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Preface

This short book is an attempt to explain from first principles
how and why ChatGPT works. In some ways it’s a story about
technology. But it’s also a story about science. As well as
about philosophy. And to tell the story, we’ll have to bring
together a remarkable range of ideas and discoveries made
across many centuries.

For me it’s exciting to see so many things I’ve so long been
interested in come together in a burst of sudden progress.
From the complex behavior of simple programs to the core
character of language and meaning, and the practicalities of
large computer systems—all of these are part of the ChatGPT
story.

ChatGPT is based on the concept of neural nets—originally
invented in the 1940s as an idealization of the operation of
brains. I myself first programmed a neural net in 1983—and it
didn’t do anything interesting. But 40 years later, with comput-
ers that are effectively a million times faster, with billions of
pages of text on the web, and after a whole series of
engineering innovations, the situation is quite different. And—
to everyone’s surprise—a neural net that is a billion times
larger than the one I had in 1983 is capable of doing what was
thought to be that uniquely human thing of generating
meaningful human language.

This book consists of two pieces that I wrote soon after
ChatGPT debuted. The first is an explanation of ChatGPT and
its ability to do the very human thing of generat-ing language.
The second looks forward to ChatGPT being able to use
computational tools to go beyond what humans can do, and in
particular being able to leverage the computational knowledge
“superpowers” of our Wolfram|Alpha system.

It’s only been three months since ChatGPT launched, and we
are just beginning to understand its implications, both practical
and intellectual. But for now its arrival is a reminder that even



after everything that has been invented and discovered,
surprises are still possible.

 
 
Stephen Wolfram
February 28, 2023



What Is ChatGPT Doing … and
Why Does It Work?

It’s Just Adding One Word at a
Time

That ChatGPT can automatically generate something
that reads even superficially like human-written text
is remarkable, and unexpected. But how does it do it?
And why does it work? My purpose here is to give a
rough outline of what’s going on inside ChatGPT—
and then to explore why it is that it can do so well in
producing what we might consider to be meaningful
text. I should say at the outset that I’m going to focus
on the big picture of what’s going on—and while I’ll
mention some engineering details, I won’t get deeply
into them. (And the essence of what I’ll say applies
just as well to other current “large language models”
[LLMs] as to ChatGPT.)

The first thing to explain is that what ChatGPT is
always fundamentally trying to do is to produce a
“reasonable continuation” of whatever text it’s got so
far, where by “reasonable” we mean “what one might
expect someone to write after seeing what people
have written on billions of webpages, etc.”

So let’s say we’ve got the text “The best thing about
AI is its ability to ”. Imagine scanning billions of
pages of human-written text (say on the web and in
digitized books) and finding all instances of this text
—then seeing what word comes next what fraction of
the time. ChatGPT effectively does something like
this, except that (as I’ll explain) it doesn’t look at
literal text; it looks for things that in a certain sense
“match in meaning”. But the end result is that it
produces a ranked list of words that might follow,
together with “probabilities”:

https://chat.openai.com/


And the remarkable thing is that when ChatGPT does
something like write an essay what it’s essentially
doing is just asking over and over again “given the
text so far, what should the next word be?”—and
each time adding a word. (More precisely, as I’ll
explain, it’s adding a “token”, which could be just a
part of a word, which is why it can sometimes “make
up new words”.)

But, OK, at each step it gets a list of words with
probabilities. But which one should it actually pick to
add to the essay (or whatever) that it’s writing? One
might think it should be the “highest-ranked” word
(i.e. the one to which the highest “probability” was
assigned). But this is where a bit of voodoo begins to
creep in. Because for some reason—that maybe one
day we’ll have a scientific-style understanding of—if
we always pick the highest-ranked word, we’ll
typically get a very “flat” essay, that never seems to
“show any creativity” (and even sometimes repeats
word for word). But if sometimes (at random) we
pick lower-ranked words, we get a “more interesting”
essay.

The fact that there’s randomness here means that if
we use the same prompt multiple times, we’re likely
to get different essays each time. And, in keeping
with the idea of voodoo, there’s a particular so-called
“temperature” parameter that determines how often
lower-ranked words will be used, and for essay
generation, it turns out that a “temperature” of 0.8
seems best. (It’s worth emphasizing that there’s no
“theory” being used here; it’s just a matter of what’s
been found to work in practice. And for example the
concept of “temperature” is there because exponential
distributions familiar from statistical physics happen

https://writings.stephenwolfram.com/2023/02/computational-foundations-for-the-second-law-of-thermodynamics/#textbook-thermodynamics


to be being used, but there’s no “physical” connection
—at least so far as we know.)

Before we go on I should explain that for purposes of
exposition I’m mostly not going to use the full
system that’s in ChatGPT ; instead I’ll usually work
with a simpler GPT-2 system , which has the nice
feature that it’s small enough to be able to run on a
standard desktop computer. And so for essentially
everything I show I’ll be able to include explicit
Wolfram Language code that you can immediately
run on your computer. (Click any picture here to copy
the code behind it.)

For example, here’s how to get the table of
probabilities above. First, we have to retrieve the
underlying “language model” neural net :

Later on, we’ll look inside this neural net, and talk
about how it works. But for now we can just apply
this “net model” as a black box to our text so far, and
ask for the top 5 words by probability that the model
says should follow:

This takes that result and makes it into an explicit
formatted “dataset ”:

https://openai.com/blog/chatgpt/
https://resources.wolframcloud.com/NeuralNetRepository/resources/GPT2-Transformer-Trained-on-WebText-Data/
https://www.wolfram.com/language/
https://resources.wolframcloud.com/NeuralNetRepository
https://www.wolfram.com/language/elementary-introduction/2nd-ed/45-datasets.html


Here’s what happens if one repeatedly “applies the
model”—at each step adding the word that has the
top probability (specified in this code as the
“decision” from the model):

What happens if one goes on longer? In this (“zero
temperature”) case what comes out soon gets rather
confused and repetitive:

But what if instead of always picking the “top” word
one sometimes randomly picks “non-top” words
(with the “randomness” corresponding to
“temperature” 0.8)? Again one can build up text:

And every time one does this, different random
choices will be made, and the text will be different—
as in these 5 examples:



It’s worth pointing out that even at the first step there
are a lot of possible “next words” to choose from (at
temperature 0.8), though their probabilities fall off
quite quickly (and, yes, the straight line on this log-
log plot corresponds to an n –1 “power-law” decay
that’s very characteristic of the general statistics of
language ):

So what happens if one goes on longer? Here’s a
random example. It’s better than the top-word (zero
temperature) case, but still at best a bit weird:

This was done with the simplest GPT-2 model (from
2019). With the newer and bigger GPT-3 models the
results are better. Here’s the top-word (zero
temperature) text produced with the same “prompt”,
but with the biggest GPT-3 model:

https://www.wolframscience.com/nks/notes-8-8--zipfs-law/
https://resources.wolframcloud.com/NeuralNetRepository/resources/GPT2-Transformer-Trained-on-WebText-Data/
https://platform.openai.com/docs/model-index-for-researchers


And here’s a random example at “temperature 0.8”:



Where Do the Probabilities Come From?

OK, so ChatGPT always picks its next word based on probabilities.
But where do those probabilities come from? Let’s start with a simpler
problem. Let’s consider generating English text one letter (rather than
word) at a time. How can we work out what the probability for each
letter should be?

A very minimal thing we could do is just take a sample of English
text, and calculate how often different letters occur in it. So, for
example, this counts letters in the Wikipedia article on “cats”:

And this does the same thing for “dogs”:

The results are similar, but not the same (“o” is no doubt more
common in the “dogs” article because, after all, it occurs in the word
“dog” itself). Still, if we take a large enough sample of English text
we can expect to eventually get at least fairly consistent results:

Here’s a sample of what we get if we just generate a sequence of
letters with these probabilities:

https://www.wolfram.com/language/elementary-introduction/2nd-ed/34-associations.html#i-8


We can break this into “words” by adding in spaces as if they were
letters with a certain probability:

We can do a slightly better job of making “words” by forcing the
distribution of “word lengths” to agree with what it is in English:

We didn’t happen to get any “actual words” here, but the results are
looking slightly better. To go further, though, we need to do more than
just pick each letter separately at random. And, for example, we know
that if we have a “q”, the next letter basically has to be “u”.

Here’s a plot of the probabilities for letters on their own:

And here’s a plot that shows the probabilities of pairs of letters (“2-
grams”) in typical English text. The possible first letters are shown
across the page, the second letters down the page:

And we see here, for example, that the “q” column is blank (zero
probability) except on the “u” row. OK, so now instead of generating



our “words” a single letter at a time, let’s generate them looking at
two letters at a time, using these “2-gram” probabilities. Here’s a
sample of the result—which happens to include a few “actual words”:

With sufficiently much English text we can get pretty good estimates
not just for probabilities of single letters or pairs of letters (2-grams),
but also for longer runs of letters. And if we generate “random words”
with progressively longer n -gram probabilities, we see that they get
progressively “more realistic”:

But let’s now assume—more or less as ChatGPT does—that we’re
dealing with whole words, not letters. There are about 40,000
reasonably commonly used words in English . And by looking at a
large corpus of English text (say a few million books, with altogether
a few hundred billion words), we can get an estimate of how common
each word is . And using this we can start generating “sentences”, in
which each word is independently picked at random, with the same
probability that it appears in the corpus. Here’s a sample of what we
get:

Not surprisingly, this is nonsense. So how can we do better? Just like
with letters, we can start taking into account not just probabilities for
single words but probabilities for pairs or longer n -grams of words.
Doing this for pairs, here are 5 examples of what we get, in all cases
starting from the word “cat”:

https://reference.wolfram.com/language/ref/WordList.html
https://reference.wolfram.com/language/ref/WordFrequencyData.html


It’s getting slightly more “sensible looking”. And we might imagine
that if we were able to use sufficiently long n -grams we’d basically
“get a ChatGPT”—in the sense that we’d get something that would
generate essay-length sequences of words with the “correct overall
essay probabilities”. But here’s the problem: there just isn’t even close
to enough English text that’s ever been written to be able to deduce
those probabilities.

In a crawl of the web there might be a few hundred billion words; in
books that have been digitized there might be another hundred billion
words. But with 40,000 common words, even the number of possible
2-grams is already 1.6 billion—and the number of possible 3-grams is
60 trillion. So there’s no way we can estimate the probabilities even
for all of these from text that’s out there. And by the time we get to
“essay fragments” of 20 words, the number of possibilities is larger
than the number of particles in the universe, so in a sense they could
never all be written down.

So what can we do? The big idea is to make a model that lets us
estimate the probabilities with which sequences should occur—even
though we’ve never explicitly seen those sequences in the corpus of
text we’ve looked at. And at the core of ChatGPT is precisely a so-
called “large language model” (LLM) that’s been built to do a good
job of estimating those probabilities.

https://commoncrawl.org/


What Is a Model?

Say you want to know (as Galileo did back in the late 1500s )
how long it’s going to take a cannon ball dropped from each
floor of the Tower of Pisa to hit the ground. Well, you could
just measure it in each case and make a table of the results. Or
you could do what is the essence of theoretical science: make a
model that gives some kind of procedure for computing the
answer rather than just measuring and remembering each case.

Let’s imagine we have (somewhat idealized) data for how long
the cannon ball takes to fall from various floors:

How do we figure out how long it’s going to take to fall from a
floor we don’t explicitly have data about? In this particular
case, we can use known laws of physics to work it out. But say
all we’ve got is the data, and we don’t know what underlying
laws govern it. Then we might make a mathematical guess,
like that perhaps we should use a straight line as a model:

We could pick different straight lines. But this is the one that’s
on average closest to the data we’re given. And from this
straight line we can estimate the time to fall for any floor.

How did we know to try using a straight line here? At some
level we didn’t. It’s just something that’s mathematically

https://archive.org/details/bub_gb_49d42xp-USMC/page/404/mode/2up


simple, and we’re used to the fact that lots of data we measure
turns out to be well fit by mathematically simple things. We
could try something mathematically more complicated—say a
+ b x + c x 2 —and then in this case we do better:

Things can go quite wrong, though. Like here’s the best we
can do with a + b /x + c sin(x ):

It is worth understanding that there’s never a “model-less
model”. Any model you use has some particular underlying
structure—then a certain set of “knobs you can turn” (i.e.
parameters you can set) to fit your data. And in the case of
ChatGPT, lots of such “knobs” are used—actually, 175 billion
of them.

But the remarkable thing is that the underlying structure of
ChatGPT—with “just” that many parameters—is sufficient to
make a model that computes next-word probabilities “well
enough” to give us reasonable essay-length pieces of text.

https://reference.wolfram.com/language/ref/FindFit.html


Models for Human-Like Tasks

The example we gave above involves making a model for
numerical data that essentially comes from simple physics—
where we’ve known for several centuries that “simple
mathematics applies”. But for ChatGPT we have to make a model
of human-language text of the kind produced by a human brain.
And for something like that we don’t (at least yet) have anything
like “simple mathematics”. So what might a model of it be like?

Before we talk about language, let’s talk about another human-
like task: recognizing images. And as a simple example of this,
let’s consider images of digits (and, yes, this is a classic machine
learning example ):

One thing we could do is get a bunch of sample images for each
digit:

Then to find out if an image we’re given as input corresponds to a
particular digit we could just do an explicit pixel-by-pixel
comparison with the samples we have. But as humans we
certainly seem to do something better—because we can still
recognize digits, even when they’re for example handwritten, and
have all sorts of modifications and distortions:

When we made a model for our numerical data above, we were
able to take a numerical value x that we were given, and just
compute a + b x for particular a and b . So if we treat the gray-
level value of each pixel here as some variable xi is there some
function of all those variables that—when evaluated—tells us
what digit the image is of? It turns out that it’s possible to

https://resources.wolframcloud.com/NeuralNetRepository/resources/050b1a0a-f43a-4c28-b7e0-72607a918467/


construct such a function. Not surprisingly, it’s not particularly
simple, though. And a typical example might involve perhaps half
a million mathematical operations.

