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Foreword

The current period of progress in artificial in-
telligence was triggered when Krizhevsky et al.
[2012] showed that an ararararararararararartititititititititititififififififififififificialcialcialcialcialcialcialcialcialcialcial neuneuneuneuneuneuneuneuneuneuneuralralralralralralralralralralral netnetnetnetnetnetnetnetnetnetnetworkworkworkworkworkworkworkworkworkworkwork
with a simple structure, that had been known
for more than twenty years [LeCun et al., 1989],
could beat complex state-of-the-art image recog-
nition methods by a huge margin, simply by
being large and trained on a large data set.

This breakthrough was made possible thanks to
GraphGraphGraphGraphGraphGraphGraphGraphGraphGraphGraphiiiiiiiiiiicalcalcalcalcalcalcalcalcalcalcal ProProProProProProProProProProProcesscesscesscesscesscesscesscesscesscesscessinginginginginginginginginginging UnitsUnitsUnitsUnitsUnitsUnitsUnitsUnitsUnitsUnitsUnits (GPUGPUGPUGPUGPUGPUGPUGPUGPUGPUGPU), mass-market
highly parallel computing devices developed for
real-time image synthesis, and repurposed for
artificial neural networks.

Since then, under the umbrella term of “deepdeepdeepdeepdeepdeepdeepdeepdeepdeepdeep
learnlearnlearnlearnlearnlearnlearnlearnlearnlearnlearninginginginginginginginginginging”, innovations in the structures of these
networks, the strategies to train them and ded-
icated hardware, have allowed for an exponen-
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tial increase in both their size and the quantity
of training data they take advantage of [Sevilla
et al., 2022]. This resulted in a wave of successful
applications across technical domains, from com-
puter vision and robotics, to speech, and natural
language processing.

Although the bulk of deep learning is not par-
ticularly hard to understand, it combines di-
verse components, which makes it complicated
to learn. It involves multiple branches of mathe-
matics such as calculus, probabilities, optimiza-
tion, linear algebra, or signal processing, and it
also is deeply anchored in computer science, pro-
gramming, algorithmic, and high-performance
computing. Instead of going into details and try-
ing to be exhaustive, this little book is limited to
the necessary background and technical tools to
understand a few important models.

If you did not get this book from its official url

https://fleuret.org/public/lbdl.pdf

please do so, so that I can estimate the number
of readers.

François Fleuret
April 21, 2023
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Part I

Foundations
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Chapter 1

Machine Learning

DeepDeepDeepDeepDeepDeepDeepDeepDeepDeepDeep learnlearnlearnlearnlearnlearnlearnlearnlearnlearnlearninginginginginginginginginginging belongs historically to the larger
field of statistical machine learning, as it funda-
mentally concerns methods able to learn repre-
sentations from data. The techniques involved
come originally from ararararararararararartititititititititititififififififififififificialcialcialcialcialcialcialcialcialcialcial neuneuneuneuneuneuneuneuneuneuneuralralralralralralralralralralral netnetnetnetnetnetnetnetnetnetnetworksworksworksworksworksworksworksworksworksworksworks,
and the “deep” qualifier highlights that models
are long compositions of mappings, now known
to achieve greater performance.

The modularity of deep models, their versatility,
and scaling qualities, resulted in a plethora of
specific mathematical methods and software de-
velopment tools that established deep learning
as a separate and vast technical field.
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1.1 Learning from data

The simplest use case for a model trained from
data is when a signal x is accessible, for instance
the picture of a license plate, from which one
wants to predict a quantity y, such as the string
of characters written on the plate.

In many real-world situations where x is a high-
dimension signal captured in an uncontrolled
environment, it is too complicated to come up
with an analytical recipe that relates x and y.

What one can do is to collect a large traintraintraintraintraintraintraintraintraintraintraininginginginginginginginginginging
setsetsetsetsetsetsetsetsetsetset 𝒟 of pairs (xn,yn), and devise a paraparaparaparaparaparaparaparaparaparaparametmetmetmetmetmetmetmetmetmetmetricricricricricricricricricricric
modelmodelmodelmodelmodelmodelmodelmodelmodelmodelmodel f , a piece of computer code that incorpo-
rates traintraintraintraintraintraintraintraintraintraintrainableableableableableableableableableableable papapapapapapapapapaparamramramramramramramramramramrameeeeeeeeeeeterstersterstersterstersterstersterstersters w that modulate its
behavior, and such that, with the proper values
w∗, it is a good predictor. “Good” here means
that if an x is given to this piece of code, the
value ŷ= f(x;w∗) it computes is a good esti-
mate of the y that would have been associated
to x in the training set if they had been there.

This notion of goodness is usually formalized
with a losslosslosslosslosslosslosslosslosslosslossℒ (w) which is small when f(·;w) is
good on𝒟 . Then, traintraintraintraintraintraintraintraintraintraintraininginginginginginginginginginging the model consists of
computing a value w∗ that minimizesℒ (w∗).

Most of the content of this book is about the defi-
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nition of f which, in realistic scenarios, is a com-
plex combination of pre-defined sub-modules.

The trainable parameters that compose w are
often referred to as weightsweightsweightsweightsweightsweightsweightsweightsweightsweightsweights, by analogy with
the synaptic weights of biological neural net-
works. In addition to these parameters, models
usually depend on metametametametametametametametametametameta papapapapapapapapapaparamramramramramramramramramramrameeeeeeeeeeeterstersterstersterstersterstersterstersters which are
set according to domain prior knowledge, best
practices, or resource constraints. Theymay also
be optimized in some ways, but with techniques
different than those used to optimize w.
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1.2 Basis function regression

We can illustrate the training of a model in a sim-
ple case where xn and yn are two real numbers,
the loss is the meanmeanmeanmeanmeanmeanmeanmeanmeanmeanmean squaredsquaredsquaredsquaredsquaredsquaredsquaredsquaredsquaredsquaredsquared erererererererererererrorrorrorrorrorrorrorrorrorrorror

ℒ (w)=
1

N

N∑
n=1

(yn−f(xn;w))2 , (1.1)

and f(·;w) is a linear combination of a pre-
defined basis of functions f1,...,fK , with w=
(w1,...,wK) their respective weights.

Since f(xn;w) is linear with respect to the wks
andℒ (w) is quadratic with respect to f(xn;w),
the loss ℒ (w) is quadratic with respect to the
wks, and findingw∗ that minimizes it boils down
to solving a linear system. See Figure 1.1 for an
example with Gaussian kernels as fk.

Figure 1.1: Given a basis of functions (blue curves)
and a training set (black dots), we can compute an
optimal linear combination of the former (red curve)
to approximate the latter for the mean squared error.
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1.3 Under and over-fitting

A key element is the interplay between the cacacacacacacacacacaca-
pacpacpacpacpacpacpacpacpacpacpacityityityityityityityityityityity of the model, that is its flexibility and
ability to fit diverse data, and the amount and
quality of the training data. When the capacity
is insufficient, the model cannot fit the data and
the error during training is high. This is referred
to as unununununununununununderderderderderderderderderderder-fitfitfitfitfitfitfitfitfitfitfittingtingtingtingtingtingtingtingtingtingting.

