix some C 2 (0, 1
p
N
). There exist smooth functions �j 2

C1(Rn, [0, 1]), 1  j  N , such that (11.12) holds,

supp(�j) \ {x| |x| � 1} ✓ {x| |xj | � C|x|}, (11.14)

and |@�j(x)| ! 0 as |x| ! 1.

Proof. The open sets

Uj = {x 2 S3N�1
| |xj | > C}
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cover the unit sphere in RN ; that is,

N[

j=1

Uj = S3N�1.

By Lemma 0.13 there is a partition of unity �̃j(x) subordinate to this cover.
Extend �̃j(x) to a smooth function from R3N

\{0} to [0, 1] by

�̃j(�x) = �̃j(x), x 2 S3N�1, � > 0,

and pick a function �̃ 2 C1(R3N , [0, 1]) with support inside the unit ball
which is 1 in a neighborhood of the origin. Then the

�j =
�̃+ (1� �̃)�̃jqPN
`=1(�̃+ (1� �̃)�̃`)2

are the desired functions. The gradient tends to zero since �j(�x) = �j(x)
for � � 1 and |x| � 1 which implies (@�j)(�x) = ��1(@�j)(x). ⇤

By our localization formula we have

H(N) =
NX

j=1

�jH
(N,j)�j + P �K,

K =
NX

j=1

�
�2jVj + |@�j |

2
�
, P =

NX

j=1

�2j

NX

6̀=j

Vj,`, (11.15)

where

H(N,j) = �

NX

`=1

�` �

NX

6̀=j

V` +
NX

k<`, k, 6̀=j

Vk,` (11.16)

is the Hamiltonian with the j’th electron decoupled from the rest of the
system. Here we have abbreviated Vj(x) = Vne(xj) and Vj,` = Vee(xj � x`).

Since K vanishes as |x| ! 1, we expect it to be relatively compact with
respect to the rest. By Lemma 6.23 it su�ces to check that it is relatively
compact with respect to H0. The terms |@�j |2 are bounded and vanish at
1; hence they are H0 compact by Lemma 7.11. However, the terms �2jVj

have singularities and will be covered by the following lemma.

Lemma 11.5. Let V be a multiplication operator which is H0 bounded with
H0-bound 0 and suppose that k�{x||x|�R}V RH0(z)k ! 0 as R ! 1. Then
V is relatively compact with respect to H0.

Proof. Let  n converge to 0 weakly. Note that k nk  M for some
M > 0. It su�ces to show that kV RH0(z) nk converges to 0. Choose
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� 2 C1
0 (Rn, [0, 1]) such that it is one for |x|  R. Note �D(H0) ⇢ D(H0).

Then

kV RH0(z) nk k(1� �)V RH0(z) nk+ kV �RH0(z) nk

k(1� �)V RH0(z)kk nk

+ akH0�RH0(z) nk+ bk�RH0(z) nk.

By assumption, the first term can be made smaller than " by choosing R
large. Next, the same is true for the second term choosing a small since
H0�RH0(z) is bounded (by Problem 2.9 and the closed graph theorem).
Finally, the last term can also be made smaller than " by choosing n large
since � is H0 compact. ⇤

So K is relatively compact with respect to H(N). In particular H(N) +
K is self-adjoint on H2(R3N ) and �ess(H(N)) = �ess(H(N) + K). Since
the operators H(N,j), 1  j  N , are all of the form H(N�1) plus one
particle which does not interact with the others and the nucleus, we have
H(N,j)

� �N�1
� 0, 1  j  N . Moreover, we have P � 0 and hence

h , (H(N) +K � �N�1) i =
NX

j=1

h�j , (H
(N,j)

� �N�1)�j i

+ h , P i � 0. (11.17)

Thus we obtain the remaining inclusion

�ess(H
(N)) = �ess(H

(N) +K) ✓ �(H(N) +K) ✓ [�N�1,1), (11.18)

which finishes the proof of the HVZ theorem.

Note that the same proof works if we add additional nuclei at fixed
locations. That is, we can also treat molecules if we assume that the nuclei
are fixed in space.

Finally, let us consider the example of helium-like atoms (N = 2). By
the HVZ theorem and the considerations of the previous section we have

�ess(H
(2)) = [�

�2ne
4

,1). (11.19)

Moreover, if �ee = 0 (no electron interaction), we can take products of one-
particle eigenfunctions to show that

� �2ne

✓
1

4n2
+

1

4m2

◆
2 �p(H

(2)(�ee = 0)), n,m 2 N. (11.20)

In particular, there are eigenvalues embedded in the essential spectrum in
this case. Moreover, since the electron interaction term is positive, we see

H(2)
� �

�2ne
2

. (11.21)
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Note that there can be no positive eigenvalues by the virial theorem. This
even holds for arbitrary N ,

�p(H
(N)) ⇢ (�1, 0). (11.22)



Chapter 12

Scattering theory

12.1. Abstract theory

In physical measurements one often has the following situation. A particle
is shot into a region where it interacts with some forces and then leaves
the region again. Outside this region the forces are negligible and hence the
time evolution should be asymptotically free. Hence one expects asymptotic
states  ±(t) = exp(�itH0) ±(0) to exist such that

k (t)�  ±(t)k ! 0 as t ! ±1. (12.1)

 (t)

 �(t)

 +(t)

�
�
�
�
�
�
�
�
�
�
�
�
�
���

⇠⇠⇠⇠⇠⇠⇠⇠⇠⇠⇠⇠⇠⇠⇠⇠⇠⇠:

✓

Rewriting this condition, we see

0 = lim
t!±1

ke�itH (0)� e�itH0 ±(0)k = lim
t!±1

k (0)� eitHe�itH0 ±(0)k

(12.2)
and motivated by this, we define the wave operators by

D(⌦±) = { 2 H|9 limt!±1 eitHe�itH0 },
⌦± = limt!±1 eitHe�itH0 .

(12.3)

247
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The set D(⌦±) is the set of all incoming/outgoing asymptotic states  ± and
Ran(⌦±) is the set of all states which have an incoming/outgoing asymptotic
state. If a state  has both, that is,  2 Ran(⌦+) \ Ran(⌦�), it is called a
scattering state.

By construction we have

k⌦± k = lim
t!±1

keitHe�itH0 k = lim
t!±1

k k = k k (12.4)

and it is not hard to see that D(⌦±) is closed. Moreover, interchanging the
roles of H0 and H amounts to replacing ⌦± by ⌦�1

± and hence Ran(⌦±) is
also closed. In summary,

Lemma 12.1. The sets D(⌦±) and Ran(⌦±) are closed and ⌦± : D(⌦±) !
Ran(⌦±) is unitary.

Next, observe that

lim
t!±1

eitHe�itH0(e�isH0 ) = lim
t!±1

e�isH(ei(t+s)He�i(t+s)H0 ) (12.5)

and hence
⌦±e

�itH0 = e�itH⌦± ,  2 D(⌦±). (12.6)

In addition, D(⌦±) is invariant under exp(�itH0) and Ran(⌦±) is invariant
under exp(�itH). Moreover, if  2 D(⌦±)?, then

h', exp(�itH0) i = hexp(itH0)', i = 0, ' 2 D(⌦±). (12.7)

Hence D(⌦±)? is invariant under exp(�itH0) and Ran(⌦±)? is invariant
under exp(�itH). Consequently, D(⌦±) reduces exp(�itH0) and Ran(⌦±)
reduces exp(�itH). Moreover, di↵erentiating (12.6) with respect to t, we
obtain from Theorem 5.1 the intertwining property of the wave operators.

Theorem 12.2. The subspaces D(⌦±), respectively, Ran(⌦±), reduce H0,
respectively, H, and the operators restricted to these subspaces are unitarily
equivalent:

⌦±H0 = H⌦± ,  2 D(⌦±) \D(H0). (12.8)

It is interesting to know the correspondence between incoming and out-
going states. Hence we define the scattering operator

S = ⌦�1
+ ⌦�, D(S) = { 2 D(⌦�)|⌦� 2 Ran(⌦+)}. (12.9)

Note that we have D(S) = D(⌦�) if and only if Ran(⌦�) ✓ Ran(⌦+) and
Ran(S) = D(⌦+) if and only if Ran(⌦+) ✓ Ran(⌦�). Moreover, S is unitary
from D(S) onto Ran(S) and we have

H0S = SH0 , D(H0) \D(S). (12.10)

However, note that this whole theory is meaningless until we can show that
the domains D(⌦±) are nontrivial. We first show a criterion due to Cook.
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Lemma 12.3 (Cook). Suppose D(H) ✓ D(H0). If
Z

1

0
k(H �H0) exp(⌥itH0) kdt < 1,  2 D(H0), (12.11)

then  2 D(⌦±), respectively. Moreover, we even have

k(⌦± � I) k 

Z
1

0
k(H �H0) exp(⌥itH0) kdt (12.12)

in this case.

Proof. The result follows from

eitHe�itH0 =  + i

Z t

0
exp(isH)(H �H0) exp(�isH0) ds (12.13)

which holds for  2 D(H0). ⇤

As a simple consequence we obtain the following result for Schrödinger
operators in R3

Theorem 12.4. Suppose H0 is the free Schrödinger operator and H =
H0 + V with V 2 L2(R3). Then the wave operators exist and D(⌦±) = H.

Proof. Since we want to use Cook’s lemma, we need to estimate

kV  (s)k2 =

Z

R3
|V (x) (s, x)|2dx,  (s) = exp(isH0) ,

for given  2 D(H0). Invoking (7.31), we get

kV  (s)k  k (s)k1kV k 
1

(4⇡s)3/2
k k1kV k, s > 0,

at least for  2 L1(R3). Moreover, this implies
Z

1

1
kV  (s)kds 

1

4⇡3/2
k k1kV k

and thus any such  is in D(⌦+). Since such functions are dense, we obtain
D(⌦+) = H, and similarly for ⌦�. ⇤

By the intertwining property  is an eigenfunction of H0 if and only
if it is an eigenfunction of H. Hence for  2 Hpp(H0) it is easy to check
whether it is in D(⌦±) or not and only the continuous subspace is of interest.
We will say that the wave operators exist if all elements of Hac(H0) are
asymptotic states, that is,

Hac(H0) ✓ D(⌦±), (12.14)

and that they are complete if, in addition, all elements of Hac(H) are
scattering states, that is,

Hac(H) ✓ Ran(⌦±). (12.15)
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If we even have

Hc(H) ✓ Ran(⌦±), (12.16)

they are called asymptotically complete.

We will be mainly interested in the case where H0 is the free Schrödinger
operator and hence Hac(H0) = H. In this latter case the wave operators ex-
ist if D(⌦±) = H, they are complete if Hac(H) = Ran(⌦±), and they are
asymptotically complete if Hc(H) = Ran(⌦±). In particular, asymptotic
completeness implies Hsc(H) = {0} since H restricted to Ran(⌦±) is uni-
tarily equivalent to H0. Completeness implies that the scattering operator
is unitary. Hence, by the intertwining property, kinetic energy is preserved
during scattering:

h �, H0 �i = hS �, SH0 �i = hS �, H0S �i = h +, H0 +i (12.17)

for  � 2 D(H0) and  + = S �.