But the end result is that if we feed the collection of pixel values
for an image into this function, out will come the number
specifying which digit we have an image of. Later, we’ll talk
about how such a function can be constructed, and the idea of
neural nets. But for now let’s treat the function as black box,
where we feed in images of, say, handwritten digits (as arrays of
pixel values) and we get out the numbers these correspond to:

But what’s really going on here? Let’s say we progressively blur a
digit. For a little while our function still “recognizes” it, here as a
“2”. But soon it “loses it”, and starts giving the “wrong” result:

But why do we say it’s the “wrong” result? In this case, we know
we got all the images by blurring a “2”. But if our goal is to
produce a model of what humans can do in recognizing images,
the real question to ask is what a human would have done if
presented with one of those blurred images, without knowing
where it came from.

And we have a “good model” if the results we get from our
function typically agree with what a human would say. And the
nontrivial scientific fact is that for an image-recognition task like
this we now basically know how to construct functions that do
this.

Can we “mathematically prove” that they work? Well, no.
Because to do that we’d have to have a mathematical theory of
what we humans are doing. Take the “2” image and change a few
pixels. We might imagine that with only a few pixels “out of
place” we should still consider the image a “2”. But how far
should that go? It’s a question of human visual perception . And,

https://www.wolframscience.com/nks/chap-10--processes-of-perception-and-analysis#sect-10-7--visual-perception


yes, the answer would no doubt be different for bees or octopuses
—and potentially utterly different for putative aliens .

https://writings.stephenwolfram.com/2021/11/the-concept-of-the-ruliad/#alien-views-of-the-ruliad


Neural Nets

OK, so how do our typical models for tasks like image recognition
actually work? The most popular—and successful—current approach
uses neural nets . Invented—in a form remarkably close to their use
today—in the 1940s , neural nets can be thought of as simple
idealizations of how brains seem to work .

In human brains there are about 100 billion neurons (nerve cells),
each capable of producing an electrical pulse up to perhaps a thousand
times a second. The neurons are connected in a complicated net, with
each neuron having tree-like branches allowing it to pass electrical
signals to perhaps thousands of other neurons. And in a rough
approximation, whether any given neuron produces an electrical pulse
at a given moment depends on what pulses it’s received from other
neurons—with different connections contributing with different
“weights”.

When we “see an image” what’s happening is that when photons of
light from the image fall on (“photoreceptor”) cells at the back of our
eyes they produce electrical signals in nerve cells. These nerve cells
are connected to other nerve cells, and eventually the signals go
through a whole sequence of layers of neurons. And it’s in this
process that we “recognize” the image, eventually “forming the
thought” that we’re “seeing a 2” (and maybe in the end doing
something like saying the word “two” out loud).

The “black-box” function from the previous section is a
“mathematicized” version of such a neural net. It happens to have 11
layers (though only 4 “core layers”):

There’s nothing particularly “theoretically derived” about this neural
net; it’s just something that—back in 1998—was constructed as a
piece of engineering , and found to work. (Of course, that’s not much

https://writings.stephenwolfram.com/2015/05/wolfram-language-artificial-intelligence-the-image-identification-project/
https://reference.wolfram.com/language/guide/NeuralNetworks.html
https://www.wolframscience.com/nks/notes-10-12--history-of-ideas-about-thinking/
https://www.wolframscience.com/nks/notes-10-12--the-brain/
https://resources.wolframcloud.com/NeuralNetRepository/resources/LeNet-Trained-on-MNIST-Data/


different from how we might describe our brains as having been
produced through the process of biological evolution.)

OK, but how does a neural net like this “recognize things”? The key
is the notion of attractors . Imagine we’ve got handwritten images of
1’s and 2’s:

We somehow want all the 1’s to “be attracted to one place”, and all
the 2’s to “be attracted to another place”. Or, put a different way, if an
image is somehow “closer to being a 1 ” than to being a 2, we want it
to end up in the “1 place” and vice versa.

As a straightforward analogy, let’s say we have certain positions in
the plane, indicated by dots (in a real-life setting they might be
positions of coffee shops). Then we might imagine that starting from
any point on the plane we’d always want to end up at the closest dot
(i.e. we’d always go to the closest coffee shop). We can represent this
by dividing the plane into regions (“attractor basins”) separated by
idealized “watersheds”:

We can think of this as implementing a kind of “recognition task” in
which we’re not doing something like identifying what digit a given
image “looks most like”—but rather we’re just, quite directly, seeing
what dot a given point is closest to. (The “Voronoi diagram” setup

https://www.wolframscience.com/nks/chap-6--starting-from-randomness#sect-6-7--the-notion-of-attractors
https://www.wolframscience.com/nks/notes-10-12--memory-analogs-with-numerical-data/


we’re showing here separates points in 2D Euclidean space; the digit
recognition task can be thought of as doing something very similar—
but in a 784-dimensional space formed from the gray levels of all the
pixels in each image.)

So how do we make a neural net “do a recognition task”? Let’s
consider this very simple case:

Our goal is to take an “input” corresponding to a position {x ,y }—
and then to “recognize” it as whichever of the three points it’s closest
to. Or, in other words, we want the neural net to compute a function
of {x ,y } like:

So how do we do this with a neural net? Ultimately a neural net is a
connected collection of idealized “neurons”—usually arranged in
layers—with a simple example being:



Each “neuron” is effectively set up to evaluate a simple numerical
function. And to “use” the network, we simply feed numbers (like our
coordinates x and y ) in at the top, then have neurons on each layer
“evaluate their functions” and feed the results forward through the
network—eventually producing the final result at the bottom:

In the traditional (biologically inspired) setup each neuron effectively
has a certain set of “incoming connections” from the neurons on the
previous layer, with each connection being assigned a certain
“weight” (which can be a positive or negative number). The value of a
given neuron is determined by multiplying the values of “previous
neurons” by their corresponding weights, then adding these up and
adding a constant—and finally applying a “thresholding” (or
“activation”) function. In mathematical terms, if a neuron has inputs x
= {x 1 , x 2 …} then we compute f [w . x + b ], where the weights w
and constant b are generally chosen differently for each neuron in the
network; the function f is usually the same.

Computing w . x + b is just a matter of matrix multiplication and
addition. The “activation function” f introduces nonlinearity (and
ultimately is what leads to nontrivial behavior). Various activation
functions commonly get used; here we’ll just use Ramp (or ReLU):

For each task we want the neural net to perform (or, equivalently, for
each overall function we want it to evaluate) we’ll have different
choices of weights. (And—as we’ll discuss later—these weights are
normally determined by “training” the neural net using machine
learning from examples of the outputs we want.)

http://reference.wolfram.com/language/ref/Ramp.html


Ultimately, every neural net just corresponds to some overall
mathematical function—though it may be messy to write out. For the
example above, it would be:

The neural net of ChatGPT also just corresponds to a mathematical
function like this—but effectively with billions of terms.

But let’s go back to individual neurons. Here are some examples of
the functions a neuron with two inputs (representing coordinates x and
y ) can compute with various choices of weights and constants (and
Ramp as activation function):

But what about the larger network from above? Well, here’s what it
computes:

It’s not quite “right”, but it’s close to the “nearest point” function we
showed above.

Let’s see what happens with some other neural nets. In each case, as
we’ll explain later, we’re using machine learning to find the best
choice of weights. Then we’re showing here what the neural net with
those weights computes:

https://reference.wolfram.com/language/ref/Ramp.html


Bigger networks generally do better at approximating the function
we’re aiming for. And in the “middle of each attractor basin” we
typically get exactly the answer we want. But at the boundaries —
where the neural net “has a hard time making up its mind”—things
can be messier.

With this simple mathematical-style “recognition task” it’s clear what
the “right answer” is. But in the problem of recognizing handwritten
digits, it’s not so clear. What if someone wrote a “2” so badly it
looked like a “7”, etc.? Still, we can ask how a neural net
distinguishes digits—and this gives an indication:

https://www.wolframscience.com/nks/notes-10-12--memory-analogs-with-numerical-data/


Can we say “mathematically” how the network makes its distinctions?
Not really. It’s just “doing what the neural net does”. But it turns out
that that normally seems to agree fairly well with the distinctions we
humans make.

Let’s take a more elaborate example. Let’s say we have images of cats
and dogs. And we have a neural net that’s been trained to distinguish
them . Here’s what it might do on some examples:

Now it’s even less clear what the “right answer” is. What about a dog
dressed in a cat suit? Etc. Whatever input it’s given, the neural net is
generating an answer. And, it turns out, to do it in a way that’s
reasonably consistent with what humans might do. As I’ve said
above, that’s not a fact we can “derive from first principles”. It’s just
something that’s empirically been found to be true, at least in certain
domains. But it’s a key reason why neural nets are useful: that they
somehow capture a “human-like” way of doing things.

Show yourself a picture of a cat, and ask “Why is that a cat?”. Maybe
you’d start saying “Well, I see its pointy ears, etc.” But it’s not very
easy to explain how you recognized the image as a cat. It’s just that
somehow your brain figured that out. But for a brain there’s no way
(at least yet) to “go inside” and see how it figured it out. What about
for an (artificial) neural net? Well, it’s straightforward to see what
each “neuron” does when you show a picture of a cat. But even to get
a basic visualization is usually very difficult.

In the final net that we used for the “nearest point” problem above
there are 17 neurons. In the net for recognizing handwritten digits

https://writings.stephenwolfram.com/2015/05/wolfram-language-artificial-intelligence-the-image-identification-project/


there are 2190. And in the net we’re using to recognize cats and dogs
there are 60,650. Normally it would be pretty difficult to visualize
what amounts to 60,650-dimensional space. But because this is a
network set up to deal with images, many of its layers of neurons are
organized into arrays, like the arrays of pixels it’s looking at.

And if we take a typical cat image

then we can represent the states of neurons at the first layer by a
collection of derived images—many of which we can readily interpret
as being things like “the cat without its background”, or “the outline
of the cat”:

By the 10th layer it’s harder to interpret what’s going on:



But in general we might say that the neural net is “picking out certain
features” (maybe pointy ears are among them), and using these to
determine what the image is of. But are those features ones for which
we have names—like “pointy ears”? Mostly not.

Are our brains using similar features? Mostly we don’t know. But it’s
notable that the first few layers of a neural net like the one we’re
showing here seem to pick out aspects of images (like edges of
objects) that seem to be similar to ones we know are picked out by the
first level of visual processing in brains.

But let’s say we want a “theory of cat recognition” in neural nets. We
can say: “Look, this particular net does it”—and immediately that
gives us some sense of “how hard a problem” it is (and, for example,
how many neurons or layers might be needed). But at least as of now
we don’t have a way to “give a narrative description” of what the
network is doing. And maybe that’s because it truly is
computationally irreducible, and there’s no general way to find what it
does except by explicitly tracing each step. Or maybe it’s just that we
haven’t “figured out the science”, and identified the “natural laws”
that allow us to summarize what’s going on.

We’ll encounter the same kinds of issues when we talk about
generating language with ChatGPT. And again it’s not clear whether
there are ways to “summarize what it’s doing”. But the richness and
detail of language (and our experience with it) may allow us to get
further than with images.



Machine Learning, and the Training of
Neural Nets

We’ve been talking so far about neural nets that “already know” how
to do particular tasks. But what makes neural nets so useful
(presumably also in brains) is that not only can they in principle do all
sorts of tasks, but they can be incrementally “trained from examples”
to do those tasks.

When we make a neural net to distinguish cats from dogs we don’t
effectively have to write a program that (say) explicitly finds
whiskers; instead we just show lots of examples of what’s a cat and
what’s a dog, and then have the network “machine learn” from these
how to distinguish them.

And the point is that the trained network “generalizes” from the
particular examples it’s shown. Just as we’ve seen above, it isn’t
simply that the network recognizes the particular pixel pattern of an
example cat image it was shown; rather it’s that the neural net
somehow manages to distinguish images on the basis of what we
consider to be some kind of “general catness”.

So how does neural net training actually work? Essentially what
we’re always trying to do is to find weights that make the neural net
successfully reproduce the examples we’ve given. And then we’re
relying on the neural net to “interpolate” (or “generalize”) “between”
these examples in a “reasonable” way.

Let’s look at a problem even simpler than the nearest-point one
above. Let’s just try to get a neural net to learn the function:

For this task, we’ll need a network that has just one input and one
output, like:



But what weights, etc. should we be using? With every possible set of
weights the neural net will compute some function. And, for example,
here’s what it does with a few randomly chosen sets of weights:

And, yes, we can plainly see that in none of these cases does it get
even close to reproducing the function we want. So how do we find
weights that will reproduce the function?

The basic idea is to supply lots of “input → output” examples to
“learn from”—and then to try to find weights that will reproduce
these examples. Here’s the result of doing that with progressively
more examples:



At each stage in this “training” the weights in the network are
progressively adjusted—and we see that eventually we get a network
that successfully reproduces the function we want. So how do we
adjust the weights? The basic idea is at each stage to see “how far
away we are” from getting the function we want—and then to update
the weights in such a way as to get closer.

To find out “how far away we are” we compute what’s usually called
a “loss function” (or sometimes “cost function”). Here we’re using a
simple (L2) loss function that’s just the sum of the squares of the
differences between the values we get, and the true values. And what
we see is that as our training process progresses, the loss function
progressively decreases (following a certain “learning curve” that’s
different for different tasks)—until we reach a point where the
network (at least to a good approximation) successfully reproduces
the function we want:

Alright, so the last essential piece to explain is how the weights are
adjusted to reduce the loss function. As we’ve said, the loss function
gives us a “distance” between the values we’ve got, and the true
values. But the “values we’ve got” are determined at each stage by
the current version of neural net—and by the weights in it. But now
imagine that the weights are variables—say wi . We want to find out
how to adjust the values of these variables to minimize the loss that
depends on them.

For example, imagine (in an incredible simplification of typical
neural nets used in practice) that we have just two weights w 1 and w
2 . Then we might have a loss that as a function of w 1 and w 2 looks
like this:



Numerical analysis provides a variety of techniques for finding the
minimum in cases like this. But a typical approach is just to
progressively follow the path of steepest descent from whatever
previous w 1 , w 2 we had:

Like water flowing down a mountain, all that’s guaranteed is that this
procedure will end up at some local minimum of the surface (“a
mountain lake”); it might well not reach the ultimate global
minimum.