On the contrary when the amount of data is
insufficient, as illustrated with an example on
Figure 1.2, the performance during training can
be excellent, but unrelated to the actual fit to
the data structure, as in that case the model will
often learn random noise present in the signal.

Figure 1.2: If the amount of training data is small com-
pared to the capacity of the model, the performance
during training reflects poorly the actual fit to the un-
derlying data structure, and consequently the useful-
ness for prediction.
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This is overoveroveroveroveroveroveroveroveroverover-fitfitfitfitfitfitfitfitfitfitfittingtingtingtingtingtingtingtingtingtingting.

So a large part of the art of applied machine
learning is to design models which are not too
flexible, but still able to fit the data. This is done
by crafting the right inininininininininininducducducducducducducducducducductivetivetivetivetivetivetivetivetivetivetive biasbiasbiasbiasbiasbiasbiasbiasbiasbiasbias in a model,
which means that its structure corresponds to
the underlying structure of the data at hand.

Even though this classical perspective is relevant
for reasonably sized deep models, things get con-
fusing with large ones which have very large
number of trainable parameters and extreme ca-
pacity, but still perform well for prediction. We
will come back to this in § 3.5.
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1.4 Categories of models

We can organize the use of machine learning
models into three main categories:

• ReReReReReReReReReReRegresgresgresgresgresgresgresgresgresgresgressionsionsionsionsionsionsionsionsionsionsion consists of predicting a continuous
valued vector y ∈RK , for instance a geometrical
position of an object, given an input signal X .
This is a multi-dimensional generalization of the
setup we saw in § 1.2. The training set is com-
posed of pairs of an input signal, and a groundgroundgroundgroundgroundgroundgroundgroundgroundgroundground
truthtruthtruthtruthtruthtruthtruthtruthtruthtruthtruth value.

• ClasClasClasClasClasClasClasClasClasClasClassisisisisisisisisisisififififififififififificacacacacacacacacacacationtiontiontiontiontiontiontiontiontiontion aims at predicting a value from
a finite set {1,...,C}, for instance the label Y of
an image X . As for regression, the training set
is composed of pairs of input signal, and groundgroundgroundgroundgroundgroundgroundgroundgroundgroundground
truthtruthtruthtruthtruthtruthtruthtruthtruthtruthtruth quantity, here a label from that set. The
standard way of tackling this is to predict one
score per potential class, such that the correct
class has maximum score.

• DenDenDenDenDenDenDenDenDenDenDensitysitysitysitysitysitysitysitysitysitysity modmodmodmodmodmodmodmodmodmodmodelelelelelelelelelelelinginginginginginginginginginging has for objective to model
the probability density function of the data µX
itself, for instance images. In that case the train-
ing set is composed of values xn without associ-
ated quantities to predict, and the trained model
should allow either to evaluate the probability
density function, or to sample from the distribu-
tion, or both.
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Both regression and classification are generally
referred to as sususususususususususuperperperperperperperperperperpervisedvisedvisedvisedvisedvisedvisedvisedvisedvisedvised learnlearnlearnlearnlearnlearnlearnlearnlearnlearnlearninginginginginginginginginginging since the value
to predict, which is required as a target during
training, has to be produced, for instance by hu-
man experts. On the contrary density modeling
is usually seen as unununununununununununsususususususususususuperperperperperperperperperperpervisedvisedvisedvisedvisedvisedvisedvisedvisedvisedvised learnlearnlearnlearnlearnlearnlearnlearnlearnlearnlearninginginginginginginginginginging since
it is sufficient to take existing data, without the
need for producing an associated ground-truth.

These three categories are not disjoint, for in-
stance classification can be cast as class score
regression, or discrete sequence density model-
ing as iterated classification. Also, they do not
cover all cases. One may want to predict com-
pounded quantities, or multiple classes, or model
a density conditional to a signal.
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Chapter 2

Efficient computation

From an implementation standpoint, deep learn-
ing is about executing heavy computations with
large amounts of data, and the GraphGraphGraphGraphGraphGraphGraphGraphGraphGraphGraphiiiiiiiiiiicalcalcalcalcalcalcalcalcalcalcal ProProProProProProProProProProPro-
cesscesscesscesscesscesscesscesscesscesscessinginginginginginginginginginging UnitsUnitsUnitsUnitsUnitsUnitsUnitsUnitsUnitsUnitsUnits (GPUGPUGPUGPUGPUGPUGPUGPUGPUGPUGPU) have been instrumental in
the success of the field by allowing such compu-
tations to be run on affordable hardware.

The importance of their use, and the resulting
technical constraints on the computations that
can actually be done efficiently, force the re-
search in the field to constantly balance mathe-
matical soundness and implementability of novel
methods.
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2.1 GPUs, TPUs, and batches

Graphical Processing Units were originally de-
signed for real-time image synthesis, which re-
quires highly parallel architectures that happen
to be fitting to deep models. As their usage
for AI has increased, GPUs got equipped with
dedicated sub-components referred to as tententententententententententen-
sorsorsorsorsorsorsorsorsorsorsor corescorescorescorescorescorescorescorescorescorescores, and deep-learning specialized chips
such as Google’s TenTenTenTenTenTenTenTenTenTenTensorsorsorsorsorsorsorsorsorsorsor ProProProProProProProProProProProcesscesscesscesscesscesscesscesscesscesscessingingingingingingingingingingingUnitsUnitsUnitsUnitsUnitsUnitsUnitsUnitsUnitsUnitsUnits (TPUsTPUsTPUsTPUsTPUsTPUsTPUsTPUsTPUsTPUsTPUs)
have been produced.

A GPU possesses several thousands of parallel
units, and its own fast memory. The limiting fac-
tor is usually not the number of computing units
but the readreadreadreadreadreadreadreadreadreadread-writewritewritewritewritewritewritewritewritewritewrite opopopopopopopopopopoperererererererererereraaaaaaaaaaationstionstionstionstionstionstionstionstionstionstions tototototototototototo memmemmemmemmemmemmemmemmemmemmemoryoryoryoryoryoryoryoryoryoryory. The
slowest link is between the CPU memory and
the GPU memory and consequently one should
avoid copying data across devices. Moreover
the structure of the GPU itself involves multiple
levels of cachecachecachecachecachecachecachecachecachecachecache memmemmemmemmemmemmemmemmemmemmemoryoryoryoryoryoryoryoryoryoryory, which are smaller but
faster, and computation should be organized to
avoid copies between these different caches.