12.2. Incoming and outgoing states

In the remaining sections we want to apply this theory to Schrödinger op-
erators. Our first goal is to give a precise meaning to some terms in the
intuitive picture of scattering theory introduced in the previous section.

This physical picture suggests that we should be able to decompose
 2 H into an incoming and an outgoing part. But how should incoming,
respectively, outgoing, be defined for  2 H? Well, incoming (outgoing)
means that the expectation of x2 should decrease (increase). Set x(t)2 =
exp(iH0t)x2 exp(�iH0t). Then, abbreviating  (t) = e�itH0 ,

d

dt
E (x(t)2) = h (t), i[H0, x

2] (t)i = 4h (t), D (t)i,  2 S(Rn),

(12.18)
where D is the dilation operator introduced in (10.9). Hence it is natural to
consider  2 Ran(P±),

P± = PD((0,±1)), (12.19)

as outgoing, respectively, incoming, states. If we project a state in Ran(P±)
to energies in the interval (a2, b2), we expect that it cannot be found in a
ball of radius proportional to a|t| as t ! ±1 (a is the minimal velocity of
the particle, since we have assumed the mass to be two). In fact, we will
show below that the tail decays faster then any inverse power of |t|.

We first collect some properties of D which will be needed later on. Note

FD = �DF (12.20)

and hence Ff(D) = f(�D)F . Additionally, we will look for a transforma-
tion which maps D to a multiplication operator.
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Since the dilation group acts on |x| only, it seems reasonable to switch to
polar coordinates x = r!, (t,!) 2 R+

⇥ Sn�1. Since U(s) essentially trans-
forms r into r exp(s), we will replace r by ⇢ = log(r). In these coordinates
we have

U(s) (e⇢!) = e�ns/2 (e(⇢�s)!) (12.21)

and hence U(s) corresponds to a shift of ⇢ (the constant in front is absorbed
by the volume element). Thus D corresponds to di↵erentiation with respect
to this coordinate and all we have to do to make it a multiplication operator
is to take the Fourier transform with respect to ⇢.

This leads us to the Mellin transform

M : L2(Rn) ! L2(R⇥ Sn�1),

 (r!) ! (M )(�,!) =
1

p
2⇡

Z
1

0
r�i� (r!)r

n
2�1dr.

(12.22)

By construction, M is unitary; that is,
Z

R

Z

Sn�1
|(M )(�,!)|2d�dn�1! =

Z

R+

Z

Sn�1
| (r!)|2rn�1drdn�1!,

(12.23)
where dn�1! is the normalized surface measure on Sn�1. Moreover,

M
�1U(s)M = e�is� (12.24)

and hence
M

�1DM = �. (12.25)

From this it is straightforward to show that

�(D) = �ac(D) = R, �sc(D) = �pp(D) = ; (12.26)

and that S(Rn) is a core for D. In particular we have P+ + P� = I.
Using the Mellin transform, we can now prove Perry’s estimate.

Lemma 12.5. Suppose f 2 C1
c (R) with supp(f) ⇢ (a2, b2) for some a, b >

0. For any R 2 R, N 2 N there is a constant C such that

k�{x| |x|<2a|t|}e
�itH0f(H0)PD((±R,±1))k 

C

(1 + |t|)N
, ±t � 0, (12.27)

respectively.

Proof. We prove only the + case, the remaining one being similar. Consider
 2 S(Rn). Introducing

 (t, x) = e�itH0f(H0)PD((R,1)) (x) = hKt,x,FPD((R,1)) i

= hKt,x, PD((�1,�R)) ̂i,

where

Kt,x(p) =
1

(2⇡)n/2
ei(tp

2
�px)f(p2)⇤,
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we see that it su�ces to show

kPD((�1,�R))Kt,xk
2


const

(1 + |t|)2N
, for |x| < 2a|t|, t > 0.

Now we invoke the Mellin transform to estimate this norm:

kPD((�1,�R))Kt,xk
2 =

Z
�R

�1

Z

Sn�1
|(MKt,x)(�,!)|

2d�dn�1!.

Since

(MKt,x)(�,!) =
1

(2⇡)(n+1)/2

Z
1

0
f̃(r)ei↵(r)dr (12.28)

with f̃(r) = f(r2)⇤rn/2�1
2 C1

c ((a, b)), ↵(r) = tr2 + r!x � � log(r). Esti-
mating the derivative of ↵, we see

↵0(r) = 2tr + !x� �/r > 0, r 2 (a, b),

for �  �R and t > �R(2"a)�1, where " is the distance of a to the support
of f̃ . Hence we can find a constant such that

|↵0(r)| � const(1 + |�|+ |t|), r 2 supp(f̃),

for �  �R, t > �R("a)�1. Now the method of stationary phase (Prob-
lem 12.1) implies

|(MKt,x)(�,!)| 
const

(1 + |�|+ |t|)N

for �, t as before. By increasing the constant, we can even assume that it
holds for t � 0 and �  �R. This finishes the proof. ⇤

Corollary 12.6. Suppose that f 2 C1
c ((0,1)) and R 2 R. Then the

operator PD((±R,±1))f(H0) exp(�itH0) converges strongly to 0 as t !

⌥1.

Proof. Abbreviating PD = PD((±R,±1)) and � = �{x| |x|<2a|t|}, we have

kPDf(H0)e
�itH0 k  k�eitH0f(H0)

⇤PDk k k+ kf(H0)kk(I� �) k

since kAk = kA⇤
k. Taking t ! ⌥1, the first term goes to zero by our

lemma and the second goes to zero since � !  . ⇤

Problem 12.1 (Method of stationary phase). Consider the integral

I(t) =

Z
1

�1

f(r)eit�(r)dr

with f 2 C1
c (R) and a real-valued phase � 2 C1(R). Show that |I(t)| 

CN t�N for any N 2 N if |�0(r)| � 1 for r 2 supp(f). (Hint: Make a change
of variables ⇢ = �(r) and conclude that it su�ces to show the case �(r) = r.
Now use integration by parts.)



12.3. Schrödinger operators with short range potentials 253

12.3. Schrödinger operators with short range potentials

By the RAGE theorem we know that for  2 Hc,  (t) will eventually leave
every compact ball (at least on the average). Hence we expect that the
time evolution will asymptotically look like the free one for  2 Hc if the
potential decays su�ciently fast. In other words, we expect such potentials
to be asymptotically complete.

Suppose V is relatively bounded with bound less than one. Introduce

h1(r) = kV RH0(z)�rk, h2(r) = k�rV RH0(z)k, r � 0, (12.29)

where
�r = �{x| |x|�r}. (12.30)

The potential V will be called short range if these quantities are integrable.
We first note that it su�ces to check this for h1 or h2 and for one z 2 ⇢(H0).

Lemma 12.7. The function h1 is integrable if and only if h2 is. Moreover,
hj integrable for one z0 2 ⇢(H0) implies hj integrable for all z 2 ⇢(H0).

Proof. Pick � 2 C1
c (Rn, [0, 1]) such that �(x) = 0 for 0  |x|  1/2 and

�(x) = 0 for 1  |x|. Then it is not hard to see that hj is integrable if and
only if h̃j is integrable, where

h̃1(r) = kV RH0(z)�rk, h̃2(r) = k�rV RH0(z)k, r � 1,

and �r(x) = �(x/r). Using

[RH0(z),�r] = �RH0(z)[H0(z),�r]RH0(z)

= RH0(z)(��r + (@�r)@)RH0(z)

and��r = �r/2��r, k��rk1  k��k1/r2, respectively, (@�r) = �r/2(@�r),
k@�rk1  k@�k1/r2, we see

|h̃1(r)� h̃2(r)| 
c

r
h̃1(r/2), r � 1.

Hence h̃2 is integrable if h̃1 is. Conversely,

h̃1(r)  h̃2(r) +
c

r
h̃1(r/2)  h̃2(r) +

c

r
h̃2(r/2) +

2c

r2
h̃1(r/4)

shows that h̃2 is integrable if h̃1 is.

Invoking the first resolvent formula

k�rV RH0(z)k  k�rV RH0(z0)kkI� (z � z0)RH0(z)k

finishes the proof. ⇤

As a first consequence note

Lemma 12.8. If V is short range, then RH(z)�RH0(z) is compact.
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Proof. The operator RH(z)V (I��r)RH0(z) is compact since (I��r)RH0(z)
is by Lemma 7.11 and RH(z)V is bounded by Lemma 6.23. Moreover, by
our short range condition it converges in norm to

RH(z)V RH0(z) = RH(z)�RH0(z)

as r ! 1 (at least for some subsequence). ⇤

In particular, by Weyl’s theorem we have �ess(H) = [0,1). Moreover,
V short range implies that H and H0 look alike far outside.

Lemma 12.9. Suppose RH(z)�RH0(z) is compact. Then so is f(H)�f(H0)
for any f 2 C1(R) and

lim
r!1

k(f(H)� f(H0))�rk = 0. (12.31)

Proof. The first part is Lemma 6.21 and the second part follows from part
(ii) of Lemma 6.8 since �r converges strongly to 0. ⇤

However, this is clearly not enough to prove asymptotic completeness
and we need a more careful analysis.

We begin by showing that the wave operators exist. By Cook’s criterion
(Lemma 12.3) we need to show that

kV exp(⌥itH0) k kV RH0(�1)kk(I� �2a|t|) exp(⌥itH0)(H0 + I) k
+ kV RH0(�1)�2a|t|kk(H0 + I) k (12.32)

is integrable for a dense set of vectors  . The second term is integrable by our
short range assumption. The same is true by Perry’s estimate (Lemma 12.5)
for the first term if we choose  = f(H0)PD((±R,±1))'. Since vectors of
this form are dense, we see that the wave operators exist,

D(⌦±) = H. (12.33)

Since H restricted to Ran(⌦⇤
±) is unitarily equivalent to H0, we obtain

[0,1) = �ac(H0) ✓ �ac(H). Furthermore, by �ac(H) ✓ �ess(H) = [0,1)
we even have �ac(H) = [0,1).

To prove asymptotic completeness of the wave operators, we will need
that the (⌦± � I)f(H0)P± are compact.

Lemma 12.10. Let f 2 C1
c ((0,1)) and suppose  n converges weakly to 0.

Then

lim
n!1

k(⌦± � I)f(H0)P± nk = 0; (12.34)

that is, (⌦± � I)f(H0)P± is compact.
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Proof. By (12.13) we see

kRH(z)(⌦± � I)f(H0)P± nk 

Z
1

0
kRH(z)V exp(�isH0)f(H0)P± nkdt.