It’s not obvious that it would be feasible to find the path of the
steepest descent on the “weight landscape”. But calculus comes to the
rescue. As we mentioned above, one can always think of a neural net
as computing a mathematical function—that depends on its inputs,
and its weights. But now consider differentiating with respect to these
weights. It turns out that the chain rule of calculus in effect lets us
“unravel” the operations done by successive layers in the neural net.
And the result is that we can—at least in some local approximation
—“invert” the operation of the neural net, and progressively find
weights that minimize the loss associated with the output.

The picture above shows the kind of minimization we might need to
do in the unrealistically simple case of just 2 weights. But it turns out
that even with many more weights (ChatGPT uses 175 billion) it’s
still possible to do the minimization, at least to some level of
approximation. And in fact the big breakthrough in “deep learning”
that occurred around 2011 was associated with the discovery that in
some sense it can be easier to do (at least approximate) minimization



when there are lots of weights involved than when there are fairly
few.

In other words—somewhat counterintuitively—it can be easier to
solve more complicated problems with neural nets than simpler ones.
And the rough reason for this seems to be that when one has a lot of
“weight variables” one has a high-dimensional space with “lots of
different directions” that can lead one to the minimum—whereas with
fewer variables it’s easier to end up getting stuck in a local minimum
(“mountain lake”) from which there’s no “direction to get out”.

It’s worth pointing out that in typical cases there are many different
collections of weights that will all give neural nets that have pretty
much the same performance. And usually in practical neural net
training there are lots of random choices made—that lead to
“different-but-equivalent solutions”, like these:

But each such “different solution” will have at least slightly different
behavior. And if we ask, say, for an “extrapolation” outside the region
where we gave training examples, we can get dramatically different
results:

But which of these is “right”? There’s really no way to say. They’re
all “consistent with the observed data”. But they all correspond to
different “innate” ways to “think about” what to do “outside the box”.
And some may seem “more reasonable” to us humans than others.



The Practice and Lore of Neural Net
Training

Particularly over the past decade, there’ve been many
advances in the art of training neural nets. And, yes, it is
basically an art. Sometimes—especially in retrospect—one
can see at least a glimmer of a “scientific explanation” for
something that’s being done. But mostly things have been
discovered by trial and error, adding ideas and tricks that have
progressively built a significant lore about how to work with
neural nets.

There are several key parts. First, there’s the matter of what
architecture of neural net one should use for a particular task.
Then there’s the critical issue of how one’s going to get the
data on which to train the neural net. And increasingly one
isn’t dealing with training a net from scratch: instead a new net
can either directly incorporate another already-trained net, or
at least can use that net to generate more training examples for
itself.

One might have thought that for every particular kind of task
one would need a different architecture of neural net. But
what’s been found is that the same architecture often seems to
work even for apparently quite different tasks. At some level
this reminds one of the idea of universal computation (and my
Principle of Computational Equivalence ), but, as I’ll discuss
later, I think it’s more a reflection of the fact that the tasks
we’re typically trying to get neural nets to do are “human-like”
ones—and neural nets can capture quite general “human-like
processes”.

In earlier days of neural nets, there tended to be the idea that
one should “make the neural net do as little as possible”. For
example, in converting speech to text it was thought that one
should first analyze the audio of the speech, break it into
phonemes, etc. But what was found is that—at least for
“human-like tasks”—it’s usually better just to try to train the
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neural net on the “end-to-end problem”, letting it “discover”
the necessary intermediate features, encodings, etc. for itself.

There was also the idea that one should introduce complicated
individual components into the neural net, to let it in effect
“explicitly implement particular algorithmic ideas”. But once
again, this has mostly turned out not to be worthwhile; instead,
it’s better just to deal with very simple components and let
them “organize themselves” (albeit usually in ways we can’t
understand) to achieve (presumably) the equivalent of those
algorithmic ideas.

That’s not to say that there are no “structuring ideas” that are
relevant for neural nets. Thus, for example, having 2D arrays
of neurons with local connections seems at least very useful in
the early stages of processing images. And having patterns of
connectivity that concentrate on “looking back in sequences”
seems useful—as we’ll see later—in dealing with things like
human language, for example in ChatGPT.

But an important feature of neural nets is that—like computers
in general—they’re ultimately just dealing with data. And
current neural nets—with current approaches to neural net
training—specifically deal with arrays of numbers . But in the
course of processing, those arrays can be completely
rearranged and reshaped. And as an example, the network we
used for identifying digits above starts with a 2D “image-like”
array, quickly “thickening“ to many channels, but then
“concentrating down” into a 1D array that will ultimately
contain elements representing the different possible output
digits:
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But, OK, how can one tell how big a neural net one will need
for a particular task? It’s something of an art. At some level
the key thing is to know “how hard the task is”. But for
human-like tasks that’s typically very hard to estimate. Yes,
there may be a systematic way to do the task very
“mechanically” by computer. But it’s hard to know if there are
what one might think of as tricks or shortcuts that allow one to
do the task at least at a “human-like level” vastly more easily.
It might take enumerating a giant game tree to “mechanically”
play a certain game; but there might be a much easier
(“heuristic”) way to achieve “human-level play”.

When one’s dealing with tiny neural nets and simple tasks one
can sometimes explicitly see that one “can’t get there from
here”. For example, here’s the best one seems to be able to do
on the task from the previous section with a few small neural
nets:

And what we see is that if the net is too small, it just can’t
reproduce the function we want. But above some size, it has
no problem—at least if one trains it for long enough, with
enough examples. And, by the way, these pictures illustrate a
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piece of neural net lore: that one can often get away with a
smaller network if there’s a “squeeze” in the middle that forces
everything to go through a smaller intermediate number of
neurons. (It’s also worth mentioning that “no-intermediate-
layer”—or so-called “perceptron ”—networks can only learn
essentially linear functions—but as soon as there’s even one
intermediate layer it’s always in principle possible to
approximate any function arbitrarily well, at least if one has
enough neurons, though to make it feasibly trainable one
typically has some kind of regularization or normalization .)

OK, so let’s say one’s settled on a certain neural net
architecture. Now there’s the issue of getting data to train the
network with. And many of the practical challenges around
neural nets—and machine learning in general—center on
acquiring or preparing the necessary training data. In many
cases (“supervised learning”) one wants to get explicit
examples of inputs and the outputs one is expecting from
them. Thus, for example, one might want images tagged by
what’s in them, or some other attribute. And maybe one will
have to explicitly go through—usually with great effort—and
do the tagging. But very often it turns out to be possible to
piggyback on something that’s already been done, or use it as
some kind of proxy. And so, for example, one might use alt
tags that have been provided for images on the web. Or, in a
different domain, one might use closed captions that have been
created for videos. Or—for language translation training—one
might use parallel versions of webpages or other documents
that exist in different languages.

How much data do you need to show a neural net to train it for
a particular task? Again, it’s hard to estimate from first
principles. Certainly the requirements can be dramatically
reduced by using “transfer learning” to “transfer in” things like
lists of important features that have already been learned in
another network. But generally neural nets need to “see a lot
of examples” to train well. And at least for some tasks it’s an
important piece of neural net lore that the examples can be
incredibly repetitive. And indeed it’s a standard strategy to just
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show a neural net all the examples one has, over and over
again. In each of these “training rounds” (or “epochs”) the
neural net will be in at least a slightly different state, and
somehow “reminding it” of a particular example is useful in
getting it to “remember that example”. (And, yes, perhaps this
is analogous to the usefulness of repetition in human
memorization.)

But often just repeating the same example over and over again
isn’t enough. It’s also necessary to show the neural net
variations of the example. And it’s a feature of neural net lore
that those “data augmentation” variations don’t have to be
sophisticated to be useful. Just slightly modifying images with
basic image processing can make them essentially “as good as
new” for neural net training. And, similarly, when one’s run
out of actual video, etc. for training self-driving cars, one can
go on and just get data from running simulations in a model
videogame-like environment without all the detail of actual
real-world scenes.

How about something like ChatGPT? Well, it has the nice
feature that it can do “unsupervised learning”, making it much
easier to get it examples to train from. Recall that the basic
task for ChatGPT is to figure out how to continue a piece of
text that it’s been given. So to get it “training examples” all
one has to do is get a piece of text, and mask out the end of it,
and then use this as the “input to train from”—with the
“output” being the complete, unmasked piece of text. We’ll
discuss this more later, but the main point is that—unlike, say,
for learning what’s in images—there’s no “explicit tagging”
needed; ChatGPT can in effect just learn directly from
whatever examples of text it’s given.

OK, so what about the actual learning process in a neural net?
In the end it’s all about determining what weights will best
capture the training examples that have been given. And there
are all sorts of detailed choices and “hyperparameter settings”
(so called because the weights can be thought of as
“parameters”) that can be used to tweak how this is done.
There are different choices of loss function (sum of squares,
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sum of absolute values, etc.). There are different ways to do
loss minimization (how far in weight space to move at each
step, etc.). And then there are questions like how big a “batch”
of examples to show to get each successive estimate of the loss
one’s trying to minimize. And, yes, one can apply machine
learning (as we do, for example, in Wolfram Language) to
automate machine learning—and to automatically set things
like hyperparameters.

But in the end the whole process of training can be
characterized by seeing how the loss progressively decreases
(as in this Wolfram Language progress monitor for a small
training ):

And what one typically sees is that the loss decreases for a
while, but eventually flattens out at some constant value. If
that value is sufficiently small, then the training can be
considered successful; otherwise it’s probably a sign one
should try changing the network architecture.

Can one tell how long it should take for the “learning curve”
to flatten out? Like for so many other things, there seem to be
approximate power-law scaling relationships that depend on
the size of neural net and amount of data one’s using. But the
general conclusion is that training a neural net is hard—and
takes a lot of computational effort. And as a practical matter,
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the vast majority of that effort is spent doing operations on
arrays of numbers, which is what GPUs are good at—which is
why neural net training is typically limited by the availability
of GPUs.

In the future, will there be fundamentally better ways to train
neural nets—or generally do what neural nets do? Almost
certainly, I think. The fundamental idea of neural nets is to
create a flexible “computing fabric” out of a large number of
simple (essentially identical) components—and to have this
“fabric” be one that can be incrementally modified to learn
from examples. In current neural nets, one’s essentially using
the ideas of calculus—applied to real numbers—to do that
incremental modification. But it’s increasingly clear that
having high-precision numbers doesn’t matter; 8 bits or less
might be enough even with current methods.

With computational systems like cellular automata that
basically operate in parallel on many individual bits it’s never
been clear how to do this kind of incremental modification ,
but there’s no reason to think it isn’t possible. And in fact,
much like with the “deep-learning breakthrough of 2012 ” it
may be that such incremental modification will effectively be
easier in more complicated cases than in simple ones.

Neural nets—perhaps a bit like brains—are set up to have an
essentially fixed network of neurons, with what’s modified
being the strength (“weight”) of connections between them.
(Perhaps in at least young brains significant numbers of
wholly new connections can also grow.) But while this might
be a convenient setup for biology, it’s not at all clear that it’s
even close to the best way to achieve the functionality we
need. And something that involves the equivalent of
progressive network rewriting (perhaps reminiscent of our
Physics Project ) might well ultimately be better.

But even within the framework of existing neural nets there’s
currently a crucial limitation: neural net training as it’s now
done is fundamentally sequential, with the effects of each
batch of examples being propagated back to update the
weights. And indeed with current computer hardware—even
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taking into account GPUs—most of a neural net is “idle” most
of the time during training, with just one part at a time being
updated. And in a sense this is because our current computers
tend to have memory that is separate from their CPUs (or
GPUs). But in brains it’s presumably different—with every
“memory element” (i.e. neuron) also being a potentially active
computational element. And if we could set up our future
computer hardware this way it might become possible to do
training much more efficiently.



“Surely a Network That’s Big Enough
Can Do Anything!”

The capabilities of something like ChatGPT seem so impressive
that one might imagine that if one could just “keep going” and
train larger and larger neural networks, then they’d eventually
be able to “do everything”. And if one’s concerned with things
that are readily accessible to immediate human thinking, it’s
quite possible that this is the case. But the lesson of the past
several hundred years of science is that there are things that can
be figured out by formal processes, but aren’t readily accessible
to immediate human thinking.

Nontrivial mathematics is one big example. But the general case
is really computation. And ultimately the issue is the
phenomenon of computational irreducibility . There are some
computations which one might think would take many steps to
do, but which can in fact be “reduced” to something quite
immediate. But the discovery of computational irreducibility
implies that this doesn’t always work. And instead there are
processes—probably like the one below—where to work out
what happens inevitably requires essentially tracing each
computational step:

The kinds of things that we normally do with our brains are
presumably specifically chosen to avoid computational
irreducibility. It takes special effort to do math in one’s brain.
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And it’s in practice largely impossible to “think through” the
steps in the operation of any nontrivial program just in one’s
brain.

But of course for that we have computers. And with computers
we can readily do long, computationally irreducible things. And
the key point is that there’s in general no shortcut for these.

Yes, we could memorize lots of specific examples of what
happens in some particular computational system. And maybe
we could even see some (“computationally reducible”) patterns
that would allow us to do a little generalization. But the point is
that computational irreducibility means that we can never
guarantee that the unexpected won’t happen—and it’s only by
explicitly doing the computation that you can tell what actually
happens in any particular case.

And in the end there’s just a fundamental tension between
learnability and computational irreducibility. Learning involves
in effect compressing data by leveraging regularities . But
computational irreducibility implies that ultimately there’s a
limit to what regularities there may be.

As a practical matter, one can imagine building little
computational devices—like cellular automata or Turing
machines—into trainable systems like neural nets. And indeed
such devices can serve as good “tools” for the neural net—like
Wolfram|Alpha can be a good tool for ChatGPT . But
computational irreducibility implies that one can’t expect to “get
inside” those devices and have them learn.

Or put another way, there’s an ultimate tradeoff between
capability and trainability: the more you want a system to make
“true use” of its computational capabilities, the more it’s going
to show computational irreducibility, and the less it’s going to
be trainable. And the more it’s fundamentally trainable, the less
it’s going to be able to do sophisticated computation.

(For ChatGPT as it currently is, the situation is actually much
more extreme, because the neural net used to generate each
token of output is a pure “feed-forward” network, without loops,
and therefore has no ability to do any kind of computation with
nontrivial “control flow”.)
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Of course, one might wonder whether it’s actually important to
be able to do irreducible computations. And indeed for much of
human history it wasn’t particularly important. But our modern
technological world has been built on engineering that makes
use of at least mathematical computations—and increasingly
also more general computations. And if we look at the natural
world, it’s full of irreducible computation —that we’re slowly
understanding how to emulate and use for our technological
purposes.