This is achieved in particular by organizing the
computation in batchesbatchesbatchesbatchesbatchesbatchesbatchesbatchesbatchesbatchesbatches ofofofofofofofofofofof samsamsamsamsamsamsamsamsamsamsamplesplesplesplesplesplesplesplesplesplesples that can fit
entirely in the GPU memory and are processed
in parallel. When an operator combines a sample
and model parameters, both have to be moved
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to the cache memory near the actual computing
units. Proceeding by batches allows for copying
themodel parameters only once, instead of doing
it for every sample. In practice a GPU processes
a batch that fits in memory almost as quickly as
a single sample.

A standard GPU has a theoretical peakpeakpeakpeakpeakpeakpeakpeakpeakpeakpeak perperperperperperperperperperperforforforforforforforforforforfor-
mancemancemancemancemancemancemancemancemancemancemance of 1013-1014 floating point operations
(FLOPsFLOPsFLOPsFLOPsFLOPsFLOPsFLOPsFLOPsFLOPsFLOPsFLOPs) per second, and usually its memory size
is between 8 and 80 gigabytes. The standard
FP32FP32FP32FP32FP32FP32FP32FP32FP32FP32FP32 encoding of float numbers is on 32 bits but
empirical results show that using encoding on 16
bits, or less for some operands does not degrade
performance.

Typical vision models have 10–100 millions
of trainable parameters and require 1018–1019
FLOPs for training [He et al., 2015; Sevilla et al.,
2022]. Language model have from 100 millions
to hundreds of billions of parameters and require
1020–1023 FLOPs for training [Devlin et al., 2018;
Brown et al., 2020; Chowdhery et al., 2022; Sevilla
et al., 2022]. The latter require machines with
multiple high-end GPUs.
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2.2 Tensors

GPUs and deepdeepdeepdeepdeepdeepdeepdeepdeepdeepdeep learnlearnlearnlearnlearnlearnlearnlearnlearnlearnlearninginginginginginginginginginging frameframeframeframeframeframeframeframeframeframeframeworksworksworksworksworksworksworksworksworksworksworks such as Py-
Torch or JAX manipulate the quantities to pro-
cess by organizing them as tententententententententententensorssorssorssorssorssorssorssorssorssorssors, which are
series of scalars arranged along several discrete
axes. They are elements of RN1×···×ND that gen-
eralize the notion of vector and matrix.

Tensors are used to represent both the signals to
process, the trainable parameters of the models,
and the intermediate quantities they compute.
The latters are called acacacacacacacacacacactititititititititititivavavavavavavavavavavationstionstionstionstionstionstionstionstionstionstions, in reference to
neuronal activations.

A time series for instance is naturally encoded
as aD×T tensor, where T is its duration andD
the dimension of the feature representation at
every time step, often referred to as the number
of chanchanchanchanchanchanchanchanchanchanchannelsnelsnelsnelsnelsnelsnelsnelsnelsnelsnels. Similarly a 2d-structured signal can
be represented as aD×H×W tensor, whereH
andW are its width and height. An RGB image
would correspond to D=3, but the number of
channels can grow up to several thousands in
large models.

Adding more dimensions allows for the repre-
sentation of series of objects. Fifty RGB images
of resolution 32×24 can for instance be encoded
as a 50×3×24×32 tensor.
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Deep learning libraries all provide a large num-
ber of operations that encompass standard linear
algebra, complex re-shaping and extraction, and
deep-learning specific operations, some of which
we will see in Chapter 4. The implementation of
tensors separates the shape representation from
the storage layout of the coefficients in mem-
ory, which allows many re-shaping, transposing,
and extraction operations to be done without
coefficient copy, hence extremely rapidly.

In practice, virtually any computation can be
decomposed into elementary tensor operations,
which avoids non-parallel loops at the language
level, and poor memory management.

Beside being convenient tools, tensors are instru-
mental in achieving computational efficiency.
All the people involved in designing the complex
object that is an operational deep model, from
the researchers and software developers design-
ing the model, the libraries, and the drivers, to
the engineers designing the computers, and the
computing chips themselves, everybody knows
that the data will be manipulated as tensors. The
resulting constraints on locality and block de-
composability allow all the actors of this chain
to optimize their designs.
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Chapter 3

Training

As introduced in § 1.1, training a model con-
sists of minimizing a lossℒ (w) which reflects
the performance of the predictor f(·;w) on a
traintraintraintraintraintraintraintraintraintraintraininginginginginginginginginginging setsetsetsetsetsetsetsetsetsetset 𝒟 . Since the models are usually
extremely complex, and their performance is
directly related to how well the loss is mini-
mized, this minimization is a key challenge, that
involves both computational and mathematical
difficulties.
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3.1 Losses

The example of the meanmeanmeanmeanmeanmeanmeanmeanmeanmeanmean squaredsquaredsquaredsquaredsquaredsquaredsquaredsquaredsquaredsquaredsquared erererererererererererrorrorrorrorrorrorrorrorrorrorror of Equa-
tion 1.1 is a standard loss for predicting a con-
tinuous value.

For classification, the usual strategy is that the
output of the model is a vector with one com-
ponent f(x;w)y per class y, interpreted as the
logarithm of a non-normalized probability, or
logitlogitlogitlogitlogitlogitlogitlogitlogitlogitlogit. WithX the input signal and Y the class to
predict we can then compute from f an estimate
of the posposposposposposposposposposposteteteteteteteteteteteriorriorriorriorriorriorriorriorriorriorrior probprobprobprobprobprobprobprobprobprobprobaaaaaaaaaaabilbilbilbilbilbilbilbilbilbilbiliiiiiiiiiiitiestiestiestiestiestiestiestiestiestiesties:

P̂ (Y = y |X =x)=
expf(x;w)y∑
zexpf(x;w)z

.

This expression is generally referred to as the
softsoftsoftsoftsoftsoftsoftsoftsoftsoftsoftmaxmaxmaxmaxmaxmaxmaxmaxmaxmaxmax, or more adequately sofsofsofsofsofsofsofsofsofsofsoftttttttttttargmaxargmaxargmaxargmaxargmaxargmaxargmaxargmaxargmaxargmaxargmax, of the
logits.

To be consistent with this interpretation the
model should be trained to maximize the proba-
bility of the true classes, hence to minimize the
crosscrosscrosscrosscrosscrosscrosscrosscrosscrosscross-enenenenenenenenenenentropytropytropytropytropytropytropytropytropytropytropy, expressed as

ℒce(w)=
1

N

N∑
n=1

−log
expf(xn;w)yn∑
zexpf(xn;w)z︸ ︷︷ ︸

Lce(f(xn;w),yn)

.
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For density modeling, the standard loss is the
likelihood of the data. If f(x;w) is to be inter-
preted as a normalized log-probability or density,
the loss is the opposite of the sum of its value
over training samples.