Since RH(z)V RH0 is compact, we see that the integrand

RH(z)V exp(�isH0)f(H0)P± n

= RH(z)V RH0 exp(�isH0)(H0 + 1)f(H0)P± n

converges pointwise to 0. Moreover, arguing as in (12.32), the integrand
is bounded by an L1 function depending only on k nk. Thus RH(z)(⌦± �

I)f(H0)P± is compact by the dominated convergence theorem. Furthermore,
using the intertwining property, we see that

(⌦± � I)f̃(H0)P± =RH(z)(⌦± � I)f(H0)P±

� (RH(z)�RH0(z))f(H0)P±

is compact by Lemma 6.21, where f̃(�) = (�+ 1)f(�). ⇤

Now we have gathered enough information to tackle the problem of
asymptotic completeness.

We first show that the singular continuous spectrum is absent. This
is not really necessary, but it avoids the use of Cesàro means in our main
argument.

Abbreviate P = P sc
H PH((a, b)), 0 < a < b. Since H restricted to

Ran(⌦±) is unitarily equivalent to H0 (which has purely absolutely continu-
ous spectrum), the singular part must live on Ran(⌦±)?; that is, P sc

H ⌦± = 0.
Thus Pf(H0) = P (I�⌦+)f(H0)P++P (I�⌦�)f(H0)P� is compact. Since
f(H) � f(H0) is compact, it follows that Pf(H) is also compact. Choos-
ing f such that f(�) = 1 for � 2 [a, b], we see that P = Pf(H) is com-
pact and hence finite dimensional. In particular �sc(H) \ (a, b) is a fi-
nite set. But a continuous measure cannot be supported on a finite set,
showing �sc(H) \ (a, b) = ;. Since 0 < a < b are arbitrary, we even
have �sc(H) \ (0,1) = ; and by �sc(H) ✓ �ess(H) = [0,1), we obtain
�sc(H) = ;.

Observe that replacing P sc
H by P pp

H , the same argument shows that all
nonzero eigenvalues are finite dimensional and cannot accumulate in (0,1).

In summary we have shown

Theorem 12.11. Suppose V is short range. Then

�ac(H) = �ess(H) = [0,1), �sc(H) = ;. (12.35)

All nonzero eigenvalues have finite multiplicity and cannot accumulate in
(0,1).
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Now we come to the anticipated asymptotic completeness result of Enß.
Choose

 2 Hc(H) = Hac(H) such that  = f(H) (12.36)

for some f 2 C1
c ((0,1)). By the RAGE theorem the sequence  (t) con-

verges weakly to zero as t ! ±1. Abbreviate  (t) = exp(�itH) . Intro-
duce

'±(t) = f(H0)P± (t), (12.37)

which satisfy
lim

t!±1
k (t)� '+(t)� '�(t)k = 0. (12.38)

Indeed this follows from

 (t) = '+(t) + '�(t) + (f(H)� f(H0)) (t) (12.39)

and Lemma 6.21. Moreover, we even have

lim
t!±1

k(⌦± � I)'±(t)k = 0 (12.40)

by Lemma 12.10. Now suppose  2 Ran(⌦±)?. Then

k k2 = lim
t!±1

h (t), (t)i

= lim
t!±1

h (t),'+(t) + '�(t)i

= lim
t!±1

h (t),⌦+'+(t) + ⌦�'�(t)i. (12.41)

By Theorem 12.2, Ran(⌦±)? is invariant underH and thus  (t) 2 Ran(⌦±)?

implying

k k2 = lim
t!±1

h (t),⌦⌥'⌥(t)i (12.42)

= lim
t!±1

hP⌥f(H0)
⇤⌦⇤

⌥ (t), (t)i.

Invoking the intertwining property, we see

k k2 = lim
t!±1

hP⌥f(H0)
⇤e�itH0⌦⇤

⌥ , (t)i = 0 (12.43)

by Corollary 12.6. Hence Ran(⌦±) = Hac(H) = Hc(H) and we thus have
shown

Theorem 12.12 (Enß). Suppose V is short range. Then the wave operators
are asymptotically complete.
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Appendix A

Almost everything
about Lebesgue
integration

In this appendix I give a brief introduction to measure theory. Good refer-
ences are [7], [32], or [47].

A.1. Borel measures in a nut shell

The first step in defining the Lebesgue integral is extending the notion of
size from intervals to arbitrary sets. Unfortunately, this turns out to be too
much, since a classical paradox by Banach and Tarski shows that one can
break the unit ball in R3 into a finite number of (wild – choosing the pieces
uses the Axiom of Choice and cannot be done with a jigsaw;-) pieces, rotate
and translate them, and reassemble them to get two copies of the unit ball
(compare Problem A.1). Hence any reasonable notion of size (i.e., one which
is translation and rotation invariant) cannot be defined for all sets!

A collection of subsets A of a given set X such that

• X 2 A,

• A is closed under finite unions,

• A is closed under complements

is called an algebra. Note that ; 2 A and that, by de Morgan, A is also
closed under finite intersections. If an algebra is closed under countable
unions (and hence also countable intersections), it is called a �-algebra.

259
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Moreover, the intersection of any family of (�-)algebras {A↵} is again
a (�-)algebra and for any collection S of subsets there is a unique smallest
(�-)algebra ⌃(S) containing S (namely the intersection of all (�-)algebras
containing S). It is called the (�-)algebra generated by S.

If X is a topological space, the Borel �-algebra of X is defined to be
the �-algebra generated by all open (respectively, all closed) sets. Sets in
the Borel �-algebra are called Borel sets.

Example. In the case X = Rn the Borel �-algebra will be denoted by B
n

and we will abbreviate B = B
1. ⇧

Now let us turn to the definition of a measure: A set X together with
a �-algebra ⌃ is called a measurable space. A measure µ is a map
µ : ⌃ ! [0,1] on a �-algebra ⌃ such that

• µ(;) = 0,

• µ(
S

1

j=1Aj) =
1P
j=1

µ(Aj) if Aj \Ak = ; for all j 6= k (�-additivity).

It is called �-finite if there is a countable cover {Xj}
1

j=1 of X with µ(Xj) <
1 for all j. (Note that it is no restriction to assume Xj ✓ Xj+1.) It is
called finite if µ(X) < 1. The sets in ⌃ are called measurable sets and
the triple X, ⌃, and µ is referred to as a measure space.

If we replace the �-algebra by an algebra A, then µ is called a premea-
sure. In this case �-additivity clearly only needs to hold for disjoint sets
An for which

S
nAn 2 A.

We will write An % A if An ✓ An+1 (note A =
S

nAn) and An & A if
An+1 ✓ An (note A =

T
nAn).

Theorem A.1. Any measure µ satisfies the following properties:

(i) A ✓ B implies µ(A)  µ(B) (monotonicity).

(ii) µ(An) ! µ(A) if An % A (continuity from below).

(iii) µ(An) ! µ(A) if An & A and µ(A1) < 1 (continuity from above).

Proof. The first claim is obvious. The second follows using Ãn = An\An�1

and �-additivity. The third follows from the second using Ãn = A1\An and
µ(Ãn) = µ(A1)� µ(An). ⇤

Example. Let A 2 P(M) and set µ(A) to be the number of elements of A
(respectively, 1 if A is infinite). This is the so-called counting measure.

Note that if X = N and An = {j 2 N|j � n}, then µ(An) = 1, but
µ(
T

nAn) = µ(;) = 0 which shows that the requirement µ(A1) < 1 in the
last claim of Theorem A.1 is not superfluous. ⇧
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A measure on the Borel �-algebra is called a Borel measure if µ(C) <
1 for any compact set C. A Borel measures is called outer regular if

µ(A) = inf
A✓O,O open

µ(O) (A.1)

and inner regular if

µ(A) = sup
C✓A,C compact

µ(C). (A.2)

It is called regular if it is both outer and inner regular.

But how can we obtain some more interesting Borel measures? We will
restrict ourselves to the case of X = R for simplicity. Then the strategy
is as follows: Start with the algebra of finite unions of disjoint intervals
and define µ for those sets (as the sum over the intervals). This yields a
premeasure. Extend this to an outer measure for all subsets of R. Show
that the restriction to the Borel sets is a measure.

Let us first show how we should define µ for intervals: To every Borel
measure on B we can assign its distribution function

µ(x) =

8
<

:

�µ((x, 0]), x < 0,
0, x = 0,
µ((0, x]), x > 0,

(A.3)

which is right continuous and nondecreasing. Conversely, given a right con-
tinuous nondecreasing function µ : R ! R, we can set

µ(A) =

8
>><

>>:

µ(b)� µ(a), A = (a, b],
µ(b)� µ(a�), A = [a, b],
µ(b�)� µ(a), A = (a, b),
µ(b�)� µ(a�), A = [a, b),

(A.4)

where µ(a�) = lim"#0 µ(a�"). In particular, this gives a premeasure on the
algebra of finite unions of intervals which can be extended to a measure:

Theorem A.2. For every right continuous nondecreasing function µ : R !

R there exists a unique regular Borel measure µ which extends (A.4). Two
di↵erent functions generate the same measure if and only if they di↵er by a
constant.

Since the proof of this theorem is rather involved, we defer it to the next
section and look at some examples first.

Example. Suppose ⇥(x) = 0 for x < 0 and ⇥(x) = 1 for x � 0. Then we
obtain the so-called Dirac measure at 0, which is given by ⇥(A) = 1 if
0 2 A and ⇥(A) = 0 if 0 62 A. ⇧
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Example. Suppose �(x) = x. Then the associated measure is the ordinary
Lebesgue measure on R. We will abbreviate the Lebesgue measure of a
Borel set A by �(A) = |A|. ⇧

It can be shown that Borel measures on a locally compact second count-
able space are always regular ([7, Thm. 29.12]).

A set A 2 ⌃ is called a support for µ if µ(X\A) = 0. A property is
said to hold µ-almost everywhere (a.e.) if it holds on a support for µ or,
equivalently, if the set where it does not hold is contained in a set of measure
zero.

Example. The set of rational numbers has Lebesgue measure zero: �(Q) =
0. In fact, any single point has Lebesgue measure zero, and so has any
countable union of points (by countable additivity). ⇧

Example. The Cantor set is an example of a closed uncountable set of
Lebesgue measure zero. It is constructed as follows: Start with C0 = [0, 1]
and remove the middle third to obtain C1 = [0, 13 ][[

2
3 , 1]. Next, again remove

the middle third’s of the remaining sets to obtain C2 = [0, 19 ][ [29 ,
1
3 ][ [23 ,

7
9 ][

[89 , 1]:
C0

C1

C2

C3...