Yes, a neural net can certainly notice the kinds of regularities in
the natural world that we might also readily notice with
“unaided human thinking”. But if we want to work out things
that are in the purview of mathematical or computational
science the neural net isn’t going to be able to do it—unless it
effectively “uses as a tool” an “ordinary” computational system.

But there’s something potentially confusing about all of this. In
the past there were plenty of tasks—including writing essays—
that we’ve assumed were somehow “fundamentally too hard”
for computers. And now that we see them done by the likes of
ChatGPT we tend to suddenly think that computers must have
become vastly more powerful—in particular surpassing things
they were already basically able to do (like progressively
computing the behavior of computational systems like cellular
automata).

But this isn’t the right conclusion to draw. Computationally
irreducible processes are still computationally irreducible, and
are still fundamentally hard for computers—even if computers
can readily compute their individual steps. And instead what we
should conclude is that tasks—like writing essays—that we
humans could do, but we didn’t think computers could do, are
actually in some sense computationally easier than we thought.

In other words, the reason a neural net can be successful in
writing an essay is because writing an essay turns out to be a
“computationally shallower” problem than we thought. And in a
sense this takes us closer to “having a theory” of how we
humans manage to do things like writing essays, or in general
deal with language.
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If you had a big enough neural net then, yes, you might be able
to do whatever humans can readily do. But you wouldn’t
capture what the natural world in general can do—or that the
tools that we’ve fashioned from the natural world can do. And
it’s the use of those tools—both practical and conceptual—that
have allowed us in recent centuries to transcend the boundaries
of what’s accessible to “pure unaided human thought”, and
capture for human purposes more of what’s out there in the
physical and computational universe.



The Concept of Embeddings

Neural nets—at least as they’re currently set up—are fundamentally
based on numbers. So if we’re going to to use them to work on
something like text we’ll need a way to represent our text with
numbers . And certainly we could start (essentially as ChatGPT does)
by just assigning a number to every word in the dictionary. But there’s
an important idea—that’s for example central to ChatGPT—that goes
beyond that. And it’s the idea of “embeddings”. One can think of an
embedding as a way to try to represent the “essence” of something by
an array of numbers—with the property that “nearby things” are
represented by nearby numbers.

And so, for example, we can think of a word embedding as trying to
lay out words in a kind of “meaning space” in which words that are
somehow “nearby in meaning” appear nearby in the embedding. The
actual embeddings that are used—say in ChatGPT—tend to involve
large lists of numbers. But if we project down to 2D, we can show
examples of how words are laid out by the embedding:

And, yes, what we see does remarkably well in capturing typical
everyday impressions. But how can we construct such an embedding?
Roughly the idea is to look at large amounts of text (here 5 billion
words from the web) and then see “how similar” the “environments”
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are in which different words appear. So, for example, “alligator” and
“crocodile” will often appear almost interchangeably in otherwise
similar sentences, and that means they’ll be placed nearby in the
embedding. But “turnip” and “eagle” won’t tend to appear in
otherwise similar sentences, so they’ll be placed far apart in the
embedding.

But how does one actually implement something like this using neural
nets? Let’s start by talking about embeddings not for words, but for
images. We want to find some way to characterize images by lists of
numbers in such a way that “images we consider similar” are assigned
similar lists of numbers.

How do we tell if we should “consider images similar”? Well, if our
images are, say, of handwritten digits we might “consider two images
similar” if they are of the same digit. Earlier we discussed a neural net
that was trained to recognize handwritten digits. And we can think of
this neural net as being set up so that in its final output it puts images
into 10 different bins, one for each digit.

But what if we “intercept” what’s going on inside the neural net
before the final “it’s a ‘4’” decision is made? We might expect that
inside the neural net there are numbers that characterize images as
being “mostly 4-like but a bit 2-like” or some such. And the idea is to
pick up such numbers to use as elements in an embedding.

So here’s the concept. Rather than directly trying to characterize
“what image is near what other image”, we instead consider a well-
defined task (in this case digit recognition) for which we can get
explicit training data—then use the fact that in doing this task the
neural net implicitly has to make what amount to “nearness
decisions”. So instead of us ever explicitly having to talk about
“nearness of images” we’re just talking about the concrete question of
what digit an image represents, and then we’re “leaving it to the
neural net” to implicitly determine what that implies about “nearness
of images”.

So how in more detail does this work for the digit recognition
network? We can think of the network as consisting of 11 successive
layers, that we might summarize iconically like this (with activation
functions shown as separate layers):



At the beginning we’re feeding into the first layer actual images,
represented by 2D arrays of pixel values. And at the end—from the
last layer—we’re getting out an array of 10 values, which we can
think of saying “how certain” the network is that the image
corresponds to each of the digits 0 through 9.

Feed in the image  and the values of the neurons in that last layer
are:

In other words, the neural net is by this point “incredibly certain” that
this image is a 4—and to actually get the output “4” we just have to
pick out the position of the neuron with the largest value.

But what if we look one step earlier? The very last operation in the
network is a so-called softmax which tries to “force certainty”. But
before that’s been applied the values of the neurons are:

The neuron representing “4” still has the highest numerical value. But
there’s also information in the values of the other neurons. And we
can expect that this list of numbers can in a sense be used to
characterize the “essence” of the image—and thus to provide
something we can use as an embedding. And so, for example, each of
the 4’s here has a slightly different “signature” (or “feature
embedding”)—all very different from the 8’s:

Here we’re essentially using 10 numbers to characterize our images.
But it’s often better to use much more than that. And for example in
our digit recognition network we can get an array of 500 numbers by
tapping into the preceding layer. And this is probably a reasonable
array to use as an “image embedding”.

If we want to make an explicit visualization of “image space” for
handwritten digits we need to “reduce the dimension”, effectively by
projecting the 500-dimensional vector we’ve got into, say, 3D space:

https://reference.wolfram.com/language/ref/SoftmaxLayer.html


We’ve just talked about creating a characterization (and thus
embedding) for images based effectively on identifying the similarity
of images by determining whether (according to our training set) they
correspond to the same handwritten digit. And we can do the same
thing much more generally for images if we have a training set that
identifies, say, which of 5000 common types of object (cat, dog, chair,
…) each image is of. And in this way we can make an image
embedding that’s “anchored” by our identification of common objects,
but then “generalizes around that” according to the behavior of the
neural net. And the point is that insofar as that behavior aligns with
how we humans perceive and interpret images, this will end up being
an embedding that “seems right to us”, and is useful in practice in
doing “human-judgement-like” tasks.

OK, so how do we follow the same kind of approach to find
embeddings for words? The key is to start from a task about words for
which we can readily do training. And the standard such task is “word
prediction”. Imagine we’re given “the ___ cat”. Based on a large
corpus of text (say, the text content of the web), what are the
probabilities for different words that might “fill in the blank”? Or,
alternatively, given “___ black ___” what are the probabilities for
different “flanking words”?

How do we set this problem up for a neural net? Ultimately we have
to formulate everything in terms of numbers. And one way to do this
is just to assign a unique number to each of the 50,000 or so common
words in English. So, for example, “the” might be 914, and “cat”
(with a space before it) might be 3542. (And these are the actual



numbers used by GPT-2.) So for the “the ___ cat” problem, our input
might be {914, 3542}. What should the output be like? Well, it should
be a list of 50,000 or so numbers that effectively give the probabilities
for each of the possible “fill-in” words. And once again, to find an
embedding, we want to “intercept” the “insides” of the neural net just
before it “reaches its conclusion”—and then pick up the list of
numbers that occur there, and that we can think of as “characterizing
each word”.

OK, so what do those characterizations look like? Over the past 10
years there’ve been a sequence of different systems developed
(word2vec , GloVe , BERT , GPT , …), each based on a different
neural net approach. But ultimately all of them take words and
characterize them by lists of hundreds to thousands of numbers.

In their raw form, these “embedding vectors” are quite uninformative.
For example, here’s what GPT-2 produces as the raw embedding
vectors for three specific words:

If we do things like measure distances between these vectors, then we
can find things like “nearnesses” of words. Later we’ll discuss in
more detail what we might consider the “cognitive” significance of
such embeddings. But for now the main point is that we have a way to
usefully turn words into “neural-net-friendly” collections of numbers.

But actually we can go further than just characterizing words by
collections of numbers; we can also do this for sequences of words, or
indeed whole blocks of text. And inside ChatGPT that’s how it’s
dealing with things. It takes the text it’s got so far, and generates an
embedding vector to represent it. Then its goal is to find the
probabilities for different words that might occur next. And it
represents its answer for this as a list of numbers that essentially give
the probabilities for each of the 50,000 or so possible words.

(Strictly, ChatGPT does not deal with words, but rather with “tokens”
—convenient linguistic units that might be whole words, or might just
be pieces like “pre” or “ing” or “ized”. Working with tokens makes it
easier for ChatGPT to handle rare, compound and non-English words,
and, sometimes, for better or worse, to invent new words.)

https://resources.wolframcloud.com/NeuralNetRepository/resources/ConceptNet-Numberbatch-Word-Vectors-V17.06/
https://resources.wolframcloud.com/NeuralNetRepository/search/?i=GloVe
https://resources.wolframcloud.com/NeuralNetRepository/search/?i=BERT
https://resources.wolframcloud.com/NeuralNetRepository/resources/GPT2-Transformer-Trained-on-WebText-Data/
https://platform.openai.com/tokenizer


Inside ChatGPT

OK, so we’re finally ready to discuss what’s inside ChatGPT. And,
yes, ultimately, it’s a giant neural net—currently a version of the so-
called GPT-3 network with 175 billion weights. In many ways this is a
neural net very much like the other ones we’ve discussed. But it’s a
neural net that’s particularly set up for dealing with language. And its
most notable feature is a piece of neural net architecture called a
“transformer”.

In the first neural nets we discussed above, every neuron at any given
layer was basically connected (at least with some weight) to every
neuron on the layer before. But this kind of fully connected network is
(presumably) overkill if one’s working with data that has particular,
known structure. And thus, for example, in the early stages of dealing
with images, it’s typical to use so-called convolutional neural nets
(“convnets”) in which neurons are effectively laid out on a grid
analogous to the pixels in the image—and connected only to neurons
nearby on the grid.

The idea of transformers is to do something at least somewhat similar
for sequences of tokens that make up a piece of text. But instead of
just defining a fixed region in the sequence over which there can be
connections, transformers instead introduce the notion of “attention
”—and the idea of “paying attention” more to some parts of the
sequence than others. Maybe one day it’ll make sense to just start a
generic neural net and do all customization through training. But at
least as of now it seems to be critical in practice to “modularize”
things—as transformers do, and probably as our brains also do.

OK, so what does ChatGPT (or, rather, the GPT-3 network on which
it’s based) actually do? Recall that its overall goal is to continue text
in a “reasonable” way, based on what it’s seen from the training it’s
had (which consists in looking at billions of pages of text from the
web, etc.) So at any given point, it’s got a certain amount of text—and
its goal is to come up with an appropriate choice for the next token to
add.

It operates in three basic stages. First, it takes the sequence of tokens
that corresponds to the text so far, and finds an embedding (i.e. an
array of numbers) that represents these. Then it operates on this
embedding—in a “standard neural net way”, with values “rippling
through” successive layers in a network—to produce a new
embedding (i.e. a new array of numbers). It then takes the last part of

https://reference.wolfram.com/language/ref/ConvolutionLayer.html
https://reference.wolfram.com/language/ref/AttentionLayer.html


this array and generates from it an array of about 50,000 values that
turn into probabilities for different possible next tokens. (And, yes, it
so happens that there are about the same number of tokens used as
there are common words in English, though only about 3000 of the
tokens are whole words, and the rest are fragments.)

A critical point is that every part of this pipeline is implemented by a
neural network, whose weights are determined by end-to-end training
of the network. In other words, in effect nothing except the overall
architecture is “explicitly engineered”; everything is just “learned”
from training data.

There are, however, plenty of details in the way the architecture is set
up—reflecting all sorts of experience and neural net lore. And—even
though this is definitely going into the weeds—I think it’s useful to
talk about some of those details, not least to get a sense of just what
goes into building something like ChatGPT.

First comes the embedding module. Here’s a schematic Wolfram
Language representation for it for GPT-2:

The input is a vector of n tokens (represented as in the previous
section by integers from 1 to about 50,000). Each of these tokens is
converted (by a single-layer neural net ) into an embedding vector (of
length 768 for GPT-2 and 12,288 for ChatGPT’s GPT-3). Meanwhile,
there’s a “secondary pathway” that takes the sequence of (integer)
positions for the tokens, and from these integers creates another
embedding vector. And finally the embedding vectors from the token
value and the token position are added together —to produce the final
sequence of embedding vectors from the embedding module.

Why does one just add the token-value and token-position embedding
vectors together? I don’t think there’s any particular science to this.
It’s just that various different things have been tried, and this is one
that seems to work. And it’s part of the lore of neural nets that—in

https://reference.wolfram.com/language/ref/netencoder/SubwordTokens.html
https://reference.wolfram.com/language/ref/EmbeddingLayer.html
https://reference.wolfram.com/language/ref/SequenceIndicesLayer.html
https://reference.wolfram.com/language/ref/ThreadingLayer.html


some sense—so long as the setup one has is “roughly right” it’s
usually possible to home in on details just by doing sufficient training,
without ever really needing to “understand at an engineering level”
quite how the neural net has ended up configuring itself.

Here’s what the embedding module does, operating on the string hello
hello hello hello hello hello hello hello hello hello bye bye bye bye bye
bye bye bye bye bye :

The elements of the embedding vector for each token are shown down
the page, and across the page we see first a run of “hello ”
embeddings, followed by a run of “bye ” ones. The second array
above is the positional embedding—with its somewhat-random-
looking structure being just what “happened to be learned” (in this
case in GPT-2).