In certain setups, even though the value to pre-
dict is continuous, the supervision takes the form
of ranking constraints. The standard domain is
metmetmetmetmetmetmetmetmetmetmetricricricricricricricricricricric learnlearnlearnlearnlearnlearnlearnlearnlearnlearnlearninginginginginginginginginginging, where the objective is to learn
a measure of distance between samples such
that two samples from the same semantic class,
e.g. two pictures of a same person, are closer to
each other than to a sample from another class,
e.g. any picture of someone else. The standard
approach for such cases is to minimize a conconconconconconconconconconcon-
trastivetrastivetrastivetrastivetrastivetrastivetrastivetrastivetrastivetrastivetrastive losslosslosslosslosslosslosslosslosslossloss, in that case for instance the sum
over triplets (xa,xb,xc), such that ya= yb ̸= yc,
of

max(0,1−f(xa,xc;w)+f(xa,xb;w)).

This quantity will be strictly positive unless
f(xa,xc;w)≥ 1+f(xa,xb;w).

It is also possible to add terms to the loss that
depend on the trainable parameters of the model
themselves to favor certain configurations.

The weightweightweightweightweightweightweightweightweightweightweight dededededededededededecaycaycaycaycaycaycaycaycaycaycay regularization for instance
consists of adding to the loss a term proportional
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to the sum of the parameters squared. It can
be interpreted as having a Gaussian Bayesian
prior on the parameters which favors smaller pa-
rameters, and reduces the influence of the data.
This degrades performance on the training set,
but reduces the gap between the performance in
training and that on new, unseen data.

Usually the loss to minimize is not the actual
quantity one want to optimize ultimately, but a
proxy for which finding the best model parame-
ters is easier. For instance cross-entropy is the
standard loss for classification, even though the
actual performance measure is a classification
error rate, because the later has no informative
gradient, a key requirement as we will see in
§ 3.3.
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3.2 Autoregressive models

Many spectacular applications in computer vi-
sion and natural language processing have been
tackled by modeling the distribution of a high-
dimension discrete vector with the chain rule:

P (X1=x1,X2=x2,...,XT =xT )=

P (X1=x1)

×P (X2=x2 |X1=x1)

...

×P (XT =xT |X1=x1,...,XT−1=xT−1)

Although it is valid for any type of random quan-
tities, this decomposition finds its most efficient
use when the signal of interest can be encoded
into a sequence of discrete tototototototototototokenskenskenskenskenskenskenskenskenskenskens from a finite
vovovovovovovovovovovocabcabcabcabcabcabcabcabcabcabcabuuuuuuuuuuularylarylarylarylarylarylarylarylarylarylary {1,...K}.

With the convention that the additional token ∅
stands for an “unknown” quantity, we can rep-
resent the event {X1=x1,...,Xt=xt} as the
vector (x1,...,xt,∅,...,∅).

Then, given a model

f(x1,...,xt−1,∅,...,∅;w)=
logP̂ (Xt |X1=x1,...,Xt−1=xt−1),
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the chain rule states that one can sample a full se-
quence of length T by sampling the xts one after
another, each according to the predicted poste-
rior distribution, given the x1,...,xt−1 already
sampled. This is an auauauauauauauauauauautoretoretoretoretoretoretoretoretoretoretoregresgresgresgresgresgresgresgresgresgresgressivesivesivesivesivesivesivesivesivesivesive generative
model.

Training such a model could be achieved naively
byminimizing the sum across training sequences
x and time steps t of

Lce

(
f(x1,...,xt−1,∅,...,∅;w),xt

)
,

however such an approach is inefficient, as most
computation done for t< t′ have to be repeated
for t′.

The standard strategy to address this issue is to
design a model that predicts the distributions
of all the xt of the sequence at once, but with a
structure such that the prediction of xt’s logits
depends only on the input values x1,...,xt−1.
Such a model is called causalcausalcausalcausalcausalcausalcausalcausalcausalcausalcausal, since it corre-
sponds in the case of temporal series to not let-
ting the future influence the past, as illustrated
on Figure 3.1. As we will see in § 7.1, it can be
trained with the cross-entropy summed over all
the time steps for every sequence processed.

One important technical detail is that when deal-
ing with language, the representation as tokens
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cst x1 x2 ... xT−1 xT

y1 y2 y3 ... yT yT+1

f

Figure 3.1: An autoregressive model f , is causalcausalcausalcausalcausalcausalcausalcausalcausalcausalcausal if a
time step xt of the input sequence can only modulate
a predicted ys = P̂ (Xs |Xt<s) for s> t.

can be done in multiple manners, from the finest
granularity that are individual symbols, to entire
words. The conversion to and from the token
representation is done by a separate algorithm
called a tototototototototototokkkkkkkkkkkenizerenizerenizerenizerenizerenizerenizerenizerenizerenizerenizer.

A standard method is the ByteByteByteByteByteByteByteByteByteByteByte PairPairPairPairPairPairPairPairPairPairPair EnEnEnEnEnEnEnEnEnEnEncodcodcodcodcodcodcodcodcodcodcodinginginginginginginginginginging
(BPEBPEBPEBPEBPEBPEBPEBPEBPEBPEBPE, Sennrich et al., 2015) that constructs the
tokens by hierarchically merging groups of char-
acters, trying to get tokens that represent frag-
ments of words of various lengths, but of similar
frequencies, allocating tokens to long frequent
fragments, as to rare individual symbols.
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3.3 Gradient descent

Except in specific cases like the linear regres-
sion we saw in the previous chapter, the optimal
parameters w∗ do not have a closed form expres-
sion. In the general case the tool of choice to
minimize a function is gragragragragragragragragragragradididididididididididiententententententententententent dededededededededededescentscentscentscentscentscentscentscentscentscentscent. It con-
sists of initializing the parameters with a random
w0, and then improving this estimate by iterat-
ing gragragragragragragragragragragradididididididididididiententententententententententent stepsstepsstepsstepsstepsstepsstepsstepsstepsstepssteps, each consisting of computing
the gradient of the loss with respect to the pa-
rameters, and subtracting a fraction of it

wn+1=wn−η∇ℒ |w(wn). (3.1)

This procedure corresponds to moving the cur-
rent estimate a bit in the direction corresponding
locally to the maximum decrease of ℒ (w), as
illustrated on Figure 3.2.

The meta parameter η is referred to as the learnlearnlearnlearnlearnlearnlearnlearnlearnlearnlearn-
inginginginginginginginginginging rateraterateraterateraterateraterateraterate. It is a positive value that modulates how
quickly the minimization is done, and has to be
chosen carefully. If it is too small, the optimiza-
tion will be slow at best, and may be trapped in
a lololololololololololocalcalcalcalcalcalcalcalcalcalcal minminminminminminminminminminminiiiiiiiiiiimummummummummummummummummummummum early. If it is too large the opti-
mization may bounce around a good minimum
and never descend into it. As we will see in § 3.5,
it can depend on the iteration number n.
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w

w

ℒ (w)

Figure 3.2: At every pointw, the gradient∇ℒ |w(w) is
in the direction that maximizes the increase ofℒ , or-
thogonal to the level curves (top). The gradient descent
minimizes ℒ (w) iteratively by subtracting a fraction
of the gradient at every step, resulting in a trajectory
that follows the steepest descent (bottom).
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As for many algorithms, intuition tends to break
in very high dimension, and although it seems
that this procedure would be very easily trapped
in a local minimum, in reality, due to the number
of parameters, the design of the models, and
the stochasticity in the data, its efficiency is far
greater than one could expect.