Proceeding like this, we obtain a sequence of nesting sets Cn and the limit
C =

T
nCn is the Cantor set. Since Cn is compact, so is C. Moreover,

Cn consists of 2n intervals of length 3�n, and thus its Lebesgue measure
is �(Cn) = (2/3)n. In particular, �(C) = limn!1 �(Cn) = 0. Using the
ternary expansion, it is extremely simple to describe: C is the set of all
x 2 [0, 1] whose ternary expansion contains no one’s, which shows that C is
uncountable (why?). It has some further interesting properties: it is totally
disconnected (i.e., it contains no subintervals) and perfect (it has no isolated
points). ⇧

Problem A.1 (Vitali set). Call two numbers x, y 2 [0, 1) equivalent if x�y
is rational. Construct the set V by choosing one representative from each
equivalence class. Show that V cannot be measurable with respect to any
nontrivial finite translation invariant measure on [0, 1). (Hint: How can
you build up [0, 1) from translations of V ?)
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A.2. Extending a premeasure to a measure

The purpose of this section is to prove Theorem A.2. It is rather technical and

should be skipped on first reading.

In order to prove Theorem A.2, we need to show how a premeasure can
be extended to a measure. As a prerequisite we first establish that it su�ces
to check increasing (or decreasing) sequences of sets when checking whether
a given algebra is in fact a �-algebra:

A collection of sets M is called a monotone class if An % A implies
A 2 M whenever An 2 M and An & A implies A 2 M whenever An 2 M.
Every �-algebra is a monotone class and the intersection of monotone classes
is a monotone class. Hence every collection of sets S generates a smallest
monotone class M(S).

Theorem A.3. Let A be an algebra. Then M(A) = ⌃(A).

Proof. We first show that M = M(A) is an algebra.

Put M(A) = {B 2 M|A [ B 2 M}. If Bn is an increasing sequence
of sets in M(A), then A [ Bn is an increasing sequence in M and henceS

n(A [Bn) 2 M. Now

A [

⇣[

n

Bn

⌘
=
[

n

(A [Bn)

shows that M(A) is closed under increasing sequences. Similarly, M(A) is
closed under decreasing sequences and hence it is a monotone class. But
does it contain any elements? Well, if A 2 A, we have A ✓ M(A) implying
M(A) = M for A 2 A. Hence A[B 2 M if at least one of the sets is in A.
But this shows A ✓ M(A) and hence M(A) = M for any A 2 M. So M is
closed under finite unions.

To show that we are closed under complements, consider M = {A 2

M|X\A 2 M}. If An is an increasing sequence, then X\An is a decreasing
sequence and X\

S
nAn =

T
nX\An 2 M if An 2 M and similarly for

decreasing sequences. Hence M is a monotone class and must be equal to
M since it contains A.

So we know that M is an algebra. To show that it is a �-algebra, let
An 2 M be given and put Ãn =

S
knAn 2 M. Then Ãn is increasing andS

n Ãn =
S

nAn 2 M. ⇤

The typical use of this theorem is as follows: First verify some property
for sets in an algebra A. In order to show that it holds for any set in ⌃(A), it
su�ces to show that the collection of sets for which it holds is closed under
countable increasing and decreasing sequences (i.e., is a monotone class).

Now we start by proving that (A.4) indeed gives rise to a premeasure.
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Lemma A.4. The interval function µ defined in (A.4) gives rise to a unique
�-finite regular premeasure on the algebra A of finite unions of disjoint in-
tervals.

Proof. First of all, (A.4) can be extended to finite unions of disjoint inter-
vals by summing over all intervals. It is straightforward to verify that µ is
well-defined (one set can be represented by di↵erent unions of intervals) and
by construction additive.

To show regularity, we can assume any such union to consist of open
intervals and points only. To show outer regularity, replace each point {x}
by a small open interval (x+", x�") and use that µ({x}) = lim"#0 µ(x+")�
µ(x�"). Similarly, to show inner regularity, replace each open interval (a, b)
by a compact one, [an, bn] ✓ (a, b), and use µ((a, b)) = limn!1 µ(bn)�µ(an)
if an # a and bn " b.

It remains to verify �-additivity. We need to show

µ(
[

k

Ik) =
X

k

µ(Ik)

whenever In 2 A and I =
S

k Ik 2 A. Since each In is a finite union of in-
tervals, we can as well assume each In is just one interval (just split In into
its subintervals and note that the sum does not change by additivity). Sim-
ilarly, we can assume that I is just one interval (just treat each subinterval
separately).

By additivity µ is monotone and hence

nX

k=1

µ(Ik) = µ(
n[

k=1

Ik)  µ(I)

which shows
1X

k=1

µ(Ik)  µ(I).

To get the converse inequality, we need to work harder.

By outer regularity we can cover each Ik by some open interval Jk such
that µ(Jk)  µ(Ik) +

"
2k
. First suppose I is compact. Then finitely many of

the Jk, say the first n, cover I and we have

µ(I)  µ(
n[

k=1

Jk) 
nX

k=1

µ(Jk) 
1X

k=1

µ(Ik) + ".

Since " > 0 is arbitrary, this shows �-additivity for compact intervals. By
additivity we can always add/subtract the endpoints of I and hence �-
additivity holds for any bounded interval. If I is unbounded, say I = [a,1),



A.2. Extending a premeasure to a measure 265

then given x > 0, we can find an n such that Jn cover at least [0, x] and
hence

nX

k=1

µ(Ik) �
nX

k=1

µ(Jk)� " � µ([a, x])� ".

Since x > a and " > 0 are arbitrary, we are done. ⇤

This premeasure determines the corresponding measure µ uniquely (if
there is one at all):

Theorem A.5 (Uniqueness of measures). Let µ be a �-finite premeasure
on an algebra A. Then there is at most one extension to ⌃(A).

Proof. We first assume that µ(X) < 1. Suppose there is another extension
µ̃ and consider the set

S = {A 2 ⌃(A)|µ(A) = µ̃(A)}.

I claim S is a monotone class and hence S = ⌃(A) since A ✓ S by assump-
tion (Theorem A.3).

Let An % A. If An 2 S, we have µ(An) = µ̃(An) and taking limits
(Theorem A.1 (ii)), we conclude µ(A) = µ̃(A). Next let An & A and take
limits again. This finishes the finite case. To extend our result to the �-finite
case, let Xj % X be an increasing sequence such that µ(Xj) < 1. By the
finite case µ(A \Xj) = µ̃(A \Xj) (just restrict µ, µ̃ to Xj). Hence

µ(A) = lim
j!1

µ(A \Xj) = lim
j!1

µ̃(A \Xj) = µ̃(A)

and we are done. ⇤

Note that if our premeasure is regular, so will the extension be:

Lemma A.6. Suppose µ is a �-finite measure on the Borel sets B. Then
outer (inner) regularity holds for all Borel sets if it holds for all sets in some
algebra A generating the Borel sets B.

Proof. We first assume that µ(X) < 1. Set

µ�(A) = inf
A✓O,O open

µ(O) � µ(A)

and let M = {A 2 B|µ�(A) = µ(A)}. Since by assumption M contains
some algebra generating B, it su�ces to prove that M is a monotone class.

Let An 2 M be a monotone sequence and let On ◆ An be open sets such
that µ(On)  µ(An) +

"
2n . Then

µ(An)  µ(On)  µ(An) +
"

2n
.
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Now if An & A, just take limits and use continuity from below of µ to see
that On ◆ An ◆ A is a sequence of open sets with µ(On) ! µ(A). Similarly
if An % A, observe that O =

S
nOn satisfies O ◆ A and

µ(O)  µ(A) +
X

µ(On\A)  µ(A) + "

since µ(On\A)  µ(On\An) 
"
2n .

Next let µ be arbitrary. Let Xj be a cover with µ(Xj) < 1. Given
A, we can split it into disjoint sets Aj such that Aj ✓ Xj (A1 = A \ X1,
A2 = (A\A1)\X2, etc.). By regularity, we can assume Xj open. Thus there
are open (in X) sets Oj covering Aj such that µ(Oj)  µ(Aj) +

"
2j . Then

O =
S

j Oj is open, covers A, and satisfies

µ(A)  µ(O) 
X

j

µ(Oj)  µ(A) + ".

This settles outer regularity.

Next let us turn to inner regularity. If µ(X) < 1, one can show as
before that M = {A 2 B|µ�(A) = µ(A)}, where

µ�(A) = sup
C✓A,C compact

µ(C)  µ(A)

is a monotone class. This settles the finite case.

For the �-finite case split A again as before. Since Xj has finite measure,
there are compact subsets Kj of Aj such that µ(Aj)  µ(Kj) +

"
2j . Now

we need to distinguish two cases: If µ(A) = 1, the sum
P

j µ(Aj) will

diverge and so will
P

j µ(Kj). Hence K̃n =
Sn

j=1 ✓ A is compact with

µ(K̃n) ! 1 = µ(A). If µ(A) < 1, the sum
P

j µ(Aj) will converge and
choosing n su�ciently large, we will have

µ(K̃n)  µ(A)  µ(K̃n) + 2".

This finishes the proof. ⇤

So it remains to ensure that there is an extension at all. For any pre-
measure µ we define

µ⇤(A) = inf
n 1X

n=1

µ(An)
���A ✓

1[

n=1

An, An 2 A

o
(A.5)

where the infimum extends over all countable covers from A. Then the
function µ⇤ : P(X) ! [0,1] is an outer measure; that is, it has the
properties (Problem A.2)

• µ⇤(;) = 0,

• A1 ✓ A2 ) µ⇤(A1)  µ⇤(A2), and

• µ⇤(
S

1

n=1An) 
P

1

n=1 µ
⇤(An) (subadditivity).
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Note that µ⇤(A) = µ(A) for A 2 A (Problem A.3).

Theorem A.7 (Extensions via outer measures). Let µ⇤ be an outer measure.
Then the set ⌃ of all sets A satisfying the Carathéodory condition

µ⇤(E) = µ⇤(A \ E) + µ⇤(A0
\ E), 8E ✓ X (A.6)

(where A0 = X\A is the complement of A) forms a �-algebra and µ⇤ re-
stricted to this �-algebra is a measure.

Proof. We first show that ⌃ is an algebra. It clearly containsX and is closed
under complements. Let A,B 2 ⌃. Applying Carathéodory’s condition
twice finally shows

µ⇤(E) =µ⇤(A \B \ E) + µ⇤(A0
\B \ E) + µ⇤(A \B0

\ E)

+ µ⇤(A0
\B0

\ E)

�µ⇤((A [B) \ E) + µ⇤((A [B)0\ E),

where we have used de Morgan and

µ⇤(A \B \ E) + µ⇤(A0
\B \ E) + µ⇤(A \B0

\ E) � µ⇤((A [B) \ E)

which follows from subadditivity and (A [ B) \ E = (A \ B \ E) [ (A0
\

B \E) [ (A \B0
\E). Since the reverse inequality is just subadditivity, we

conclude that ⌃ is an algebra.

Next, let An be a sequence of sets from ⌃. Without restriction we
can assume that they are disjoint (compare the last argument in proof of
Theorem A.3). Abbreviate Ãn =

S
knAn, A =

S
nAn. Then for any set E

we have

µ⇤(Ãn \ E) = µ⇤(An \ Ãn \ E) + µ⇤(A0

n\ Ãn \ E)

= µ⇤(An \ E) + µ⇤(Ãn�1 \ E)

= . . . =
nX

k=1

µ⇤(Ak \ E).