OK, so after the embedding module comes the “main event” of the
transformer: a sequence of so-called “attention blocks” (12 for GPT-2,
96 for ChatGPT’s GPT-3). It’s all pretty complicated—and
reminiscent of typical large hard-to-understand engineering systems,
or, for that matter, biological systems. But anyway, here’s a schematic
representation of a single “attention block” (for GPT-2):

Within each such attention block there are a collection of “attention
heads” (12 for GPT-2, 96 for ChatGPT’s GPT-3)—each of which
operates independently on different chunks of values in the
embedding vector. (And, yes, we don’t know any particular reason
why it’s a good idea to split up the embedding vector, or what the



different parts of it “mean”; this is just one of those things that’s been
“found to work”.)

OK, so what do the attention heads do? Basically they’re a way of
“looking back” in the sequence of tokens (i.e. in the text produced so
far), and “packaging up the past” in a form that’s useful for finding the
next token. In the first section above we talked about using 2-gram
probabilities to pick words based on their immediate predecessors.
What the “attention” mechanism in transformers does is to allow
“attention to” even much earlier words—thus potentially capturing the
way, say, verbs can refer to nouns that appear many words before
them in a sentence.

At a more detailed level, what an attention head does is to recombine
chunks in the embedding vectors associated with different tokens,
with certain weights. And so, for example, the 12 attention heads in
the first attention block (in GPT-2) have the following (“look-back-
all-the-way-to-the-beginning-of-the-sequence-of-tokens”) patterns of
“recombination weights” for the “hello , bye ” string above:

After being processed by the attention heads, the resulting “re-
weighted embedding vector” (of length 768 for GPT-2 and length
12,288 for ChatGPT’s GPT-3) is passed through a standard “fully
connected” neural net layer . It’s hard to get a handle on what this
layer is doing. But here’s a plot of the 768×768 matrix of weights it’s
using (here for GPT-2):

https://reference.wolfram.com/language/ref/LinearLayer.html


Taking 64×64 moving averages, some (random-walk-ish) structure
begins to emerge:

What determines this structure? Ultimately it’s presumably some
“neural net encoding” of features of human language. But as of now,
what those features might be is quite unknown. In effect, we’re
“opening up the brain of ChatGPT” (or at least GPT-2) and
discovering, yes, it’s complicated in there, and we don’t understand it
—even though in the end it’s producing recognizable human
language.



OK, so after going through one attention block, we’ve got a new
embedding vector—which is then successively passed through
additional attention blocks (a total of 12 for GPT-2; 96 for GPT-3).
Each attention block has its own particular pattern of “attention” and
“fully connected” weights. Here for GPT-2 are the sequence of
attention weights for the “hello, bye” input, for the first attention head:

And here are the (moving-averaged) “matrices” for the fully
connected layers:

Curiously, even though these “matrices of weights” in different
attention blocks look quite similar, the distributions of the sizes of
weights can be somewhat different (and are not always Gaussian):



So after going through all these attention blocks what is the net effect
of the transformer? Essentially it’s to transform the original collection
of embeddings for the sequence of tokens to a final collection. And
the particular way ChatGPT works is then to pick up the last
embedding in this collection, and “decode” it to produce a list of
probabilities for what token should come next.

So that’s in outline what’s inside ChatGPT. It may seem complicated
(not least because of its many inevitably somewhat arbitrary
“engineering choices”), but actually the ultimate elements involved
are remarkably simple. Because in the end what we’re dealing with is
just a neural net made of “artificial neurons”, each doing the simple
operation of taking a collection of numerical inputs, and then
combining them with certain weights.

The original input to ChatGPT is an array of numbers (the embedding
vectors for the tokens so far), and what happens when ChatGPT
“runs” to produce a new token is just that these numbers “ripple
through” the layers of the neural net, with each neuron “doing its
thing” and passing the result to neurons on the next layer. There’s no
looping or “going back”. Everything just “feeds forward” through the
network.

It’s a very different setup from a typical computational system—like a
Turing machine —in which results are repeatedly “reprocessed” by
the same computational elements. Here—at least in generating a given
token of output—each computational element (i.e. neuron) is used
only once.

But there is in a sense still an “outer loop” that reuses computational
elements even in ChatGPT. Because when ChatGPT is going to
generate a new token, it always “reads” (i.e. takes as input) the whole
sequence of tokens that come before it, including tokens that ChatGPT
itself has “written” previously. And we can think of this setup as
meaning that ChatGPT does—at least at its outermost level—involve
a “feedback loop”, albeit one in which every iteration is explicitly
visible as a token that appears in the text that it generates.

https://www.wolframscience.com/nks/chap-3--the-world-of-simple-/%20programs/#sect-3-4--turing-machines


But let’s come back to the core of ChatGPT: the neural net that’s
being repeatedly used to generate each token. At some level it’s very
simple: a whole collection of identical artificial neurons. And some
parts of the network just consist of (“fully connected ”) layers of
neurons in which every neuron on a given layer is connected (with
some weight) to every neuron on the layer before. But particularly
with its transformer architecture, ChatGPT has parts with more
structure, in which only specific neurons on different layers are
connected. (Of course, one could still say that “all neurons are
connected”—but some just have zero weight.)

In addition, there are aspects of the neural net in ChatGPT that aren’t
most naturally thought of as just consisting of “homogeneous” layers.
And for example—as the iconic summary above indicates—inside an
attention block there are places where “multiple copies are made” of
incoming data, each then going through a different “processing path”,
potentially involving a different number of layers, and only later
recombining. But while this may be a convenient representation of
what’s going on, it’s always at least in principle possible to think of
“densely filling in” layers, but just having some weights be zero.

If one looks at the longest path through ChatGPT, there are about 400
(core) layers involved—in some ways not a huge number. But there
are millions of neurons—with a total of 175 billion connections and
therefore 175 billion weights. And one thing to realize is that every
time ChatGPT generates a new token, it has to do a calculation
involving every single one of these weights. Implementationally these
calculations can be somewhat organized “by layer” into highly
parallel array operations that can conveniently be done on GPUs. But
for each token that’s produced, there still have to be 175 billion
calculations done (and in the end a bit more)—so that, yes, it’s not
surprising that it can take a while to generate a long piece of text with
ChatGPT.

But in the end, the remarkable thing is that all these operations—
individually as simple as they are—can somehow together manage to
do such a good “human-like” job of generating text. It has to be
emphasized again that (at least so far as we know) there’s no “ultimate
theoretical reason” why anything like this should work. And in fact, as
we’ll discuss, I think we have to view this as a—potentially surprising
—scientific discovery: that somehow in a neural net like ChatGPT’s
it’s possible to capture the essence of what human brains manage to
do in generating language.

https://reference.wolfram.com/language/ref/LinearLayer.html


The Training of ChatGPT

OK, so we’ve now given an outline of how ChatGPT works
once it’s set up. But how did it get set up? How were all those
175 billion weights in its neural net determined? Basically
they’re the result of very large-scale training, based on a huge
corpus of text—on the web, in books, etc.—written by
humans. As we’ve said, even given all that training data, it’s
certainly not obvious that a neural net would be able to
successfully produce “human-like” text. And, once again,
there seem to be detailed pieces of engineering needed to
make that happen. But the big surprise—and discovery—of
ChatGPT is that it’s possible at all. And that—in effect—a
neural net with “just” 175 billion weights can make a
“reasonable model” of text humans write.

In modern times, there’s lots of text written by humans that’s
out there in digital form. The public web has at least several
billion human-written pages, with altogether perhaps a trillion
words of text. And if one includes non-public webpages, the
numbers might be at least 100 times larger. So far, more than 5
million digitized books have been made available (out of 100
million or so that have ever been published), giving another
100 billion or so words of text. And that’s not even mentioning
text derived from speech in videos, etc. (As a personal
comparison, my total lifetime output of published material has
been a bit under 3 million words, and over the past 30 years
I’ve written about 15 million words of email, and altogether
typed perhaps 50 million words—and in just the past couple of
years I’ve spoken more than 10 million words on livestreams .
And, yes, I’ll train a bot from all of that.)

But, OK, given all this data, how does one train a neural net
from it? The basic process is very much as we discussed it in
the simple examples above. You present a batch of examples,
and then you adjust the weights in the network to minimize the
error (“loss”) that the network makes on those examples. The
main thing that’s expensive about “back propagating” from the
error is that each time you do this, every weight in the network

https://www.stephenwolfram.com/publications/
https://writings.stephenwolfram.com/2012/03/the-personal-analytics-of-my-life/
https://www.stephenwolfram.com/livestreams


will typically change at least a tiny bit, and there are just a lot
of weights to deal with. (The actual “back computation” is
typically only a small constant factor harder than the forward
one.)

With modern GPU hardware, it’s straightforward to compute
the results from batches of thousands of examples in parallel.
But when it comes to actually updating the weights in the
neural net, current methods require one to do this basically
batch by batch. (And, yes, this is probably where actual brains
—with their combined computation and memory elements—
have, for now, at least an architectural advantage.)

Even in the seemingly simple cases of learning numerical
functions that we discussed earlier, we found we often had to
use millions of examples to successfully train a network, at
least from scratch. So how many examples does this mean
we’ll need in order to train a “human-like language” model?
There doesn’t seem to be any fundamental “theoretical” way
to know. But in practice ChatGPT was successfully trained on
a few hundred billion words of text.

Some of the text it was fed several times, some of it only once.
But somehow it “got what it needed” from the text it saw. But
given this volume of text to learn from, how large a network
should it require to “learn it well”? Again, we don’t yet have a
fundamental theoretical way to say. Ultimately—as we’ll
discuss further below—there’s presumably a certain “total
algorithmic content” to human language and what humans
typically say with it. But the next question is how efficient a
neural net will be at implementing a model based on that
algorithmic content. And again we don’t know—although the
success of ChatGPT suggests it’s reasonably efficient.

And in the end we can just note that ChatGPT does what it
does using a couple hundred billion weights—comparable in
number to the total number of words (or tokens) of training
data it’s been given. In some ways it’s perhaps surprising
(though empirically observed also in smaller analogs of
ChatGPT) that the “size of the network” that seems to work
well is so comparable to the “size of the training data”. After



all, it’s certainly not that somehow “inside ChatGPT” all that
text from the web and books and so on is “directly stored”.
Because what’s actually inside ChatGPT are a bunch of
numbers—with a bit less than 10 digits of precision—that are
some kind of distributed encoding of the aggregate structure of
all that text.

Put another way, we might ask what the “effective information
content” is of human language and what’s typically said with
it. There’s the raw corpus of examples of language. And then
there’s the representation in the neural net of ChatGPT. That
representation is very likely far from the “algorithmically
minimal” representation (as we’ll discuss below). But it’s a
representation that’s readily usable by the neural net. And in
this representation it seems there’s in the end rather little
“compression” of the training data; it seems on average to
basically take only a bit less than one neural net weight to
carry the “information content” of a word of training data.

When we run ChatGPT to generate text, we’re basically
having to use each weight once. So if there are n weights,
we’ve got of order n computational steps to do—though in
practice many of them can typically be done in parallel in
GPUs. But if we need about n words of training data to set up
those weights, then from what we’ve said above we can
conclude that we’ll need about n 2 computational steps to do
the training of the network—which is why, with current
methods, one ends up needing to talk about billion-dollar
training efforts.



Beyond Basic Training

The majority of the effort in training ChatGPT is spent
“showing it” large amounts of existing text from the web,
books, etc. But it turns out there’s another—apparently rather
important—part too.

As soon as it’s finished its “raw training” from the original
corpus of text it’s been shown, the neural net inside ChatGPT
is ready to start generating its own text, continuing from
prompts, etc. But while the results from this may often seem
reasonable, they tend—particularly for longer pieces of text—
to “wander off” in often rather non-human-like ways. It’s not
something one can readily detect, say, by doing traditional
statistics on the text. But it’s something that actual humans
reading the text easily notice.

And a key idea in the construction of ChatGPT was to have
another step after “passively reading” things like the web: to
have actual humans actively interact with ChatGPT, see what
it produces, and in effect give it feedback on “how to be a
good chatbot”. But how can the neural net use that feedback?
The first step is just to have humans rate results from the
neural net. But then another neural net model is built that
attempts to predict those ratings. But now this prediction
model can be run—essentially like a loss function—on the
original network, in effect allowing that network to be “tuned
up” by the human feedback that’s been given. And the results
in practice seem to have a big effect on the success of the
system in producing “human-like” output.

In general, it’s interesting how little “poking” the “originally
trained” network seems to need to get it to usefully go in
particular directions. One might have thought that to have the
network behave as if it’s “learned something new” one would
have to go in and run a training algorithm, adjusting weights,
and so on.

But that’s not the case. Instead, it seems to be sufficient to
basically tell ChatGPT something one time—as part of the

https://openai.com/blog/instruction-following/


prompt you give—and then it can successfully make use of
what you told it when it generates text. And once again, the
fact that this works is, I think, an important clue in
understanding what ChatGPT is “really doing” and how it
relates to the structure of human language and thinking.

There’s certainly something rather human-like about it: that at
least once it’s had all that pre-training you can tell it something
just once and it can “remember it”—at least “long enough” to
generate a piece of text using it. So what’s going on in a case
like this? It could be that “everything you might tell it is
already in there somewhere”—and you’re just leading it to the
right spot. But that doesn’t seem plausible. Instead, what
seems more likely is that, yes, the elements are already in
there, but the specifics are defined by something like a
“trajectory between those elements” and that’s what you’re
introducing when you tell it something.

And indeed, much like for humans, if you tell it something
bizarre and unexpected that completely doesn’t fit into the
framework it knows, it doesn’t seem like it’ll successfully be
able to “integrate” this. It can “integrate” it only if it’s
basically riding in a fairly simple way on top of the framework
it already has.

It’s also worth pointing out again that there are inevitably
“algorithmic limits” to what the neural net can “pick up”. Tell
it “shallow” rules of the form “this goes to that”, etc., and the
neural net will most likely be able to represent and reproduce
these just fine—and indeed what it “already knows” from
language will give it an immediate pattern to follow. But try to
give it rules for an actual “deep” computation that involves
many potentially computationally irreducible steps and it just
won’t work. (Remember that at each step it’s always just
“feeding data forward” in its network, never looping except by
virtue of generating new tokens.)

Of course, the network can learn the answer to specific
“irreducible” computations. But as soon as there are
combinatorial numbers of possibilities, no such “table-lookup-
style” approach will work. And so, yes, just like humans, it’s



time then for neural nets to “reach out” and use actual
computational tools. (And, yes, Wolfram|Alpha and Wolfram
Language are uniquely suitable , because they’ve been built to
“talk about things in the world”, just like the language-model
neural nets.)

https://www.wolframalpha.com/
https://www.wolfram.com/language/
https://writings.stephenwolfram.com/2023/01/wolframalpha-as-the-way-to-bring-computational-knowledge-superpowers-to-chatgpt/


What Really Lets ChatGPT Work?