All the losses used in practice can be expressed
as an average of a per sample, or per small group
of samples, loss

ℒ (w)=
1

N

N∑
n=1

𝓁n(w),

where
𝓁n(w)=L(f(xn;w),yn)

for some L, and the gradient is then

∇ℒ |w(w)=
1

N

N∑
n=1

∇𝓁n|w(w). (3.2)

The resulting gragragragragragragragragragragradididididididididididiententententententententententent dededededededededededescentscentscentscentscentscentscentscentscentscentscent would compute
exactly the sum in 3.2, which is usually computa-
tionally heavy, and then update the parameters
according to 3.1. However, under reasonable as-
sumptions of exchangeability, for instance if the
samples have been properly shuffled, any partial
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sum of 3.2 is an unbiased estimator of the full
sum, albeit noisy. So updating the parameters
from partial sums corresponds to doing more
gradient steps for the same computational bud-
get, with noisier estimates of the gradient. Due
to the redundancy in the data, this happens to
be a far more efficient strategy.

We saw in § 2.1 that processing a batch of sam-
ples small enough to fit in the computing de-
vice’s memory is generally as fast as processing
a single one. Hence the standard approach is to
split the full set 𝒟 into batchesbatchesbatchesbatchesbatchesbatchesbatchesbatchesbatchesbatchesbatches, and to update
the parameters from the estimate of the gradient
computed from each. This is referred to as mini-
batch stochastic gradient descent, or stochasstochasstochasstochasstochasstochasstochasstochasstochasstochasstochastictictictictictictictictictictic
gragragragragragragragragragragradididididididididididiententententententententententent dededededededededededescentscentscentscentscentscentscentscentscentscentscent (SGDSGDSGDSGDSGDSGDSGDSGDSGDSGDSGD) for short.

It is important to note that this process is ex-
tremely gradual and that the number of mini-
batches and gradient steps are typically of the
order of several millions.

Plenty of variations of this standard strategy
have been proposed. The most popular one is
AdamAdamAdamAdamAdamAdamAdamAdamAdamAdamAdam [Kingma and Ba, 2014], which keeps run-
ning estimates of the mean and variance of each
component of the gradient, and normalizes them
automatically, avoiding scaling issues and differ-
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ent training speeds in different parts of a model.
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3.4 Backpropagation

Using gragragragragragragragragragragradididididididididididiententententententententententent dededededededededededescentscentscentscentscentscentscentscentscentscentscent requires a tech-
nical means to compute ∇𝓁|w(w) where
𝓁=L(f(x;w);y). Given that f and L are both
compositions of standard tensor operations, as
for any mathematical expression, the chain rule
allows us to get an expression of it.

For the sake of making notation lighter–which
unfortunately will be needed in what follows–
we do not specify at which point gradients are
computed, since the context makes it clear.

x(d−1) x(d)
fd(·;wd)

∇𝓁|x(d−1) ∇𝓁|x(d)

×Jfd|x

∇𝓁|wd

×Jfd|w

Figure 3.3: Given a model f = fD◦···◦f1, the forward
pass (top) consists of computing the outputs x(d) of
the mappings fd in order. The backward pass (bottom)
computes the gradients of the loss with respect to the
activation x(d) and the parameters wd backward by
multiplying them by the Jacobians.
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Forward and backward passes

Consider the simple case of a composition of
mappings

f = f1◦f2◦···◦fD.

The output of f(x;w) can be computed by start-
ing with x(0)=x and applying iteratively

x(d)= fd(x
(d−1);wd),

with x(D) as the final value.

The individual scalar values of these interme-
diate results x(d) are traditionally called acacacacacacacacacacactititititititititititi-
vavavavavavavavavavavationstionstionstionstionstionstionstionstionstionstions in reference to neuron activations, the
valueD is the depthdepthdepthdepthdepthdepthdepthdepthdepthdepthdepth of the model, the individual
mappings fd are referred to as laylaylaylaylaylaylaylaylaylaylayersersersersersersersersersersers, as we will
see is § 4.1, and their sequential evaluation is the
forforforforforforforforforforforwardwardwardwardwardwardwardwardwardwardward passpasspasspasspasspasspasspasspasspasspass (see Figure 3.3, top).

Conversely the gradient ∇𝓁|x(d−1) of the loss
with respect to the output x(d−1) of fd−1 is the
product of the gradient ∇𝓁|x(d) with respect
to the output of fd multiplied by the Jacobian
Jfd−1|x of fd−1 with respect to its first variable x.
So the gradients with respect to the outputs of all
the fds can be computed recursively backward,
starting with ∇𝓁|x(D) =∇L|x.
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And the gradient that we are interested in for
training, that is ∇𝓁|wd

, is the gradient with re-
spect to the output of fd multiplied by the Jaco-
bian Jfd|w of fd with respect to the parameters.

This iterative computation of the gradients with
respect to the intermediate activations, com-
bined with that of the gradients with respect
to the layers’ parameters is the backbackbackbackbackbackbackbackbackbackbackwardwardwardwardwardwardwardwardwardwardward passpasspasspasspasspasspasspasspasspasspass
(see Figure 3.3, bottom). The combination of
this computation with the procedure of gradient
descent is called backbackbackbackbackbackbackbackbackbackbackpropproppropproppropproppropproppropproppropaaaaaaaaaaagagagagagagagagagagagationtiontiontiontiontiontiontiontiontiontion.

In practice the implementation details of the for-
ward and backward passes are hidden from pro-
grammers. Deep learning frameworks are able
to automatically construct the sequence of op-
erations to compute gradients. A particularly
convenient algorithm is auauauauauauauauauauautototototototototototogradgradgradgradgradgradgradgradgradgradgrad [Baydin et al.,
2015], which tracks tensor operations, and builds
on the fly the combination of operators for gra-
dients. Thanks to this, a piece of imperative
programming that manipulates tensors can auto-
matically compute the gradient of any quantity
with respect to any other.
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Resource usage

Regarding the comcomcomcomcomcomcomcomcomcomcompupupupupupupupupupuputatatatatatatatatatatationaltionaltionaltionaltionaltionaltionaltionaltionaltionaltional costcostcostcostcostcostcostcostcostcostcost, as we will
see, the bulk of the computation goes into linear
operations that require one matrix product for
the forward pass, and two for the products by
the Jacobians for the backward pass. This makes
the latter roughly twice more costly than the
former.

The memmemmemmemmemmemmemmemmemmemmemoryoryoryoryoryoryoryoryoryoryory rererererererererererequirequirequirequirequirequirequirequirequirequirequirementmentmentmentmentmentmentmentmentmentment during inference is
equal roughly to that of the most demanding
individual layer. For training however, the back-
ward pass requires to keep the activations com-
puted during the forward to compute the Jaco-
bians, which results in a memory usage that
grows proportionally to the model’s depth. Tech-
niques exist to trade the memory usage for com-
putation by storing the activations for some lay-
ers only, and recomputing the others on the fly
during the backward pass [Chen et al., 2016].