Using Ãn 2 ⌃ and monotonicity of µ⇤, we infer

µ⇤(E) = µ⇤(Ãn \ E) + µ⇤(Ã0

n\ E)

�

nX

k=1

µ⇤(Ak \ E) + µ⇤(A0
\ E).

Letting n ! 1 and using subadditivity finally gives

µ⇤(E) �
1X

k=1

µ⇤(Ak \ E) + µ⇤(A0
\ E)

� µ⇤(A \ E) + µ⇤(B0
\ E) � µ⇤(E) (A.7)
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and we infer that ⌃ is a �-algebra.

Finally, setting E = A in (A.7), we have

µ⇤(A) =
1X

k=1

µ⇤(Ak \A) + µ⇤(A0
\A) =

1X

k=1

µ⇤(Ak)

and we are done. ⇤

Remark: The constructed measure µ is complete; that is, for any mea-
surable set A of measure zero, any subset of A is again measurable (Prob-
lem A.4).

The only remaining question is whether there are any nontrivial sets
satisfying the Carathéodory condition.

Lemma A.8. Let µ be a premeasure on A and let µ⇤ be the associated outer
measure. Then every set in A satisfies the Carathéodory condition.

Proof. Let An 2 A be a countable cover for E. Then for any A 2 A we
have

1X

n=1

µ(An) =
1X

n=1

µ(An \A) +
1X

n=1

µ(An \A0) � µ⇤(E \A) + µ⇤(E \A0)

since An \A 2 A is a cover for E \A and An \A0
2 A is a cover for E \A0.

Taking the infimum, we have µ⇤(E) � µ⇤(E\A)+µ⇤(E\A0), which finishes
the proof. ⇤

Thus, as a consequence we obtain Theorem A.2.

Problem A.2. Show that µ⇤ defined in (A.5) is an outer measure. (Hint
for the last property: Take a cover {Bnk}

1

k=1 for An such that µ⇤(An) =
"
2n +

P
1

k=1 µ(Bnk) and note that {Bnk}
1

n,k=1 is a cover for
S

nAn.)

Problem A.3. Show that µ⇤ defined in (A.5) extends µ. (Hint: For the
cover An it is no restriction to assume An \Am = ; and An ✓ A.)

Problem A.4. Show that the measure constructed in Theorem A.7 is com-
plete.

A.3. Measurable functions

The Riemann integral works by splitting the x coordinate into small intervals
and approximating f(x) on each interval by its minimum and maximum.
The problem with this approach is that the di↵erence between maximum
and minimum will only tend to zero (as the intervals get smaller) if f(x) is
su�ciently nice. To avoid this problem, we can force the di↵erence to go to
zero by considering, instead of an interval, the set of x for which f(x) lies
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between two given numbers a < b. Now we need the size of the set of these
x, that is, the size of the preimage f�1((a, b)). For this to work, preimages
of intervals must be measurable.

A function f : X ! Rn is called measurable if f�1(A) 2 ⌃ for every
A 2 B

n. A complex-valued function is called measurable if both its real and
imaginary parts are. Clearly it su�ces to check this condition for every set A
in a collection of sets which generateBn, since the collection of sets for which
it holds forms a �-algebra by f�1(Rn

\A) = X\f�1(A) and f�1(
S

j Aj) =S
j f

�1(Aj).

Lemma A.9. A function f : X ! Rn is measurable if and only if

f�1(I) 2 ⌃ 8 I =
nY

j=1

(aj ,1). (A.8)

In particular, a function f : X ! Rn is measurable if and only if every
component is measurable.

Proof. We need to show that B is generated by rectangles of the above
form. The �-algebra generated by these rectangles also contains all open
rectangles of the form I =

Qn
j=1(aj , bj). Moreover, given any open set O,

we can cover it by such open rectangles satisfying I ✓ O. By Lindelöf’s
theorem there is a countable subcover and hence every open set can be
written as a countable union of open rectangles. ⇤

Clearly the intervals (aj ,1) can also be replaced by [aj ,1), (�1, aj),
or (�1, aj ].

If X is a topological space and ⌃ the corresponding Borel �-algebra,
we will also call a measurable function a Borel function. Note that, in
particular,

Lemma A.10. Let X be a topological space and ⌃ its Borel �-algebra. Any
continuous function is Borel. Moreover, if f : X ! Rn and g : Y ✓ Rn

!

Rm are Borel functions, then the composition g � f is again Borel.

Sometimes it is also convenient to allow ±1 as possible values for f ,
that is, functions f : X ! R, R = R [ {�1,1}. In this case A ✓ R is
called Borel if A \ R is.

The set of all measurable functions forms an algebra.

Lemma A.11. Let X be a topological space and ⌃ its Borel �-algebra.
Suppose f, g : X ! R are measurable functions. Then the sum f + g and
the product fg are measurable.

Proof. Note that addition and multiplication are continuous functions from
R2

! R and hence the claim follows from the previous lemma. ⇤
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Moreover, the set of all measurable functions is closed under all impor-
tant limiting operations.

Lemma A.12. Suppose fn : X ! R is a sequence of measurable functions.
Then

inf
n2N

fn, sup
n2N

fn, lim inf
n!1

fn, lim sup
n!1

fn (A.9)

are measurable as well.

Proof. It su�ces to prove that sup fn is measurable since the rest follows
from inf fn = � sup(�fn), lim inf fn = supk infn�k fn, and lim sup fn =
infk supn�k fn. But (sup fn)�1((a,1)) =

S
n f

�1
n ((a,1)) and we are done.

⇤

A few immediate consequences are worthwhile noting: It follows that
if f and g are measurable functions, so are min(f, g), max(f, g), |f | =
max(f,�f), and f± = max(±f, 0). Furthermore, the pointwise limit of
measurable functions is again measurable.

A.4. The Lebesgue integral

Now we can define the integral for measurable functions as follows. A mea-
surable function s : X ! R is called simple if its range is finite; that is,
if

s =
pX

j=1

↵j �Aj , Aj = s�1(↵j) 2 ⌃. (A.10)

Here �A is the characteristic function of A; that is, �A(x) = 1 if x 2 A
and �A(x) = 0 otherwise.

For a nonnegative simple function we define its integral as
Z

A
s dµ =

pX

j=1

↵j µ(Aj \A). (A.11)

Here we use the convention 0 ·1 = 0.

Lemma A.13. The integral has the following properties:

(i)
R
A s dµ =

R
X �A s dµ.

(ii)
R
S1

j=1 Aj
s dµ =

P
1

j=1

R
Aj

s dµ, Aj \Ak = ; for j 6= k.

(iii)
R
A ↵ s dµ = ↵

R
A s dµ, ↵ � 0.

(iv)
R
A(s+ t)dµ =

R
A s dµ+

R
A t dµ.

(v) A ✓ B )
R
A s dµ 

R
B s dµ.

(vi) s  t )
R
A s dµ 

R
A t dµ.
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Proof. (i) is clear from the definition. (ii) follows from �-additivity of µ.
(iii) is obvious. (iv) Let s =

P
j ↵j �Aj , t =

P
j �j �Bj and abbreviate

Cjk = (Aj \Bk) \A. Then, by (ii),
Z

A
(s+ t)dµ =

X

j,k

Z

Cjk

(s+ t)dµ =
X

j,k

(↵j + �k)µ(Cjk)

=
X

j,k

 Z

Cjk

s dµ+

Z

Cjk

t dµ

!
=

Z

A
s dµ+

Z

A
t dµ.

(v) follows from monotonicity of µ. (vi) follows since by (iv) we can write
s =

P
j ↵j �Cj , t =

P
j �j �Cj where, by assumption, ↵j  �j . ⇤

Our next task is to extend this definition to arbitrary positive functions
by Z

A
f dµ = sup

sf

Z

A
s dµ, (A.12)

where the supremum is taken over all simple functions s  f . Note that,
except for possibly (ii) and (iv), Lemma A.13 still holds for this extension.

Theorem A.14 (Monotone convergence). Let fn be a monotone nondecreas-
ing sequence of nonnegative measurable functions, fn % f . Then

Z

A
fn dµ !

Z

A
f dµ. (A.13)

Proof. By property (vi),
R
A fn dµ is monotone and converges to some num-

ber ↵. By fn  f and again (vi) we have

↵ 

Z

A
f dµ.

To show the converse, let s be simple such that s  f and let ✓ 2 (0, 1). Put
An = {x 2 A|fn(x) � ✓s(x)} and note An % A (show this). Then

Z

A
fn dµ �

Z

An

fn dµ � ✓

Z

An

s dµ.

Letting n ! 1, we see

↵ � ✓

Z

A
s dµ.

Since this is valid for any ✓ < 1, it still holds for ✓ = 1. Finally, since s  f
is arbitrary, the claim follows. ⇤

In particular Z

A
f dµ = lim

n!1

Z

A
sn dµ, (A.14)



272 A. Almost everything about Lebesgue integration

for any monotone sequence sn % f of simple functions. Note that there is
always such a sequence, for example,

sn(x) =
2nX

k=0

k

2n
�f�1(Ak)(x), Ak = [

k

2n
,
k + 1

2n
), A2n = [n,1). (A.15)

By construction sn converges uniformly if f is bounded, since sn(x) = n if
f(x) = 1 and f(x)� sn(x) <

1
n if f(x) < n+ 1.

Now what about the missing items (ii) and (iv) from Lemma A.13? Since
limits can be spread over sums, the extension is linear (i.e., item (iv) holds)
and (ii) also follows directly from the monotone convergence theorem. We
even have the following result:

Lemma A.15. If f � 0 is measurable, then d⌫ = f dµ defined via

⌫(A) =

Z

A
f dµ (A.16)

is a measure such that Z
g d⌫ =

Z
gf dµ. (A.17)

Proof. As already mentioned, additivity of µ is equivalent to linearity of the
integral and �-additivity follows from the monotone convergence theorem:

⌫(
1[

n=1

An) =

Z
(

1X

n=1

�An)f dµ =
1X

n=1

Z
�Anf dµ =

1X

n=1

⌫(An).

The second claim holds for simple functions and hence for all functions by
construction of the integral. ⇤

If fn is not necessarily monotone, we have at least

Theorem A.16 (Fatou’s lemma). If fn is a sequence of nonnegative mea-
surable function, then

Z

A
lim inf
n!1

fn dµ  lim inf
n!1

Z

A
fn dµ. (A.18)

Proof. Set gn = infk�n fk. Then gn  fn implying
Z

A
gn dµ 

Z

A
fn dµ.

Now take the lim inf on both sides and note that by the monotone conver-
gence theorem

lim inf
n!1

Z

A
gn dµ = lim

n!1

Z

A
gn dµ =

Z

A
lim
n!1

gn dµ =

Z

A
lim inf
n!1

fn dµ,

proving the claim. ⇤
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If the integral is finite for both the positive and negative part f± of an
arbitrary measurable function f , we call f integrable and set

Z

A
f dµ =

Z

A
f+dµ�

Z

A
f�dµ. (A.19)

The set of all integrable functions is denoted by L
1(X, dµ).