Human language—and the processes of thinking involved in
generating it—have always seemed to represent a kind of pinnacle of
complexity. And indeed it’s seemed somewhat remarkable that human
brains—with their network of a “mere” 100 billion or so neurons (and
maybe 100 trillion connections) could be responsible for it. Perhaps,
one might have imagined, there’s something more to brains than their
networks of neurons—like some new layer of undiscovered physics.
But now with ChatGPT we’ve got an important new piece of
information: we know that a pure, artificial neural network with about
as many connections as brains have neurons is capable of doing a
surprisingly good job of generating human language.

And, yes, that’s still a big and complicated system—with about as
many neural net weights as there are words of text currently available
out there in the world. But at some level it still seems difficult to
believe that all the richness of language and the things it can talk
about can be encapsulated in such a finite system. Part of what’s going
on is no doubt a reflection of the ubiquitous phenomenon (that first
became evident in the example of rule 30 ) that computational
processes can in effect greatly amplify the apparent complexity of
systems even when their underlying rules are simple. But, actually, as
we discussed above, neural nets of the kind used in ChatGPT tend to
be specifically constructed to restrict the effect of this phenomenon—
and the computational irreducibility associated with it—in the interest
of making their training more accessible.

So how is it, then, that something like ChatGPT can get as far as it
does with language? The basic answer, I think, is that language is at a
fundamental level somehow simpler than it seems. And this means
that ChatGPT—even with its ultimately straightforward neural net
structure—is successfully able to “capture the essence” of human
language and the thinking behind it. And moreover, in its training,
ChatGPT has somehow “implicitly discovered” whatever regularities
in language (and thinking) make this possible.

The success of ChatGPT is, I think, giving us evidence of a
fundamental and important piece of science: it’s suggesting that we
can expect there to be major new “laws of language”—and effectively
“laws of thought”—out there to discover. In ChatGPT—built as it is
as a neural net—those laws are at best implicit. But if we could
somehow make the laws explicit, there’s the potential to do the kinds
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of things ChatGPT does in vastly more direct, efficient—and
transparent—ways.

But, OK, so what might these laws be like? Ultimately they must give
us some kind of prescription for how language—and the things we say
with it—are put together. Later we’ll discuss how “looking inside
ChatGPT” may be able to give us some hints about this, and how what
we know from building computational language suggests a path
forward. But first let’s discuss two long-known examples of what
amount to “laws of language”—and how they relate to the operation
of ChatGPT.

The first is the syntax of language. Language is not just a random
jumble of words. Instead, there are (fairly) definite grammatical rules
for how words of different kinds can be put together: in English, for
example, nouns can be preceded by adjectives and followed by verbs,
but typically two nouns can’t be right next to each other. Such
grammatical structure can (at least approximately) be captured by a
set of rules that define how what amount to “parse trees” can be put
together :

ChatGPT doesn’t have any explicit “knowledge” of such rules. But
somehow in its training it implicitly “discovers” them—and then
seems to be good at following them. So how does this work? At a “big
picture” level it’s not clear. But to get some insight it’s perhaps
instructive to look at a much simpler example.

Consider a “language” formed from sequences of (’s and )’s, with a
grammar that specifies that parentheses should always be balanced, as
represented by a parse tree like:
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Can we train a neural net to produce “grammatically correct”
parenthesis sequences? There are various ways to handle sequences in
neural nets, but let’s use transformer nets, as ChatGPT does. And
given a simple transformer net, we can start feeding it grammatically
correct parenthesis sequences as training examples. A subtlety (which
actually also appears in ChatGPT’s generation of human language) is
that in addition to our “content tokens” (here “(” and “)”) we have to
include an “End” token, that’s generated to indicate that the output
shouldn’t continue any further (i.e. for ChatGPT, that one’s reached
the “end of the story”).

If we set up a transformer net with just one attention block with 8
heads and feature vectors of length 128 (ChatGPT also uses feature
vectors of length 128, but has 96 attention blocks, each with 96 heads)
then it doesn’t seem possible to get it to learn much about parenthesis
language. But with 2 attention blocks, the learning process seems to
converge—at least after 10 million or so examples have been given
(and, as is common with transformer nets, showing yet more examples
just seems to degrade its performance).

So with this network, we can do the analog of what ChatGPT does,
and ask for probabilities for what the next token should be—in a
parenthesis sequence:

And in the first case, the network is “pretty sure” that the sequence
can’t end here—which is good, because if it did, the parentheses
would be left unbalanced. In the second case, however, it “correctly
recognizes” that the sequence can end here, though it also “points out”
that it’s possible to “start again”, putting down a “(”, presumably with
a “)” to follow. But, oops, even with its 400,000 or so laboriously
trained weights, it says there’s a 15% probability to have “)” as the
next token—which isn’t right, because that would necessarily lead to
an unbalanced parenthesis.



Here’s what we get if we ask the network for the highest-probability
completions for progressively longer sequences of (’s:

And, yes, up to a certain length the network does just fine. But then it
starts failing. It’s a pretty typical kind of thing to see in a “precise”
situation like this with a neural net (or with machine learning in
general). Cases that a human “can solve in a glance” the neural net
can solve too. But cases that require doing something “more
algorithmic” (e.g. explicitly counting parentheses to see if they’re
closed) the neural net tends to somehow be “too computationally
shallow” to reliably do. (By the way, even the full current ChatGPT
has a hard time correctly matching parentheses in long sequences.)

So what does this mean for things like ChatGPT and the syntax of a
language like English? The parenthesis language is “austere”—and
much more of an “algorithmic story”. But in English it’s much more
realistic to be able to “guess” what’s grammatically going to fit on the
basis of local choices of words and other hints. And, yes, the neural
net is much better at this—even though perhaps it might miss some
“formally correct” case that, well, humans might miss as well. But the
main point is that the fact that there’s an overall syntactic structure to
the language—with all the regularity that implies—in a sense limits
“how much” the neural net has to learn. And a key “natural-science-
like” observation is that the transformer architecture of neural nets
like the one in ChatGPT seems to successfully be able to learn the
kind of nested-tree-like syntactic structure that seems to exist (at least
in some approximation) in all human languages.



Syntax provides one kind of constraint on language. But there are
clearly more. A sentence like “Inquisitive electrons eat blue theories
for fish” is grammatically correct but isn’t something one would
normally expect to say, and wouldn’t be considered a success if
ChatGPT generated it—because, well, with the normal meanings for
the words in it, it’s basically meaningless.

But is there a general way to tell if a sentence is meaningful? There’s
no traditional overall theory for that. But it’s something that one can
think of ChatGPT as having implicitly “developed a theory for” after
being trained with billions of (presumably meaningful) sentences from
the web, etc.

What might this theory be like? Well, there’s one tiny corner that’s
basically been known for two millennia, and that’s logic . And
certainly in the syllogistic form in which Aristotle discovered it, logic
is basically a way of saying that sentences that follow certain patterns
are reasonable, while others are not. Thus, for example, it’s reasonable
to say “All X are Y. This is not Y, so it’s not an X” (as in “All fishes
are blue. This is not blue, so it’s not a fish.”). And just as one can
somewhat whimsically imagine that Aristotle discovered syllogistic
logic by going (“machine-learning-style”) through lots of examples of
rhetoric, so too one can imagine that in the training of ChatGPT it will
have been able to “discover syllogistic logic” by looking at lots of text
on the web, etc. (And, yes, while one can therefore expect ChatGPT to
produce text that contains “correct inferences” based on things like
syllogistic logic, it’s a quite different story when it comes to more
sophisticated formal logic—and I think one can expect it to fail here
for the same kind of reasons it fails in parenthesis matching.)

But beyond the narrow example of logic, what can be said about how
to systematically construct (or recognize) even plausibly meaningful
text? Yes, there are things like Mad Libs&reg that use very specific
“phrasal templates”. But somehow ChatGPT implicitly has a much
more general way to do it. And perhaps there’s nothing to be said
about how it can be done beyond “somehow it happens when you
have 175 billion neural net weights”. But I strongly suspect that
there’s a much simpler and stronger story.

https://writings.stephenwolfram.com/2018/11/logic-explainability-and-the-future-of-understanding/
https://en.wikipedia.org/wiki/Mad_Libs


Meaning Space and Semantic Laws of
Motion

We discussed above that inside ChatGPT any piece of text is
effectively represented by an array of numbers that we can think of
as coordinates of a point in some kind of “linguistic feature space”.
So when ChatGPT continues a piece of text this corresponds to
tracing out a trajectory in linguistic feature space. But now we can
ask what makes this trajectory correspond to text we consider
meaningful. And might there perhaps be some kind of “semantic
laws of motion” that define—or at least constrain—how points in
linguistic feature space can move around while preserving
“meaningfulness”?

So what is this linguistic feature space like? Here’s an example of
how single words (here, common nouns) might get laid out if we
project such a feature space down to 2D:



We saw another example above based on words representing plants
and animals. But the point in both cases is that “semantically similar
words” are placed nearby.

As another example, here’s how words corresponding to different
parts of speech get laid out:

Of course, a given word doesn’t in general just have “one meaning”
(or necessarily correspond to just one part of speech). And by
looking at how sentences containing a word lay out in feature space,
one can often “tease apart” different meanings—as in the example
here for the word “crane” (bird or machine?):



OK, so it’s at least plausible that we can think of this feature space as
placing “words nearby in meaning” close in this space. But what kind
of additional structure can we identify in this space? Is there for
example some kind of notion of “parallel transport” that would
reflect “flatness” in the space? One way to get a handle on that is to
look at analogies:

And, yes, even when we project down to 2D, there’s often at least a
“hint of flatness”, though it’s certainly not universally seen.

So what about trajectories? We can look at the trajectory that a
prompt for ChatGPT follows in feature space—and then we can see
how ChatGPT continues that:



There’s certainly no “geometrically obvious” law of motion here.
And that’s not at all surprising; we fully expect this to be a
considerably more complicated story . And, for example, it’s far from
obvious that even if there is a “semantic law of motion” to be found,
what kind of embedding (or, in effect, what “variables”) it’ll most
naturally be stated in.

In the picture above, we’re showing several steps in the
“trajectory”—where at each step we’re picking the word that
ChatGPT considers the most probable (the “zero temperature” case).
But we can also ask what words can “come next” with what
probabilities at a given point:

And what we see in this case is that there’s a “fan” of high-
probability words that seems to go in a more or less definite direction
in feature space. What happens if we go further? Here are the
successive “fans” that appear as we “move along” the trajectory:
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Here’s a 3D representation, going for a total of 40 steps:

And, yes, this seems like a mess—and doesn’t do anything to
particularly encourage the idea that one can expect to identify
“mathematical-physics-like” “semantic laws of motion” by



empirically studying “what ChatGPT is doing inside”. But perhaps
we’re just looking at the “wrong variables” (or wrong coordinate
system) and if only we looked at the right one, we’d immediately see
that ChatGPT is doing something “mathematical-physics-simple”
like following geodesics. But as of now, we’re not ready to
“empirically decode” from its “internal behavior” what ChatGPT has
“discovered” about how human language is “put together”.



Semantic Grammar and the Power of
Computational Language

What does it take to produce “meaningful human language”?
In the past, we might have assumed it could be nothing short
of a human brain. But now we know it can be done quite
respectably by the neural net of ChatGPT. Still, maybe that’s
as far as we can go, and there’ll be nothing simpler—or more
human understandable—that will work. But my strong
suspicion is that the success of ChatGPT implicitly reveals an
important “scientific” fact: that there’s actually a lot more
structure and simplicity to meaningful human language than
we ever knew—and that in the end there may be even fairly
simple rules that describe how such language can be put
together.

As we mentioned above, syntactic grammar gives rules for
how words corresponding to things like different parts of
speech can be put together in human language. But to deal
with meaning, we need to go further. And one version of how
to do this is to think about not just a syntactic grammar for
language, but also a semantic one.

For purposes of syntax, we identify things like nouns and
verbs. But for purposes of semantics, we need “finer
gradations”. So, for example, we might identify the concept of
“moving”, and the concept of an “object” that “maintains its
identity independent of location”. There are endless specific
examples of each of these “semantic concepts”. But for the
purposes of our semantic grammar, we’ll just have some
general kind of rule that basically says that “objects” can
“move”. There’s a lot to say about how all this might work
(some of which I’ve said before ). But I’ll content myself here
with just a few remarks that indicate some of the potential path
forward.

It’s worth mentioning that even if a sentence is perfectly OK
according to the semantic grammar, that doesn’t mean it’s
been realized (or even could be realized) in practice. “The
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elephant traveled to the Moon” would doubtless “pass” our
semantic grammar, but it certainly hasn’t been realized (at
least yet) in our actual world—though it’s absolutely fair game
for a fictional world.

When we start talking about “semantic grammar” we’re soon
led to ask “What’s underneath it?” What “model of the world”
is it assuming? A syntactic grammar is really just about the
construction of language from words. But a semantic grammar
necessarily engages with some kind of “model of the world”—
something that serves as a “skeleton” on top of which
language made from actual words can be layered.

Until recent times, we might have imagined that (human)
language would be the only general way to describe our
“model of the world”. Already a few centuries ago there
started to be formalizations of specific kinds of things, based
particularly on mathematics. But now there’s a much more
general approach to formalization: computational language .

And, yes, that’s been my big project over the course of more
than four decades (as now embodied in the Wolfram Language
): to develop a precise symbolic representation that can talk as
broadly as possible about things in the world, as well as
abstract things that we care about. And so, for example, we
have symbolic representations for cities and molecules and
images and neural networks , and we have built-in knowledge
about how to compute about those things.

And, after decades of work, we’ve covered a lot of areas in
this way. But in the past, we haven’t particularly dealt with
“everyday discourse ”. In “I bought two pounds of apples” we
can readily represent (and do nutrition and other computations
on) the “two pounds of apples”. But we don’t (quite yet) have
a symbolic representation for “I bought”.