Vanishing gradient

A key historical issue when training a large net-
work is that when the gradient propagates back-
wards through many operators it may decrease
or increase exponentially. When it decreases
exponentially this is called the vanvanvanvanvanvanvanvanvanvanvanishishishishishishishishishishishinginginginginginginginginginging gragragragragragragragragragragradididididididididididi-
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ententententententententententent, and it may make the training impossible,
or in its milder form, make different parts of
the model being updated at different speeds, de-
grading their co-adaptation [Glorot and Bengio,
2010].

As we will see in Chapter 4, multiple techniques
have been developed to prevent this from hap-
pening, reflecting a change of perspective that
was crucial in the success of deep-learning: in-
stead of trying to improve generic optimization
methods, the effort moved to engineer the mod-
els themselves to make them optimizable.
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3.5 Training protocols

Training a deep network requires defining a pro-
tocol to make the most of computation and data,
and ensure that performance will be good on
new data.

As we saw in § 1.3, the performance on the train-
ing samples may be misleading, so in the sim-
plest setup one needs at least two sets of samples:
one is a traintraintraintraintraintraintraintraintraintraintraininginginginginginginginginginging setsetsetsetsetsetsetsetsetsetset used to optimize the model
parameters, and the other is a testtesttesttesttesttesttesttesttesttesttest setsetsetsetsetsetsetsetsetsetset to estimate
the performance of the trained model.

Additionally, there are usually metametametametametametametametametametameta papapapapapapapapapaparamramramramramramramramramramrameeeeeeeeeeeterstersterstersterstersterstersterstersters
to adapt, in particular related to the model archi-
tecture, the learning rate, and the regularization
terms in the loss. In that case one needs a valvalvalvalvalvalvalvalvalvalvaliiiiiiiiiiidadadadadadadadadadada-
tiontiontiontiontiontiontiontiontiontiontion setsetsetsetsetsetsetsetsetsetset disjoint from both the training set and
the test set to assess what the best setup is.

The full training is usually decomposed in
epochsepochsepochsepochsepochsepochsepochsepochsepochsepochsepochs, each of them corresponding to going
through all the training examples once. The
usual dynamic of the losses is that the train loss
decreases as long as the optimization runs while
the validation loss may reach a minimum after
a certain number of epochs and then starts to
increase, reflecting an overoveroveroveroveroveroveroveroveroverover-fitfitfitfitfitfitfitfitfitfitfittingtingtingtingtingtingtingtingtingtingting regime, as in-
troduced in § 1.3 and illustrated on Figure 3.4.
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Loss

Number of epochs

Overfitting

Train

Validation

Figure 3.4: As training progresses, a model’s perfor-
mance is usually monitored through losses. The train
loss is the one driving the optimization process and
goes down, while the validation loss is estimated on
an other set of examples to assess the over-fitting of
the model. This phenomenon appears when the model
starts to take into account random structures specific
to the training set at hands, resulting in the validation
loss starting to increase.

Paradoxically, although they should suffer from
severe over-fitting due to their capacity, large
models usually continue to improve as the train-
ing progresses. This may be due to the inininininininininininducducducducducducducducducducductivetivetivetivetivetivetivetivetivetivetive
biasbiasbiasbiasbiasbiasbiasbiasbiasbiasbias of the model becoming the main driver of
the optimization when the performance is near
perfect on the training set [Belkin et al., 2018].
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An important design choice is the learnlearnlearnlearnlearnlearnlearnlearnlearnlearnlearninginginginginginginginginginging rateraterateraterateraterateraterateraterate
schedschedschedschedschedschedschedschedschedschedscheduleuleuleuleuleuleuleuleuleuleule during training. The general policy is
that the learning rate should be initially large to
avoid having the optimization being trapped in
a bad local minimum early, and that it should
get small so that the optimized parameter values
do not bounce around, and reaches a good mini-
mum in a narrow valley of the loss landscape.
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3.6 Training data

One key aspect of deep learning is the steady
improvement of performance with the traintraintraintraintraintraintraintraintraintraintraininginginginginginginginginginging
setsetsetsetsetsetsetsetsetsetset size, even in the multi-billions of samples
regime.

This is in part due to the structural plasticity of
models, that allows to scale them up, as we will
see, by increasing the number of layers or fea-
ture dimensions. But it is also made possible by
the distributed nature of these models, that can
take advantage of massively parallel computing
devices, and by the stochastic gradient descent,
which accesses only a tiny fraction of the data
at a time, and can operate with data sets whose
size is orders of magnitude greater than that of

Dataset Year Nb. of images Size
ImageNet 2012 1.2M 150Gb
Cityscape 2016 25K 60Gb
LAION-5B 2022 5.8B 240Tb

Dataset Year Nb. of books Size
WMT-18-de-en 2018 14M 8Gb
The Pile 2020 1.6B 825Gb
OSCAR 2020 12B 6Tb

Table 3.1: Some examples of publicly available datasets.
The equivalent number of books is an indicative esti-
mate for 250 pages of 2000 characters per book.
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the computing device’s memory.

This has resulted in a tension between produc-
ing datasets of moderate size with a detailed and
expensive to produce ground-truth, and datasets
which are automatically produced by combining
data available on the internet with minimal cura-
tion, if any. The later category includes datasets
that combine multiple modalities, for instance
text and images from web pages, or sound and
images from videos, which can be used for large
scale supervised training.

The current most impressive successes of arti-
ficial intelligence with deep learning methods
rely on extremely large text datasets (Table 3.1).
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Part II

Deep models
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Chapter 4

Model components

A deep model is nothing more than a com-
plicated tensorial computation that can be de-
composed ultimately into standard mathemati-
cal operations from linear algebra and analysis.
Through the years, the field has developed a
large collection of high-level modules that have
a clear semantic, and complex models combining
these modules, which have proven to be efficient
in specific application domains.

Empirical evidences and theoretical results show
that greater performance is achievedwith deeper
architectures, that is, long compositions of map-
pings. As we saw in section § 3.4, training such
a model is challenging due to the vanvanvanvanvanvanvanvanvanvanvanishishishishishishishishishishishinginginginginginginginginginging, and
multiple important technical contributions miti-
gated this problem.
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4.1 The notion of layer

We call laylaylaylaylaylaylaylaylaylaylayersersersersersersersersersersers standard complex compounded
tensor operations that have been designed and
empirically identified as being generic and effi-
cient. They often incorporate trainable param-
eters, and correspond to a convenient level of
granularity to design and describe large deep
models. The term is inherited from the simple
multi-layer neural networks, even though a mod-
ern model may take the form of a complex graph
of such modules, and incorporates multiple par-
allel pathways.