Lemma A.17. Lemma A.13 holds for integrable functions s, t.

Similarly, we handle the case where f is complex-valued by calling f
integrable if both the real and imaginary part are and setting

Z

A
f dµ =

Z

A
Re(f)dµ+ i

Z

A
Im(f)dµ. (A.20)

Clearly f is integrable if and only if |f | is.

Lemma A.18. For any integrable functions f , g we have

|

Z

A
f dµ| 

Z

A
|f | dµ (A.21)

and (triangle inequality)
Z

A
|f + g| dµ 

Z

A
|f | dµ+

Z

A
|g| dµ. (A.22)

Proof. Put ↵ = z⇤

|z| , where z =
R
A f dµ (without restriction z 6= 0). Then

|

Z

A
f dµ| = ↵

Z

A
f dµ =

Z

A
↵ f dµ =

Z

A
Re(↵ f) dµ 

Z

A
|f | dµ,

proving the first claim. The second follows from |f + g|  |f |+ |g|. ⇤

In addition, our integral is well behaved with respect to limiting opera-
tions.

Theorem A.19 (Dominated convergence). Let fn be a convergent sequence
of measurable functions and set f = limn!1 fn. Suppose there is an inte-
grable function g such that |fn|  g. Then f is integrable and

lim
n!1

Z
fndµ =

Z
fdµ. (A.23)

Proof. The real and imaginary parts satisfy the same assumptions and so
do the positive and negative parts. Hence it su�ces to prove the case where
fn and f are nonnegative.

By Fatou’s lemma

lim inf
n!1

Z

A
fndµ �

Z

A
f dµ
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and

lim inf
n!1

Z

A
(g � fn)dµ �

Z

A
(g � f)dµ.

Subtracting
R
A g dµ on both sides of the last inequality finishes the proof

since lim inf(�fn) = � lim sup fn. ⇤

Remark: Since sets of measure zero do not contribute to the value of the
integral, it clearly su�ces if the requirements of the dominated convergence
theorem are satisfied almost everywhere (with respect to µ).

Note that the existence of g is crucial, as the example fn(x) =
1
n�[�n,n](x)

on R with Lebesgue measure shows.

Example. If µ(x) =
P

n ↵n⇥(x � xn) is a sum of Dirac measures, ⇥(x)
centered at x = 0, then

Z
f(x)dµ(x) =

X

n

↵nf(xn). (A.24)

Hence our integral contains sums as special cases. ⇧

Problem A.5. Show that the set B(X) of bounded measurable functions
with the sup norm is a Banach space. Show that the set S(X) of simple
functions is dense in B(X). Show that the integral is a bounded linear func-
tional on B(X). (Hence Theorem 0.26 could be used to extend the integral
from simple to bounded measurable functions.)

Problem A.6. Show that the dominated convergence theorem implies (un-
der the same assumptions)

lim
n!1

Z
|fn � f |dµ = 0.

Problem A.7. Let X ✓ R, Y be some measure space, and f : X ⇥ Y ! R.
Suppose y 7! f(x, y) is measurable for every x and x 7! f(x, y) is continuous
for every y. Show that

F (x) =

Z

A
f(x, y) dµ(y) (A.25)

is continuous if there is an integrable function g(y) such that |f(x, y)|  g(y).

Problem A.8. Let X ✓ R, Y be some measure space, and f : X ⇥ Y ! R.
Suppose y 7! f(x, y) is measurable for all x and x 7! f(x, y) is di↵erentiable
for a.e. y. Show that

F (x) =

Z

A
f(x, y) dµ(y) (A.26)
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is di↵erentiable if there is an integrable function g(y) such that | @@xf(x, y)| 

g(y). Moreover, x 7!
@
@xf(x, y) is measurable and

F 0(x) =

Z

A

@

@x
f(x, y) dµ(y) (A.27)

in this case.

A.5. Product measures

Let µ1 and µ2 be two measures on ⌃1 and ⌃2, respectively. Let ⌃1 ⌦⌃2 be
the �-algebra generated by rectangles of the form A1 ⇥A2.

Example. Let B be the Borel sets in R. Then B
2 = B⌦B are the Borel

sets in R2 (since the rectangles are a basis for the product topology). ⇧

Any set in ⌃1 ⌦ ⌃2 has the section property; that is,

Lemma A.20. Suppose A 2 ⌃1 ⌦ ⌃2. Then its sections

A1(x2) = {x1|(x1, x2) 2 A} and A2(x1) = {x2|(x1, x2) 2 A} (A.28)

are measurable.

Proof. Denote all sets A 2 ⌃1 ⌦⌃2 with the property that A1(x2) 2 ⌃1 by
S. Clearly all rectangles are in S and it su�ces to show that S is a �-algebra.
Now, if A 2 S, then (A0)1(x2) = (A1(x2))0 2 ⌃2 and thus S is closed under
complements. Similarly, if An 2 S, then (

S
nAn)1(x2) =

S
n(An)1(x2) shows

that S is closed under countable unions. ⇤

This implies that if f is a measurable function onX1⇥X2, then f(., x2) is
measurable on X1 for every x2 and f(x1, .) is measurable on X2 for every x1
(observe A1(x2) = {x1|f(x1, x2) 2 B}, where A = {(x1, x2)|f(x1, x2) 2 B}).

Given two measures µ1 on ⌃1 and µ2 on ⌃2, we now want to construct
the product measure µ1 ⌦ µ2 on ⌃1 ⌦ ⌃2 such that

µ1 ⌦ µ2(A1 ⇥A2) = µ1(A1)µ2(A2), Aj 2 ⌃j , j = 1, 2. (A.29)

Theorem A.21. Let µ1 and µ2 be two �-finite measures on ⌃1 and ⌃2,
respectively. Let A 2 ⌃1 ⌦ ⌃2. Then µ2(A2(x1)) and µ1(A1(x2)) are mea-
surable and Z

X1

µ2(A2(x1))dµ1(x1) =

Z

X2

µ1(A1(x2))dµ2(x2). (A.30)

Proof. Let S be the set of all subsets for which our claim holds. Note
that S contains at least all rectangles. It even contains the algebra of finite
disjoint unions of rectangles. Thus it su�ces to show that S is a monotone
class. If µ1 and µ2 are finite, measurability and equality of both integrals
follow from the monotone convergence theorem for increasing sequences of
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sets and from the dominated convergence theorem for decreasing sequences
of sets.

If µ1 and µ2 are �-finite, let Xi,j % Xi with µi(Xi,j) < 1 for i = 1, 2.
Now µ2((A \X1,j ⇥X2,j)2(x1)) = µ2(A2(x1) \X2,j)�X1,j (x1) and similarly
with 1 and 2 exchanged. Hence by the finite case

Z

X1

µ2(A2 \X2,j)�X1,jdµ1 =

Z

X2

µ1(A1 \X1,j)�X2,jdµ2 (A.31)

and the �-finite case follows from the monotone convergence theorem. ⇤

Hence we can define

µ1 ⌦ µ2(A) =

Z

X1

µ2(A2(x1))dµ1(x1) =

Z

X2

µ1(A1(x2))dµ2(x2) (A.32)

or equivalently, since �A1(x2)(x1) = �A2(x1)(x2) = �A(x1, x2),

µ1 ⌦ µ2(A) =

Z

X1

✓Z

X2

�A(x1, x2)dµ2(x2)

◆
dµ1(x1)

=

Z

X2

✓Z

X1

�A(x1, x2)dµ1(x1)

◆
dµ2(x2). (A.33)

Additivity of µ1 ⌦ µ2 follows from the monotone convergence theorem.

Note that (A.29) uniquely defines µ1 ⌦ µ2 as a �-finite premeasure on
the algebra of finite disjoint unions of rectangles. Hence by Theorem A.5 it
is the only measure on ⌃1 ⌦ ⌃2 satisfying (A.29).

Finally we have

Theorem A.22 (Fubini). Let f be a measurable function on X1 ⇥X2 and
let µ1, µ2 be �-finite measures on X1, X2, respectively.

(i) If f � 0, then
R
f(., x2)dµ2(x2) and

R
f(x1, .)dµ1(x1) are both

measurable and
ZZ

f(x1, x2)dµ1 ⌦ µ2(x1, x2) =

Z ✓Z
f(x1, x2)dµ1(x1)

◆
dµ2(x2)

=

Z ✓Z
f(x1, x2)dµ2(x2)

◆
dµ1(x1). (A.34)

(ii) If f is complex, then
Z

|f(x1, x2)|dµ1(x1) 2 L
1(X2, dµ2), (A.35)

respectively,
Z

|f(x1, x2)|dµ2(x2) 2 L
1(X1, dµ1), (A.36)
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if and only if f 2 L
1(X1 ⇥ X2, dµ1 ⌦ dµ2). In this case (A.34)

holds.

Proof. By Theorem A.21 and linearity the claim holds for simple functions.
To see (i), let sn % f be a sequence of nonnegative simple functions. Then it
follows by applying the monotone convergence theorem (twice for the double
integrals).

For (ii) we can assume that f is real-valued by considering its real and
imaginary parts separately. Moreover, splitting f = f+

�f� into its positive
and negative parts, the claim reduces to (i). ⇤

In particular, if f(x1, x2) is either nonnegative or integrable, then the
order of integration can be interchanged.

Lemma A.23. If µ1 and µ2 are �-finite regular Borel measures, then so is
µ1 ⌦ µ2.

Proof. Regularity holds for every rectangle and hence also for the algebra of
finite disjoint unions of rectangles. Thus the claim follows from Lemma A.6.

⇤

Note that we can iterate this procedure.

Lemma A.24. Suppose µj, j = 1, 2, 3, are �-finite measures. Then

(µ1 ⌦ µ2)⌦ µ3 = µ1 ⌦ (µ2 ⌦ µ3). (A.37)

Proof. First of all note that (⌃1 ⌦⌃2)⌦⌃3 = ⌃1 ⌦ (⌃2 ⌦⌃3) is the sigma
algebra generated by the rectangles A1⇥A2⇥A3 in X1⇥X2⇥X3. Moreover,
since

((µ1 ⌦ µ2)⌦ µ3)(A1 ⇥A2 ⇥A3) = µ1(A1)µ2(A2)µ3(A3)

= (µ1 ⌦ (µ2 ⌦ µ3))(A1 ⇥A2 ⇥A3),

the two measures coincide on the algebra of finite disjoint unions of rectan-
gles. Hence they coincide everywhere by Theorem A.5. ⇤

Example. If � is Lebesgue measure on R, then �n = �⌦ · · ·⌦� is Lebesgue
measure on Rn. Since � is regular, so is �n. ⇧

Problem A.9. Show that the set of all finite union of rectangles A1 ⇥ A2

forms an algebra.