It’s all connected to the idea of semantic grammar—and the
goal of having a generic symbolic “construction kit” for
concepts, that would give us rules for what could fit together
with what, and thus for the “flow” of what we might turn into
human language.
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But let’s say we had this “symbolic discourse language”. What
would we do with it? We could start off doing things like
generating “locally meaningful text”. But ultimately we’re
likely to want more “globally meaningful” results—which
means “computing” more about what can actually exist or
happen in the world (or perhaps in some consistent fictional
world).

Right now in Wolfram Language we have a huge amount of
built-in computational knowledge about lots of kinds of things.
But for a complete symbolic discourse language we’d have to
build in additional “calculi” about general things in the world:
if an object moves from A to B and from B to C, then it’s
moved from A to C, etc.

Given a symbolic discourse language we might use it to make
“standalone statements”. But we can also use it to ask
questions about the world, “Wolfram|Alpha style”. Or we can
use it to state things that we “want to make so”, presumably
with some external actuation mechanism. Or we can use it to
make assertions—perhaps about the actual world, or perhaps
about some specific world we’re considering, fictional or
otherwise.

Human language is fundamentally imprecise, not least because
it isn’t “tethered” to a specific computational implementation,
and its meaning is basically defined just by a “social contract”
between its users. But computational language, by its nature,
has a certain fundamental precision—because in the end what
it specifies can always be “unambiguously executed on a
computer”. Human language can usually get away with a
certain vagueness. (When we say “planet” does it include
exoplanets or not, etc.?) But in computational language we
have to be precise and clear about all the distinctions we’re
making.

It’s often convenient to leverage ordinary human language in
making up names in computational language. But the
meanings they have in computational language are necessarily
precise—and might or might not cover some particular
connotation in typical human language usage.



How should one figure out the fundamental “ontology”
suitable for a general symbolic discourse language? Well, it’s
not easy. Which is perhaps why little has been done in these
since the primitive beginnings Aristotle made more than two
millennia ago. But it really helps that today we now know so
much about how to think about the world computationally
(and it doesn’t hurt to have a “fundamental metaphysics” from
our Physics Project and the idea of the ruliad ).

But what does all this mean in the context of ChatGPT? From
its training ChatGPT has effectively “pieced together” a
certain (rather impressive) quantity of what amounts to
semantic grammar. But its very success gives us a reason to
think that it’s going to be feasible to construct something more
complete in computational language form. And, unlike what
we’ve so far figured out about the innards of ChatGPT, we can
expect to design the computational language so that it’s readily
understandable to humans.

When we talk about semantic grammar, we can draw an
analogy to syllogistic logic. At first, syllogistic logic was
essentially a collection of rules about statements expressed in
human language. But (yes, two millennia later) when formal
logic was developed , the original basic constructs of
syllogistic logic could now be used to build huge “formal
towers” that include, for example, the operation of modern
digital circuitry. And so, we can expect, it will be with more
general semantic grammar. At first, it may just be able to deal
with simple patterns, expressed, say, as text. But once its
whole computational language framework is built, we can
expect that it will be able to be used to erect tall towers of
“generalized semantic logic”, that allow us to work in a
precise and formal way with all sorts of things that have never
been accessible to us before, except just at a “ground-floor
level” through human language, with all its vagueness.

We can think of the construction of computational language—
and semantic grammar—as representing a kind of ultimate
compression in representing things. Because it allows us to
talk about the essence of what’s possible, without, for
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example, dealing with all the “turns of phrase” that exist in
ordinary human language. And we can view the great strength
of ChatGPT as being something a bit similar: because it too
has in a sense “drilled through” to the point where it can “put
language together in a semantically meaningful way” without
concern for different possible turns of phrase.

So what would happen if we applied ChatGPT to underlying
computational language? The computational language can
describe what’s possible. But what can still be added is a sense
of “what’s popular”—based for example on reading all that
content on the web. But then—underneath—operating with
computational language means that something like ChatGPT
has immediate and fundamental access to what amount to
ultimate tools for making use of potentially irreducible
computations. And that makes it a system that can not only
“generate reasonable text”, but can expect to work out
whatever can be worked out about whether that text actually
makes “correct” statements about the world—or whatever it’s
supposed to be talking about.



So … What Is ChatGPT Doing, and
Why Does It Work?

The basic concept of ChatGPT is at some level rather simple.
Start from a huge sample of human-created text from the web,
books, etc. Then train a neural net to generate text that’s “like
this”. And in particular, make it able to start from a “prompt”
and then continue with text that’s “like what it’s been trained
with”.

As we’ve seen, the actual neural net in ChatGPT is made up of
very simple elements—though billions of them. And the basic
operation of the neural net is also very simple, consisting
essentially of passing input derived from the text it’s generated
so far “once through its elements” (without any loops, etc.) for
every new word (or part of a word) that it generates.

But the remarkable—and unexpected—thing is that this
process can produce text that’s successfully “like” what’s out
there on the web, in books, etc. And not only is it coherent
human language, it also “says things” that “follow its prompt”
making use of content it’s “read”. It doesn’t always say things
that “globally make sense” (or correspond to correct
computations)—because (without, for example, accessing the
“computational superpowers” of Wolfram|Alpha ) it’s just
saying things that “sound right” based on what things
“sounded like” in its training material.

The specific engineering of ChatGPT has made it quite
compelling. But ultimately (at least until it can use outside
tools) ChatGPT is “merely” pulling out some “coherent thread
of text” from the “statistics of conventional wisdom” that it’s
accumulated. But it’s amazing how human-like the results are.
And as I’ve discussed, this suggests something that’s at least
scientifically very important: that human language (and the
patterns of thinking behind it) are somehow simpler and more
“law like” in their structure than we thought. ChatGPT has
implicitly discovered it. But we can potentially explicitly
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expose it, with semantic grammar, computational language,
etc.

What ChatGPT does in generating text is very impressive—
and the results are usually very much like what we humans
would produce. So does this mean ChatGPT is working like a
brain? Its underlying artificial-neural-net structure was
ultimately modeled on an idealization of the brain. And it
seems quite likely that when we humans generate language
many aspects of what’s going on are quite similar.

When it comes to training (AKA learning) the different
“hardware” of the brain and of current computers (as well as,
perhaps, some undeveloped algorithmic ideas) forces
ChatGPT to use a strategy that’s probably rather different (and
in some ways much less efficient) than the brain. And there’s
something else as well: unlike even in typical algorithmic
computation, ChatGPT doesn’t internally “have loops” or
“recompute on data”. And that inevitably limits its
computational capability—even with respect to current
computers, but definitely with respect to the brain.

It’s not clear how to “fix that” and still maintain the ability to
train the system with reasonable efficiency. But to do so will
presumably allow a future ChatGPT to do even more “brain-
like things”. Of course, there are plenty of things that brains
don’t do so well— particularly involving what amount to
irreducible computations. And for these both brains and things
like ChatGPT have to seek “outside tools”—like Wolfram
Language .

But for now it’s exciting to see what ChatGPT has already
been able to do. At some level it’s a great example of the
fundamental scientific fact that large numbers of simple
computational elements can do remarkable and unexpected
things. But it also provides perhaps the best impetus we’ve had
in two thousand years to understand better just what the
fundamental character and principles might be of that central
feature of the human condition that is human language and the
processes of thinking behind it.
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Thanks

I’ve been following the development of neural nets now for about 43 years, and
during that time I’ve interacted with many people about them. Among them—some
from long ago, some from recently, and some across many years—have been:
Giulio Alessandrini, Dario Amodei, Etienne Bernard, Taliesin Beynon, Sebastian
Bodenstein, Greg Brockman, Jack Cowan, Pedro Domingos, Jesse Galef, Roger
Germundsson, Robert Hecht-Nielsen, Geoff Hinton, John Hopfield, Yann LeCun,
Jerry Lettvin, Jerome Louradour, Marvin Minsky, Eric Mjolsness, Cayden Pierce,
Tomaso Poggio, Matteo Salvarezza, Terry Sejnowski, Oliver Selfridge, Gordon
Shaw, Jonas Sjöberg, Ilya Sutskever, Gerry Tesauro and Timothee Verdier. For help
with this piece, I’d particularly like to thank Giulio Alessandrini and Brad Klee.



Wolfram|Alpha as the Way to
Bring Computational Knowledge
Superpowers to ChatGPT

ChatGPT and Wolfram|Alpha

It’s always amazing when things suddenly “just
work”. It happened to us with Wolfram|Alpha back in
2009. It happened with our Physics Project in 2020.
And it’s happening now with OpenAI ’s ChatGPT .

I’ve been tracking neural net technology for a long
time (about 43 years, actually) . And even having
watched developments in the past few years I find the
performance of ChatGPT thoroughly remarkable.
Finally, and suddenly, here’s a system that can
successfully generate text about almost anything—
that’s very comparable to what humans might write.
It’s impressive, and useful. And, as I discuss
elsewhere , I think its success is probably telling us
some very fundamental things about the nature of
human thinking.
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But while ChatGPT is a remarkable achievement in
automating the doing of major human-like things, not
everything that’s useful to do is quite so “human
like”. Some of it is instead more formal and
structured. And indeed one of the great achievements
of our civilization over the past several centuries has
been to build up the paradigms of mathematics, the
exact sciences—and, most importantly, now
computation—and to create a tower of capabilities
quite different from what pure human-like thinking
can achieve.

I myself have been deeply involved with the
computational paradigm for many decades, in the
singular pursuit of building a computational language
to represent as many things in the world as possible
in formal symbolic ways. And in doing this my goal
has been to build a system that can “computationally
assist”—and augment—what I and others want to do.
I think about things as a human. But I can also
immediately call on Wolfram Language and
Wolfram|Alpha to tap into a kind of unique
“computational superpower” that lets me do all sorts
of beyond-human things.

It’s a tremendously powerful way of working. And
the point is that it’s not just important for us humans.
It’s equally, if not more, important for human-like
AIs as well—immediately giving them what we can
think of as computational knowledge superpowers,
that leverage the non-human-like power of structured
computation and structured knowledge.

We’ve just started exploring what this means for
ChatGPT. But it’s pretty clear that wonderful things
are possible. Wolfram|Alpha does something very
different from ChatGPT, in a very different way. But
they have a common interface: natural language. And
this means that ChatGPT can “talk to”
Wolfram|Alpha just like humans do—with
Wolfram|Alpha turning the natural language it gets
from ChatGPT into precise, symbolic computational
language on which it can apply its computational
knowledge power.

https://writings.stephenwolfram.com/2019/05/what-weve-built-is-a-computational-language-and-thats-very-important/
https://www.wolfram.com/language/


For decades there’s been a dichotomy in thinking
about AI between “statistical approaches” of the kind
ChatGPT uses, and “symbolic approaches” that are in
effect the starting point for Wolfram|Alpha. But now
—thanks to the success of ChatGPT—as well as all
the work we’ve done in making Wolfram|Alpha
understand natural language—there’s finally the
opportunity to combine these to make something
much stronger than either could ever achieve on their
own.



A Basic Example

At its core, ChatGPT is a system for generating linguistic output that
“follows the pattern” of what’s out there on the web and in books and
other materials that have been used in its training. And what’s
remarkable is how human-like the output is, not just at a small scale,
but across whole essays. It has coherent things to say, that pull in
concepts it’s learned, quite often in interesting and unexpected ways.
What it produces is always “statistically plausible”, at least at a
linguistic level. But—impressive as that ends up being—it certainly
doesn’t mean that all the facts and computations it confidently trots out
are necessarily correct. Here’s an example I just noticed (and, yes,
ChatGPT has intrinsic built-in randomness, so if you try this, you
probably won’t get the same result):

It sounds pretty convincing. But it turns out that it’s wrong, as
Wolfram|Alpha can tell us:

To be fair, of course, this is exactly the kind of thing that
Wolfram|Alpha is good at: something that can be turned into a precise

https://content.wolfram.com/uploads/sites/43/2023/01/swchattech1923img1.png
https://www.wolframalpha.com/input?i=How+far+is+it+from+Chicago+to+Tokyo%3F


computation that can be done on the basis of its structured, curated
knowledge. But the neat thing is that one can think about
Wolfram|Alpha automatically helping ChatGPT on this. One can
programmatically ask Wolfram|Alpha the question (you can also use a
web API , etc.):

Now ask the question again to ChatGPT, appending this result:

ChatGPT very politely takes the correction, and if you ask the question
yet again it then gives the correct answer. Obviously there could be a
more streamlined way to handle the back and forth with
Wolfram|Alpha, but it’s nice to see that even this very straightforward
pure-natural-language approach basically already works.

But why does ChatGPT get this particular thing wrong in the first
place? If it had seen the specific distance between Chicago and Tokyo
somewhere in its training (e.g. from the web), it could of course get it
right. But this is a case where the kind of generalization a neural net
can readily do—say from many examples of distances between cities
—won’t be enough; there’s an actual computational algorithm that’s
needed. The way Wolfram|Alpha handles things is quite different. It
takes natural language and then—assuming it’s possible—it converts

https://reference.wolfram.com/language/ref/WolframAlpha.html
https://products.wolframalpha.com/api
https://content.wolfram.com/uploads/sites/43/2023/01/swchattech1923img4.png


this into precise computational language (i.e. Wolfram Language), in
this case:

The coordinates of cities and algorithms to compute distances between
them are then part of the built-in computational knowledge in the
Wolfram Language. And, yes, the Wolfram Language has a huge
amount of built-in computational knowledge —the result of decades of
work on our part, carefully curating what’s now a vast amount of
continually updated data, implementing (and often inventing) methods
and models and algorithms—and systematically building up a whole
coherent computational language for everything.

https://reference.wolfram.com/language/ref/entity/City.html
https://reference.wolfram.com/language/ref/GeoDistance.html
https://www.wolfram.com/knowledgebase/


A Few More Examples

ChatGPT and Wolfram|Alpha work in very different ways, and have
very different strengths. But in the interests of understanding where
ChatGPT can take advantage of Wolfram|Alpha’s strengths, let’s
discuss some cases where on its own ChatGPT doesn’t do quite the
right thing. And one area where ChatGPT—like humans—often tends
to struggle is math.