×K

X

f

g n=4

Y

32×32

4×4

In the following pages I try to stick to the con-
vention for model depiction illustrated above
that:

• operators / layers are depicted as boxes,

• darker coloring indicates that they embed
trainable parameters,
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• non-default valued meta-parameters are
added in blue on their right,

• a dashed outer frame with a multiplicative
factor indicates that a group of layers is repli-
cated in series, each with its own set of trainable
parameters if any, and

• the dimension of their output is specified on
the right when it differs from their input.

Additionally, layers that have a complex internal
structure are depicted with a greater height.
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4.2 Linear layers

LinLinLinLinLinLinLinLinLinLinLinearearearearearearearearearearear laylaylaylaylaylaylaylaylaylaylayersersersersersersersersersersers are the most important modules
in terms of computation and number of parame-
ters. They benefit from decades of research and
engineering in algorithmic and chip design for
matrix operations.

Fully connected layers

The most basic one is the fullyfullyfullyfullyfullyfullyfullyfullyfullyfullyfully conconconconconconconconconconconnectednectednectednectednectednectednectednectednectednectednected layerlayerlayerlayerlayerlayerlayerlayerlayerlayerlayer,
parameterized by w=(W,b), where W is a
D′×Dweightweightweightweightweightweightweightweightweightweightweightmamamamamamamamamamamatrixtrixtrixtrixtrixtrixtrixtrixtrixtrixtrix, and b is a biasbiasbiasbiasbiasbiasbiasbiasbiasbiasbias vecvecvecvecvecvecvecvecvecvecvectortortortortortortortortortortor of di-
mensionD′. It implements a matrix/vector prod-
uct generalized to arbitrary tensor shape. Given
an input X of dimension D1×···×DK×D, it
computes an output Y of dimension D1×···×
DK×D′ with

∀d1,...,dK ,
Y [d1,...,dK ] =WX[d1,...,dK ]+b.

While at first sight such an affine operation
seems limited to geometric transformations such
as rotations or symmetries, they can implement
far more than that. In particular projections for
dimension reduction, or signal filtering, but also
from the perspective of the dot product being a
measure of similarity, a matrix-vector product
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can be interpreted as computingmatching scores
between a query as encoded by the vector, and
keys as encoded by the matrix rows.

As we saw in § 3.3, the gradient descent starts
with the papapapapapapapapapaparamramramramramramramramramramrameeeeeeeeeeeters’ters’ters’ters’ters’ters’ters’ters’ters’ters’ters’ ranranranranranranranranranranrandomdomdomdomdomdomdomdomdomdomdom iniiniiniiniiniiniiniiniiniiniinitialtialtialtialtialtialtialtialtialtialtializaizaizaizaizaizaizaizaizaizaizationtiontiontiontiontiontiontiontiontiontion. If
this is done too naively, as seen in § 3.4, the
network may suffer from exploding or vanishing
activations and gradients [Glorot and Bengio,
2010]. Deep learning frameworks implement
initialization methods that modulate the random
parameters’ scales according to the tensor shape
to prevent pathological behaviors of the signal
during the forward and the backward passes.

Convolutional layers

A linear layer can take as input an arbitrarily
shaped tensor by reshaping it into a vector, as
long as it has the right number of coefficients.
However such a layer is poorly adapted to deal-
ing with large tensors since the number of pa-
rameters and number of operations are propor-
tional to the product of the input and output
dimensions. For instance to process an RGB im-
age of size 256×256 as input and compute a
result of same size, it would require ≃ 4×1010

parameters and multiplications.
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1d convolution

...

1d transposed
convolution

Figure 4.1: A 1d convolution (left) takes as input
a D×T tensor X , applies the same affine mapping
ϕ(·;w) to every sub-tensor of shapeD×K , and stores
the resulting D′×1 tensors into Y . A 1d transposed
convolution (right) takes as input a D×T tensor, ap-
plies the same affine mapping ψ(·;w) to every sub-
tensor of shape D×1, and sums the shifted resulting
D′×K tensors. Both can process inputs of different
size.
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X
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ϕ

2d convolution

Y

X

ψ

2d transposed
convolution

Figure 4.2: A 2d convolution (left) takes as input a
D×H×W tensor X , applies the same affine map-
ping ϕ(·;w) to every sub-tensor of shape D×K×L,
and stores the resulting D′×1×1 tensors into Y . A
2d transposed convolution (right) takes as input a
D×H×W tensor, applies the same affine mapping
ψ(·;w) to every D×1×1 sub-tensor, and sums the
shifted resulting D′×K×L tensors into Y .

Beside these practical issues most of the high-
dimension signals are strongly structured. For
instance images exhibit short-term correlations,
and statistical stationarity to translation, scaling,
and certain symmetries. This is not reflected
in the inininininininininininducducducducducducducducducducductivetivetivetivetivetivetivetivetivetivetive biasbiasbiasbiasbiasbiasbiasbiasbiasbiasbias of a fully connected layer,
which totally ignores the signal structure.

To leverage these regularities, the tool of choice
are conconconconconconconconconconconvovovovovovovovovovovolululululululululululutionaltionaltionaltionaltionaltionaltionaltionaltionaltionaltional laylaylaylaylaylaylaylaylaylaylayersersersersersersersersersersers, which are also affine,
but process time-series or 2d signals locally, with
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Figure 4.3: Beside its kernel size and number of input
/ output channels, a convolution admits three meta-
parameter: the stride s (left) modulates the step size
when going though the input tensor, the padding p
(top right) specifies how many zeros entries are added
around the input tensor before processing it, and the
dilation d (bottom right) parameterizes the index count
between coefficients of the filter.
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the same operator everywhere.

A 1d1d1d1d1d1d1d1d1d1d1d conconconconconconconconconconconvovovovovovovovovovovolululululululululululutiontiontiontiontiontiontiontiontiontiontion is mainly defined by three
meta-parameters: its kerkerkerkerkerkerkerkerkerkerkernelnelnelnelnelnelnelnelnelnelnel sizesizesizesizesizesizesizesizesizesizesizeK , its number
of input channels D, its number of output chan-
nelsD′, and by the trainable parameters w of an
affine mapping ϕ(·;w) :RD×K →RD′×1.

It can process any tensor X of size D×T with
T ≥K , and applies ϕ(·;w) to every sub-tensor
D×K of X and stores the results into a tensor
Y of sizeD′×(T−K+1), as pictured on Figure
4.1 (left).

A 2d2d2d2d2d2d2d2d2d2d2d conconconconconconconconconconconvovovovovovovovovovovolululululululululululutiontiontiontiontiontiontiontiontiontiontion is similar but has aK×L ker-
nel and takes as input a D×H×W tensor, see
Figure 4.2 (left).

Both operators have for trainable parameters
those of ϕ that can be envisioned as D′ filfilfilfilfilfilfilfilfilfilfilterstersterstersterstersterstersterstersters
of size D×K or D×K×L respectively, and a
biasbiasbiasbiasbiasbiasbiasbiasbiasbiasbias vecvecvecvecvecvecvecvecvecvecvectortortortortortortortortortortor of dimension D′.