Problem A.10. Let U ✓ C be a domain, Y be some measure space, and
f : U ⇥ Y ! R. Suppose y 7! f(z, y) is measurable for every z and z 7!

f(z, y) is holomorphic for every y. Show that

F (z) =

Z

A
f(z, y) dµ(y) (A.38)
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is holomorphic if for every compact subset V ⇢ U there is an integrable
function g(y) such that |f(z, y)|  g(y), z 2 V . (Hint: Use Fubini and
Morera.)

A.6. Vague convergence of measures

Let µn be a sequence of Borel measures, we will say that µn converges to µ
vaguely if Z

X
fdµn !

Z

X
fdµ (A.39)

for every f 2 Cc(X).

We are only interested in the case of Borel measures on R. In this case
we have the following equivalent characterization of vague convergence.

Lemma A.25. Let µn be a sequence of Borel measures on R. Then µn ! µ
vaguely if and only if the (normalized) distribution functions converge at
every point of continuity of µ.

Proof. Suppose µn ! µ vaguely. Let I be any bounded interval (closed, half
closed, or open) with boundary points x0, x1. Moreover, choose continuous
functions f, g with compact support such that f  �I  g. Then we haveR
fdµ  µ(I) 

R
gdµ and similarly for µn. Hence

µ(I)� µn(I) 

Z
gdµ�

Z
fdµn 

Z
(g � f)dµ+

����
Z

fdµ�

Z
fdµn

����

and

µ(I)� µn(I) �

Z
fdµ�

Z
gdµn �

Z
(f � g)dµ�

����
Z

gdµ�

Z
gdµn

���� .

Combining both estimates, we see

|µ(I)� µn(I)| 

Z
(g � f)dµ+

����
Z

fdµ�

Z
fdµn

����+
����
Z

gdµ�

Z
gdµn

����

and so

lim sup
n!1

|µ(I)� µn(I)| 

Z
(g � f)dµ.

Choosing f , g such that g � f ! �{x0}
+ �{x1}

pointwise, we even get from
dominated convergence that

lim sup
n!1

|µ(I)� µn(I)|  µ({x0}) + µ({x1}),

which proves that the distribution functions converge at every point of con-
tinuity of µ.

Conversely, suppose that the distribution functions converge at every
point of continuity of µ. To see that in fact µn ! µ vaguely, let f 2 Cc(R).
Fix some " > 0 and note that, since f is uniformly continuous, there is a
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� > 0 such that |f(x)� f(y)|  " whenever |x� y|  �. Next, choose some
points x0 < x1 < · · · < xk such that supp(f) ⇢ (x0, xk), µ is continuous at
xj , and xj�xj�1  � (recall that a monotone function has at most countable
discontinuities). Furthermore, there is some N such that |µn(xj)�µ(xj)| 
"
2k for all j and n � N . Then

����
Z

fdµn �

Z
fdµ

���� 
kX

j=1

Z

(xj�1,xj ]
|f(x)� f(xj)|dµn(x)

+
kX

j=1

|f(xj)||µ((xj�1, xj ])� µn((xj�1, xj ])|

+
kX

j=1

Z

(xj�1,xj ]
|f(x)� f(xj)|dµ(x).

Now, for n � N , the first and the last term on the right-hand side are both
bounded by (µ((x0, xk]) +

"
k )" and the middle term is bounded by max |f |".

Thus the claim follows. ⇤

Moreover, every bounded sequence of measures has a vaguely convergent
subsequence.

Lemma A.26. Suppose µn is a sequence of finite Borel measures on R such
that µn(R)  M . Then there exists a subsequence which converges vaguely
to some measure µ with µ(R)  M .

Proof. Let µn(x) = µn((�1, x]) be the corresponding distribution func-
tions. By 0  µn(x)  M there is a convergent subsequence for fixed x.
Moreover, by the standard diagonal series trick, we can assume that µn(x)
converges to some number µ(x) for each rational x. For irrational x we set
µ(x) = infx0>x{µ(x0)|x0 rational}. Then µ(x) is monotone, 0  µ(x1) 

µ(x2)  M for x1  x2. Furthermore,

µ(x�)  lim inf µn(x)  lim supµn(x)  µ(x)

shows that µn(x) ! µ(x) at every point of continuity of µ. So we can
redefine µ to be right continuous without changing this last fact. ⇤

In the case where the sequence is bounded, (A.39) even holds for a larger
class of functions.

Lemma A.27. Suppose µn ! µ vaguely and µn(R)  M . Then (A.39)
holds for any f 2 C1(R).

Proof. Split f = f1+f2, where f1 has compact support and |f2|  ". Then
|
R
fdµ�

R
fdµn|  |

R
f1dµ�

R
f1dµn|+ 2"M and the claim follows. ⇤
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Example. The example dµn(�) = d⇥(��n) shows that in the above claim
f cannot be replaced by a bounded continuous function. Moreover, the
example dµn(�) = nd⇥(� � n) also shows that the uniform bound cannot
be dropped. ⇧

A.7. Decomposition of measures

Let µ, ⌫ be two measures on a measure space (X,⌃). They are called
mutually singular (in symbols µ ? ⌫) if they are supported on disjoint
sets. That is, there is a measurable setN such that µ(N) = 0 and ⌫(X\N) =
0.

Example. Let � be the Lebesgue measure and ⇥ the Dirac measure (cen-
tered at 0). Then � ? ⇥: Just take N = {0}; then �({0}) = 0 and
⇥(R\{0}) = 0. ⇧

On the other hand, ⌫ is called absolutely continuous with respect to
µ (in symbols ⌫ ⌧ µ) if µ(A) = 0 implies ⌫(A) = 0.

Example. The prototypical example is the measure d⌫ = f dµ (compare
Lemma A.15). Indeed µ(A) = 0 implies

⌫(A) =

Z

A
f dµ = 0 (A.40)

and shows that ⌫ is absolutely continuous with respect to µ. In fact, we will
show below that every absolutely continuous measure is of this form. ⇧

The two main results will follow as simple consequence of the following
result:

Theorem A.28. Let µ, ⌫ be �-finite measures. Then there exists a unique
(a.e.) nonnegative function f and a set N of µ measure zero, such that

⌫(A) = ⌫(A \N) +

Z

A
f dµ. (A.41)

Proof. We first assume µ, ⌫ to be finite measures. Let ↵ = µ + ⌫ and
consider the Hilbert space L2(X, d↵). Then

`(h) =

Z

X
h d⌫

is a bounded linear functional by Cauchy–Schwarz:

|`(h)|2 =

����
Z

X
1 · h d⌫

����
2



✓Z
|1|2 d⌫

◆✓Z
|h|2d⌫

◆

 ⌫(X)

✓Z
|h|2d↵

◆
= ⌫(X)khk2.
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Hence by the Riesz lemma (Theorem 1.8) there exists a g 2 L2(X, d↵) such
that

`(h) =

Z

X
hg d↵.

By construction

⌫(A) =

Z
�A d⌫ =

Z
�Ag d↵ =

Z

A
g d↵. (A.42)

In particular, g must be positive a.e. (take A the set where g is negative).
Furthermore, let N = {x|g(x) � 1}. Then

⌫(N) =

Z

N
g d↵ � ↵(N) = µ(N) + ⌫(N),

which shows µ(N) = 0. Now set

f =
g

1� g
�N 0 , N 0 = X\N.

Then, since (A.42) implies d⌫ = g d↵, respectively, dµ = (1� g)d↵, we have
Z

A
fdµ =

Z
�A

g

1� g
�N 0 dµ =

Z
�A\N 0g d↵ = ⌫(A \N 0)

as desired. Clearly f is unique, since if there is a second function f̃ , thenR
A(f � f̃)dµ = 0 for every A shows f � f̃ = 0 a.e.

To see the �-finite case, observe that Xn % X, µ(Xn) < 1 and Yn % X,
⌫(Yn) < 1 implies Xn \ Yn % X and ↵(Xn \ Yn) < 1. Hence when
restricted toXn\Yn, we have sets Nn and functions fn. Now take N =

S
Nn

and choose f such that f |Xn = fn (this is possible since fn+1|Xn = fn a.e.).
Then µ(N) = 0 and

⌫(A \N 0) = lim
n!1

⌫(A \ (Xn\N)) = lim
n!1

Z

A\Xn

f dµ =

Z

A
f dµ,

which finishes the proof. ⇤

Now the anticipated results follow with no e↵ort:

Theorem A.29 (Lebesgue decomposition). Let µ, ⌫ be two �-finite mea-
sures on a measure space (X,⌃). Then ⌫ can be uniquely decomposed as
⌫ = ⌫ac + ⌫sing, where ⌫ac and ⌫sing are mutually singular and ⌫ac is abso-
lutely continuous with respect to µ.

Proof. Taking ⌫sing(A) = ⌫(A \ N) and d⌫ac = f dµ, there is at least
one such decomposition. To show uniqueness, first let ⌫ be finite. If there
is another one, ⌫ = ⌫̃ac + ⌫̃sing, then let Ñ be such that µ(Ñ) = 0 and
⌫̃sing(Ñ 0) = 0. Then ⌫̃sing(A) � ⌫̃sing(A) =

R
A(f̃ � f)dµ. In particular,R

A\N 0\Ñ 0(f̃ � f)dµ = 0 and hence f̃ = f a.e. away from N [ Ñ . Since
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µ(N [ Ñ) = 0, we have f̃ = f a.e. and hence ⌫̃ac = ⌫ac as well as ⌫̃sing =
⌫ � ⌫̃ac = ⌫ � ⌫ac = ⌫sing. The �-finite case follows as usual. ⇤
Theorem A.30 (Radon–Nikodym). Let µ, ⌫ be two �-finite measures on a
measure space (X,⌃). Then ⌫ is absolutely continuous with respect to µ if
and only if there is a positive measurable function f such that

⌫(A) =

Z

A
f dµ (A.43)

for every A 2 ⌃. The function f is determined uniquely a.e. with respect to
µ and is called the Radon–Nikodym derivative d⌫

dµ of ⌫ with respect to
µ.

Proof. Just observe that in this case ⌫(A \ N) = 0 for every A; that is,
⌫sing = 0. ⇤
Problem A.11. Let µ be a Borel measure on B and suppose its distribution
function µ(x) is di↵erentiable. Show that the Radon–Nikodym derivative
equals the ordinary derivative µ0(x).

Problem A.12. Suppose µ and ⌫ are inner regular measures. Show that
⌫ ⌧ µ if and only if µ(C) = 0 implies ⌫(C) = 0 for every compact set.

Problem A.13. Let d⌫ = f dµ. Suppose f > 0 a.e. with respect to µ. Then
µ ⌧ ⌫ and dµ = f�1d⌫.

Problem A.14 (Chain rule). Show that ⌫ ⌧ µ is a transitive relation. In
particular, if ! ⌧ ⌫ ⌧ µ, show that

d!

dµ
=

d!

d⌫

d⌫

dµ
.