It’s an interesting, essay-style response. But the actual result is wrong:

But if ChatGPT “consulted” Wolfram|Alpha it’d of course be able to
get it right. Let’s try something slightly more complex:

https://content.wolfram.com/uploads/sites/43/2023/01/swchattech1923img6.png
https://www.wolframalpha.com/input?i=What+is+3+to+the+power+73%3F
https://content.wolfram.com/uploads/sites/43/2023/01/swchattech1923img8a.png


At first glance, this result looks great, and I’d be inclined to believe it.
It turns out, though, that it’s wrong, as Wolfram|Alpha can tell us:

And, yes, doing math homework with ChatGPT (without it being able
to consult Wolfram|Alpha) is probably a bad idea. It can give you a
very plausible answer:

https://content.wolfram.com/uploads/sites/43/2023/01/swchattech1923img8a.png
https://www.wolframalpha.com/input?i=circumference+of+an+ellipse+with+half+axes+3+and+12
https://content.wolfram.com/uploads/sites/43/2023/01/swchattech1923img10.png


But without “really understanding the math” it’s basically impossible
for ChatGPT to reliably get the right answer. And in this case, the
answer is again wrong:

Still, ChatGPT can even make up a very plausible-looking explanation
of “how it got its answer” (not that it’s in any way how it really “did
it”). And, rather charmingly (and interestingly), the explanation it
gives has mistakes very similar to what a human who didn’t
understand the math might also make:

https://content.wolfram.com/uploads/sites/43/2023/01/swchattech1923img10.png
https://www.wolframalpha.com/input?i=What+is+the+integral+of+x%5E2+cos%282x%29
https://content.wolfram.com/uploads/sites/43/2023/01/swchattech1923img12.png


There are all sorts of situations where “not really understanding what
things mean” can cause trouble:

That sounds convincing. But it’s not correct:

https://content.wolfram.com/uploads/sites/43/2023/01/swchattech1923img12.png
https://content.wolfram.com/uploads/sites/43/2023/01/swchattech1923img13.png
https://www.wolframalpha.com/input?i=What+are+the+largest+countries+in+Central+America%3F


ChatGPT seemed to have correctly learned this underlying data
somewhere—but it doesn’t “understand what it means” enough to be
able to correctly rank the numbers:

And, yes, one can imagine finding a way to “fix this particular bug”.
But the point is that the fundamental idea of a generative-language-

https://www.wolframalpha.com/input?i=What+are+the+largest+countries+in+Central+America%3F
https://content.wolfram.com/uploads/sites/43/2023/01/swchattech1923img15.png


based AI system like ChatGPT just isn’t a good fit in situations where
there are structured computational things to do. Put another way, it’d
take “fixing” an almost infinite number of “bugs” to patch up what
even an almost-infinitesimal corner of Wolfram|Alpha can achieve in
its structured way.

And the more complex the “computational chain” gets, the more
likely you’ll have to call on Wolfram|Alpha to get it right. Here
ChatGPT produces a rather confused answer:

And, as Wolfram|Alpha tells us, its conclusion isn’t correct (as it
already in a sense “knew”):

Whenever it comes to specific (e.g. quantitative) data—even in fairly
raw form—things very often tend to have to be more of a
“Wolfram|Alpha story”. Here’s an example, inspired by a longtime
favorite Wolfram|Alpha test query “How many turkeys are there in
Turkey?”:

https://content.wolfram.com/uploads/sites/43/2023/01/swchattech1923img16.png
https://www.wolframalpha.com/input?i=What+planetary+moons+are+larger+than+Mercury%3F
https://content.wolfram.com/uploads/sites/43/2023/01/swchattech1923img18.png


Again, this seems (at first) totally plausible, and it’s even quoting a
relevant source. Turns out, though, that this data is basically just
“made up”:

Still, what’s very nice is that ChatGPT can easily be made to “ask for
facts to check”:

https://content.wolfram.com/uploads/sites/43/2023/01/swchattech1923img18.png
https://www.wolframalpha.com/input?i=Livestock+populations+in+Turkey
https://content.wolfram.com/uploads/sites/43/2023/01/swchattech1923img20.png


Now feed these through the Wolfram|Alpha API:

Now we can ask ChatGPT to fix its original response, injecting this
data (and even showing in bold where it did it):

https://content.wolfram.com/uploads/sites/43/2023/01/swchattech1923img20.png
https://content.wolfram.com/uploads/sites/43/2023/01/swchattech1923img22.png


The ability to “inject facts” is particularly nice when it comes to
things involving real-time (or location etc. dependent) data or
computation. ChatGPT won’t immediately answer this:

But here’s some relevant Wolfram|Alpha API output:

https://content.wolfram.com/uploads/sites/43/2023/01/swchattech1923img22.png
https://content.wolfram.com/uploads/sites/43/2023/01/swchattech1923img23.png


And if we feed this to ChatGPT, it’ll generate a nice “essay-style”
result:

Sometimes there’s an interesting interplay between the computational
and the human like. Here’s a rather whimsical question asked of
Wolfram|Alpha (and it even checks if you want “soft-serve” instead):

https://content.wolfram.com/uploads/sites/43/2023/01/swchattech1923img25a.png
https://www.wolframalpha.com/input?i=How+many+calories+are+there+in+a+cubic+light+year+of+ice+cream%3F


ChatGPT at first gets a bit confused about the concept of volume:

But then it seems to “realize” that that much ice cream is fairly silly:

https://www.wolframalpha.com/input?i=How+many+calories+are+there+in+a+cubic+light+year+of+ice+cream%3F
https://content.wolfram.com/uploads/sites/43/2023/01/swchattech1923img27.png
https://content.wolfram.com/uploads/sites/43/2023/01/swchattech1923img28.png


The Path Forward

Machine learning is a powerful method, and particularly over
the past decade, it’s had some remarkable successes—of which
ChatGPT is the latest. Image recognition . Speech to text .
Language translation . In each of these cases, and many more,
a threshold was passed—usually quite suddenly. And some
task went from “basically impossible” to “basically doable”.

But the results are essentially never “perfect”. Maybe
something works well 95% of the time. But try as one might,
the other 5% remains elusive. For some purposes one might
consider this a failure. But the key point is that there are often
all sorts of important use cases for which 95% is “good
enough”. Maybe it’s because the output is something where
there isn’t really a “right answer” anyway. Maybe it’s because
one’s just trying to surface possibilities that a human—or a
systematic algorithm—will then pick from or refine.

It’s completely remarkable that a few-hundred-billion-
parameter neural net that generates text a token at a time can
do the kinds of things ChatGPT can. And given this dramatic
—and unexpected—success, one might think that if one could
just go on and “train a big enough network” one would be able
to do absolutely anything with it. But it won’t work that way.
Fundamental facts about computation—and notably the
concept of computational irreducibility —make it clear it
ultimately can’t. But what’s more relevant is what we’ve seen
in the actual history of machine learning. There’ll be a big
breakthrough (like ChatGPT). And improvement won’t stop.
But what’s much more important is that there’ll be use cases
found that are successful with what can be done, and that
aren’t blocked by what can’t.

And yes, there’ll be plenty of cases where “raw ChatGPT” can
help with people’s writing, make suggestions, or generate text
that’s useful for various kinds of documents or interactions.
But when it comes to setting up things that have to be perfect,

https://reference.wolfram.com/language/ref/ImageIdentify.html
https://reference.wolfram.com/language/ref/SpeechRecognize.html
https://reference.wolfram.com/language/ref/TextTranslation.html
https://www.wolframscience.com/nks/chap-12--the-principle-of-computational-equivalence#sect-12-6--computational-irreducibility


machine learning just isn’t the way to do it—much as humans
aren’t either.

And that’s exactly what we’re seeing in the examples above.
ChatGPT does great at the “human-like parts”, where there
isn’t a precise “right answer”. But when it’s “put on the spot”
for something precise, it often falls down. But the whole point
here is that there’s a great way to solve this problem—by
connecting ChatGPT to Wolfram|Alpha and all its
computational knowledge “superpowers”.

Inside Wolfram|Alpha, everything is being turned into
computational language, and into precise Wolfram Language
code, that at some level has to be “perfect” to be reliably
useful. But the crucial point is that ChatGPT doesn’t have to
generate this. It can produce its usual natural language, and
then Wolfram|Alpha can use its natural language
understanding capabilities to translate that natural language
into precise Wolfram Language.

In many ways, one might say that ChatGPT never “truly
understands” things; it just “knows how to produce stuff that’s
useful”. But it’s a different story with Wolfram|Alpha. Because
once Wolfram|Alpha has converted something to Wolfram
Language, what it’s got is a complete, precise, formal
representation, from which one can reliably compute things.
Needless to say, there are plenty of things of “human interest”
for which we don’t have formal computational representations
—though we can still talk about them, albeit it perhaps
imprecisely, in natural language. And for these, ChatGPT is on
its own, with its very impressive capabilities.

But just like us humans, there are times when ChatGPT needs
a more formal and precise “power assist”. But the point is that
it doesn’t have to be “formal and precise” in saying what it
wants. Because Wolfram|Alpha can communicate with it in
what amounts to ChatGPT’s native language—natural
language. And Wolfram|Alpha will take care of “adding the
formality and precision” when it converts to its native
language—Wolfram Language. It’s a very good situation, that
I think has great practical potential.

https://writings.stephenwolfram.com/2016/10/computational-law-symbolic-discourse-and-the-ai-constitution/


And that potential is not only at the level of typical chatbot or
text generation applications. It extends to things like doing
data science or other forms of computational work (or
programming). In a sense, it’s an immediate way to get the
best of both worlds: the human-like world of ChatGPT, and
the computationally precise world of Wolfram Language.

What about ChatGPT directly learning Wolfram Language?
Well, yes, it could do that, and in fact it’s already started. And
in the end I fully expect that something like ChatGPT will be
able to operate directly in Wolfram Language , and be very
powerful in doing so. It’s an interesting and unique situation,
made possible by the character of the Wolfram Language as a
full-scale computational language that can talk broadly about
things in the world and elsewhere in computational terms.

The whole concept of the Wolfram Language is to take things
we humans think about, and be able to represent and work
with them computationally. Ordinary programming languages
are intended to provide ways to tell computers specifically
what to do. The Wolfram Language—in its role as a full-scale
computational language—is about something much larger than
that. In effect, it’s intended to be a language in which both
humans and computers can “think computationally”.

Many centuries ago, when mathematical notation was
invented, it provided for the first time a streamlined medium in
which to “think mathematically” about things. And its
invention soon led to algebra, and calculus, and ultimately all
the various mathematical sciences. The goal of the Wolfram
Language is to do something similar for computational
thinking, though now not just for humans—and to enable all
the “computational X” fields that can be opened up by the
computational paradigm.

I myself have benefitted greatly from having Wolfram
Language as a “language to think in”, and it’s been wonderful
to see over the past few decades so many advances being made
as a result of people “thinking in computational terms”
through the medium of Wolfram Language. So what about
ChatGPT? Well, it can get into this too. Quite how it will all

https://writings.stephenwolfram.com/2015/11/how-should-we-talk-to-ais/
https://writings.stephenwolfram.com/2019/05/what-weve-built-is-a-computational-language-and-thats-very-important/


work I am not yet sure. But it’s not about ChatGPT learning
how to do the computation that the Wolfram Language already
knows how to do. It’s about ChatGPT learning how to use the
Wolfram Language more like people do. It’s about ChatGPT
coming up with the analog of “creative essays”, but now
written not in natural language but in computational language.

I’ve long discussed the concept of computational essays
written by humans—that communicate in a mixture of natural
language and computational language. Now it’s a question of
ChatGPT being able to write those—and being able to use
Wolfram Language as a way to deliver “meaningful
communication”, not just to humans, but also to computers.
And, yes, there’s a potentially interesting feedback loop
involving actual execution of the Wolfram Language code. But
the crucial point is that the richness and flow of “ideas”
represented by the Wolfram Language code is—unlike in an
ordinary programming language—something much closer to
the kind of thing that ChatGPT has “magically” managed to
work with in natural language.

Or, put another way, Wolfram Language—like natural
language—is something expressive enough that one can
imagine writing a meaningful “prompt” for ChatGPT in it.
Yes, Wolfram Language can be directly executed on a
computer. But as a ChatGPT prompt it can be used to “express
an idea” whose “story” could be continued. It might describe
some computational structure, leaving ChatGPT to “riff” on
what one might computationally say about that structure that
would—according to what it’s learned by reading so many
things written by humans—be “interesting to humans”.

There are all sorts of exciting possibilities, suddenly opened
up by the unexpected success of ChatGPT. But for now there’s
the immediate opportunity of giving ChatGPT computational
knowledge superpowers through Wolfram|Alpha. So it can not
just produce “plausible human-like output”, but output that
leverages the whole tower of computation and knowledge
that’s encapsulated in Wolfram|Alpha and the Wolfram
Language.

https://writings.stephenwolfram.com/2017/11/what-is-a-computational-essay/
https://writings.stephenwolfram.com/2021/11/the-concept-of-the-ruliad/


Additional Resources

“What Is ChatGPT Doing … and Why Does It
Work?” 
Online version with runnable code
wolfr.am/SW-ChatGPT

“Machine Learning for Middle Schoolers” (by
Stephen Wolfram) 
A short introduction to the basic concepts of machine
learning
wolfr.am/ML-for-middle-schoolers

Introduction to Machine Learning (by Etienne
Bernard) 
A book-length guide to modern machine learning
with runnable code
printed: wolfr.am/IML-book ; online wolfr.am/IML

Wolfram Machine Learning 
Machine learning capabilities in the Wolfram
Language
wolfr.am/core-ML

Machine Learning at Wolfram U 
Interactive classes and courses on machine learning
at a variety of levels
wolfr.am/ML-courses

“How Should We Talk to AIs?” (by Stephen
Wolfram) 
A short essay from 2015 on communicating with AIs
in natural and computational language
wolfr.am/talk-AI

The Wolfram Language wolfram.com/language

Wolfram|Alpha wolframalpha.com

Online link to all resources:
wolfr.am/ChatGPT-resources

https://www.wolfr.am/SW-ChatGPT
https://www.wolfr.am/ML-for-middle-schoolers
https://www.wolfr.am/IML-book
https://www.wolfr.am/IML
https://www.wolfr.am/core-ML
https://www.wolfr.am/ML-courses
https://www.wolfr.am/talk-AI
https://www.wolfram.com/language
https://www.wolframalpha.com/
https://www.wolfr.am/ChatGPT-resources
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