Problem A.15. Suppose ⌫ ⌧ µ. Show that for any measure ! we have

d!

dµ
dµ =

d!

d⌫
d⌫ + d⇣,

where ⇣ is a positive measure (depending on !) which is singular with respect
to ⌫. Show that ⇣ = 0 if and only if µ ⌧ ⌫.

A.8. Derivatives of measures

If µ is a Borel measure on B and its distribution function µ(x) is di↵eren-
tiable, then the Radon–Nikodym derivative is just the ordinary derivative
µ0(x) (Problem A.11). Our aim in this section is to generalize this result to
arbitrary regular Borel measures on B

n.

We call

(Dµ)(x) = lim
"#0

µ(B"(x))

|B"(x)|
(A.44)
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the derivative of µ at x 2 Rn provided the above limit exists. (Here Br(x) ⇢
Rn is a ball of radius r centered at x 2 Rn and |A| denotes the Lebesgue
measure of A 2 B

n.)

Note that for a Borel measure on B, (Dµ)(x) exists if and only if µ(x)
(as defined in (A.3)) is di↵erentiable at x and (Dµ)(x) = µ0(x) in this case.

To compute the derivative of µ, we introduce the upper and lower
derivative,

(Dµ)(x) = lim sup
"#0

µ(B"(x))

|B"(x)|
and (Dµ)(x) = lim inf

"#0

µ(B"(x))

|B"(x)|
. (A.45)

Clearly µ is di↵erentiable if (Dµ)(x) = (Dµ)(x) < 1. First of all note that
they are measurable:

Lemma A.31. The upper derivative is lower semicontinuous; that is, the
set {x|(Dµ)(x) > ↵} is open for every ↵ 2 R. Similarly, the lower derivative
is upper semicontinuous; that is, {x|(Dµ)(x) < ↵} is open.

Proof. We only prove the claim for Dµ, the case Dµ being similar. Abbre-
viate

Mr(x) = sup
0<"<r

µ(B"(x))

|B"(x)|

and note that it su�ces to show that Or = {x|Mr(x) > ↵} is open.

If x 2 Or, there is some " < r such that

µ(B"(x))

|B"(x)|
> ↵.

Let � > 0 and y 2 B�(x). Then B"(x) ✓ B"+�(y) implying

µ(B"+�(y))

|B"+�(y)|
�

✓
"

"+ �

◆n µ(B"(x))

|B"(x)|
> ↵

for � su�ciently small. That is, B�(x) ✓ O. ⇤

In particular, both the upper and lower derivatives are measurable.
Next, the following geometric fact of Rn will be needed.

Lemma A.32. Given open balls B1, . . . , Bm in Rn, there is a subset of
disjoint balls Bj1, . . . , Bjk such that

�����

m[

i=1

Bi

�����  3n
kX

i=1

|Bji |. (A.46)

Proof. Assume that the balls Bj are ordered by radius. Start with Bj1 =
B1 = Br1(x1) and remove all balls from our list which intersect Bj1 . Observe
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that the removed balls are all contained in 3B1 = B3r1(x1). Proceeding like
this, we obtain Bj1 , . . . , Bjk such that

m[

i=1

Bi ✓

k[

i=1

3Brji

and the claim follows since |3B| = 3n|B|. ⇤

Now we can show

Lemma A.33. Let ↵ > 0. For any Borel set A we have

|{x 2 A | (Dµ)(x) > ↵}|  3n
µ(A)

↵
(A.47)

and
|{x 2 A | (Dµ)(x) > 0}| = 0, whenever µ(A) = 0. (A.48)

Proof. Let A↵ = {x 2 A|(Dµ)(x) > ↵}. We will show

|K|  3n
µ(O)

↵
for any compact set K and open set O with K ✓ A↵ ✓ O. The first claim
then follows from regularity of µ and the Lebesgue measure.

Given fixed K, O, for every x 2 K there is some rx such that Brx(x) ✓ O
and |Brx(x)| < ↵�1µ(Brx(x)). Since K is compact, we can choose a finite
subcover of K. Moreover, by Lemma A.32 we can refine our set of balls such
that

|K|  3n
kX

i=1

|Bri(xi)| <
3n

↵

kX

i=1

µ(Bri(xi))  3n
µ(O)

↵
.

To see the second claim, observe that

{x 2 A | (Dµ)(x) > 0} =
1[

j=1

{x 2 A | (Dµ)(x) >
1

j
}

and by the first part |{x 2 A | (Dµ)(x) > 1
j }| = 0 for any j if µ(A) = 0. ⇤

Theorem A.34 (Lebesgue). Let f be (locally) integrable, then for a.e. x 2

Rn we have

lim
r#0

1

|Br(x)|

Z

Br(x)
|f(y)� f(x)|dy = 0. (A.49)

Proof. Decompose f as f = g + h, where g is continuous and khk1 < "
(Theorem 0.34) and abbreviate

Dr(f)(x) =
1

|Br(x)|

Z

Br(x)
|f(y)� f(x)|dy.
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Then, since limDr(g)(x) = 0 (for every x) and Dr(f)  Dr(g) +Dr(h), we
have

lim sup
r#0

Dr(f)(x)  lim sup
r#0

Dr(h)(x)  (Dµ)(x) + |h(x)|,

where dµ = |h|dx. This implies

{x | lim sup
r#0

Dr(f)(x) � 2↵} ✓ {x|(Dµ)(x) � ↵} [ {x | |h(x)| � ↵}

and using the first part of Lemma A.33 plus |{x | |h(x)| � ↵}|  ↵�1
khk1,

we see

|{x | lim sup
r#0

Dr(f)(x) � 2↵}|  (3n + 1)
"

↵
.

Since " is arbitrary, the Lebesgue measure of this set must be zero for every
↵. That is, the set where the lim sup is positive has Lebesgue measure
zero. ⇤

The points where (A.49) holds are called Lebesgue points of f .

Note that the balls can be replaced by more general sets: A sequence of
sets Aj(x) is said to shrink to x nicely if there are balls Brj (x) with rj ! 0
and a constant " > 0 such that Aj(x) ✓ Brj (x) and |Aj | � "|Brj (x)|. For
example Aj(x) could be some balls or cubes (not necessarily containing x).
However, the portion of Brj (x) which they occupy must not go to zero! For
example the rectangles (0, 1j ) ⇥ (0, 2j ) ⇢ R2 do shrink nicely to 0, but the

rectangles (0, 1j )⇥ (0, 2
j2 ) do not.

Lemma A.35. Let f be (locally) integrable. Then at every Lebesgue point
we have

f(x) = lim
j!1

1

|Aj(x)|

Z

Aj(x)
f(y)dy (A.50)

whenever Aj(x) shrinks to x nicely.

Proof. Let x be a Lebesgue point and choose some nicely shrinking sets
Aj(x) with corresponding Brj (x) and ". Then

1

|Aj(x)|

Z

Aj(x)
|f(y)� f(x)|dy 

1

"|Brj (x)|

Z

Brj (x)
|f(y)� f(x)|dy

and the claim follows. ⇤

Corollary A.36. Suppose µ is an absolutely continuous Borel measure on
R. Then its distribution function is di↵erentiable a.e. and dµ(x) = µ0(x)dx.

As another consequence we obtain
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Theorem A.37. Let µ be a Borel measure on Rn. The derivative Dµ
exists a.e. with respect to Lebesgue measure and equals the Radon–Nikodym
derivative of the absolutely continuous part of µ with respect to Lebesgue
measure; that is,

µac(A) =

Z

A
(Dµ)(x)dx. (A.51)

Proof. If dµ = f dx is absolutely continuous with respect to Lebesgue mea-
sure, the claim follows from Theorem A.34. To see the general case, use the
Lebesgue decomposition of µ and let N be a support for the singular part
with |N | = 0. Then (Dµsing)(x) = 0 for a.e. x 2 Rn

\N by the second part
of Lemma A.33. ⇤

In particular, µ is singular with respect to Lebesgue measure if and only
if Dµ = 0 a.e. with respect to Lebesgue measure.

Using the upper and lower derivatives, we can also give supports for the
absolutely and singularly continuous parts.

Theorem A.38. The set {x|(Dµ)(x) = 1} is a support for the singular
and {x|0 < (Dµ)(x) < 1} is a support for the absolutely continuous part.

Proof. First suppose µ is purely singular. Let us show that the set Ok =
{x | (Dµ)(x) < k} satisfies µ(Ok) = 0 for every k 2 N.

Let K ⇢ Ok be compact, and let Vj � K be some open set such that
|Vj\K| 

1
j . For every x 2 K there is some " = "(x) such that B"(x) ✓ Vj

and µ(B"(x))  k|B"(x)|. By compactness, finitely many of these balls cover
K and hence

µ(K) 
X

i

µ(B"i(xi))  k
X

i

|B"i(xi)|.

Selecting disjoint balls as in Lemma A.32 further shows

µ(K)  k3n
X

`

|B"i` (xi`)|  k3n|Vj |.

Letting j ! 1, we see µ(K)  k3n|K| and by regularity we even have
µ(A)  k3n|A| for every A ✓ Ok. Hence µ is absolutely continuous on Ok

and since we assumed µ to be singular, we must have µ(Ok) = 0.

Thus (Dµsing)(x) = 1 for a.e. x with respect to µsing and we are done.
⇤

Finally, we note that these supports are minimal. Here a support M of
some measure µ is called a minimal support (it is sometimes also called
an essential support) if any subset M0 ✓ M which does not support µ
(i.e., µ(M0) = 0) has Lebesgue measure zero.
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Lemma A.39. The set Mac = {x|0 < (Dµ)(x) < 1} is a minimal support
for µac.

Proof. Suppose M0 ✓ Mac and µac(M0) = 0. Set M" = {x 2 M0|" <
(Dµ)(x)} for " > 0. Then M" % M0 and

|M"| =

Z

M"

dx 
1

"

Z

M"

(Dµ)(x)dx =
1

"
µac(M") 

1

"
µac(M0) = 0

shows |M0| = lim"#0 |M"| = 0. ⇤

Note that the set M = {x|0 < (Dµ)(x)} is a minimal support of µ.

Example. The Cantor function is constructed as follows: Take the sets
Cn used in the construction of the Cantor set C: Cn is the union of 2n

closed intervals with 2n � 1 open gaps in between. Set fn equal to j/2n

on the j’th gap of Cn and extend it to [0, 1] by linear interpolation. Note
that, since we are creating precisely one new gap between every old gap
when going from Cn to Cn+1, the value of fn+1 is the same as the value of
fn on the gaps of Cn. In particular, kfn � fmk1  2�min(n,m) and hence
we can define the Cantor function as f = limn!1 fn. By construction f
is a continuous function which is constant on every subinterval of [0, 1]\C.
Since C is of Lebesgue measure zero, this set is of full Lebesgue measure
and hence f 0 = 0 a.e. in [0, 1]. In particular, the corresponding measure, the
Cantor measure, is supported on C and is purely singular with respect to
Lebesgue measure. ⇧

Problem A.16. Show that M = {x|0 < (Dµ)(x)} is a minimal support of
µ.