They also admit three additional meta-
parameters, illustrated on Figure 4.3:

• The paddingpaddingpaddingpaddingpaddingpaddingpaddingpaddingpaddingpaddingpadding specifies how many zeros coeffi-
cients should be added around the input tensor
before processing it, in particular to maintain
the tensor size when the kernel size is greater
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Figure 4.4: Given an activation in a series of convolu-
tion layers, here in red, its rererererererererererecepcepcepcepcepcepcepcepcepcepceptivetivetivetivetivetivetivetivetivetivetive fieldfieldfieldfieldfieldfieldfieldfieldfieldfieldfield is the area in
the input signal, in blue, that modulates its value. Each
intermediate convolutional layer increases the width
and height of that area by roughly those of the kernel.

than one. Its default value is 0.

• The stridestridestridestridestridestridestridestridestridestridestride specifies the step used when going
through the input, allowing to reduce the out-
put size geometrically by using large steps. Its
default value is 1.

• The dididididididididididilalalalalalalalalalalationtiontiontiontiontiontiontiontiontiontion specifies the index count between
the filter coefficients of the local affine opera-
tor. Its default value is 1, and greater values
correspond to inserting zeros between the coef-
ficients, which increases the filter / kernel size
while keeping the number of trainable parame-
ters unchanged.
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Except for the number of channels, a convolu-
tion’s output is usually strictly smaller than its
input by roughly the size of the kernel, or even
by a scaling factor if the stride is greater than
one.

Given an activation computed by a convolutional
layer, or the vector of values for all the channels
at a certain location, the portion of the input
signal that it depends on is called its rererererererererererecepcepcepcepcepcepcepcepcepcepceptivetivetivetivetivetivetivetivetivetivetive
fieldfieldfieldfieldfieldfieldfieldfieldfieldfieldfield (see Figure 4.4). One of the H×W sub-
tensors corresponding to a single channel of a
D×H×W activation tensor is referred to as an
acacacacacacacacacacactititititititititititivavavavavavavavavavavationtiontiontiontiontiontiontiontiontiontion mapmapmapmapmapmapmapmapmapmapmap.

Convolutions are used to recombine informa-
tion, generally to reduce the spatial size of the
representation, trading it for a greater number
of channels, that translates into a richer local
representation. They can implement differential
operators such as edge-detectors, or template
matching mechanisms. A succession of such lay-
ers can also be envisioned as a compositional and
hierarchical representation [Zeiler and Fergus,
2014], or as a diffusion process in which infor-
mation can be transported by half the kernel size
when going through a layer.

A converse operation is the transtranstranstranstranstranstranstranstranstranstransposedposedposedposedposedposedposedposedposedposedposed conconconconconconconconconconconvovovovovovovovovovovolululululululululululu-
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tiontiontiontiontiontiontiontiontiontiontion that consists also in a localized affine op-
erator, defined by similar meta and trainable
parameters as the convolution, but which ap-
plies, for instance in the 1d case, an affine map-
ping ψ(·;w) :RD×1→RD′×K , to every D×1
sub-tensor of the input, and sums the shifted
D′×K resulting tensors to compute its output.
Such operator increases the size of the signal
and can be understood intuitively as a synthe-
sis process (see Figure 4.1, right and Figure 4.2,
right).

A series of convolutional layers is the usual ar-
chitecture to map a large dimension signal such
as an image or a sound sample to a low dimen-
sion tensor. That can be for instance to get class
scores for classification, or a compressed repre-
sentation. Transposed convolutions layers are
used the opposite way to build a large dimen-
sion signal from a compressed representation,
either to assess that the compressed representa-
tion contains enough information to build back
the signal, or for synthesis, as it is easier to learn
a density model over a low dimension represen-
tation. We will come back to this in § 5.2.
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4.3 Activation functions

If a network was combining only linear compo-
nents it would itself be a linear operator, so it
is essential to have nonnonnonnonnonnonnonnonnonnonnon-linlinlinlinlinlinlinlinlinlinlinearearearearearearearearearearear opopopopopopopopopopoperererererererererereraaaaaaaaaaationstionstionstionstionstionstionstionstionstionstions. They
are implemented in particular with acacacacacacacacacacactititititititititititivavavavavavavavavavavationtiontiontiontiontiontiontiontiontiontion
funcfuncfuncfuncfuncfuncfuncfuncfuncfuncfunctionstionstionstionstionstionstionstionstionstionstions which are layers that transforms ev-
ery component of the input tensor individually
through a mapping, resulting in a tensor of same
shape.

There are many different activation functions
but the most used is the RecRecRecRecRecRecRecRecRecRecRectititititititititititifiedfiedfiedfiedfiedfiedfiedfiedfiedfiedfied LinLinLinLinLinLinLinLinLinLinLinearearearearearearearearearearear UnitUnitUnitUnitUnitUnitUnitUnitUnitUnitUnit
(ReLUReLUReLUReLUReLUReLUReLUReLUReLUReLUReLU, [Glorot et al., 2011]), which sets nega-
tive values to zero and keeps positive values un-
changed (see Figure 4.5, top right):

relu(x)=

{
0 if x< 0

x otherwise.

Given that the core training strategy of deep-
learning relies on the gradient, it may seem prob-
lematic to have a mapping that is not differen-
tiable at zero, and constant on half the real line.
However, the main property gradient descent
requires is that the gradient is informative on
average. Parameter initialization and data nor-
malization make half of the activations positive
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Tanh ReLU

Leaky ReLU GELU

Figure 4.5: Activation functions.

when the training starts, ensuring that this is the
case.

Before the generalization of ReLU, the standard
activation function was TanhTanhTanhTanhTanhTanhTanhTanhTanhTanhTanh (see Figure 4.5, top
left) which saturates exponentially fast on both
the negative and the positive side, which was
aggravating the vanishing gradient.

Other popular activation functions follow the
same idea of keeping positive values unchanged
and squashing the negative values. LeakyLeakyLeakyLeakyLeakyLeakyLeakyLeakyLeakyLeakyLeaky ReLUReLUReLUReLUReLUReLUReLUReLUReLUReLUReLU
[Maas et al., 2013] applies a small positive multi-
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plying factor to the negative values (see Figure
4.5, bottom left):

leakyrelu(x)=

{
ax if x< 0

x otherwise.

And GELUGELUGELUGELUGELUGELUGELUGELUGELUGELUGELU [Hendrycks and Gimpel, 2016] is de-
fined with the cumulative distribution function
of the Gaussian distribution, that is

gelu(x)=xP (Z ≤x),

where Z ∼𝒩 (0,1). It roughly behaves like a
smooth ReLU (see Figure 4.5, bottom right).

The choice of an activation function, in partic-
ular among the variants of ReLU, is generally
driven by empirical performance.
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4.4 Pooling

A classical strategy to reduce the signal size is to
use a poolpoolpoolpoolpoolpoolpoolpoolpoolpoolpoolinginginginginginginginginginging operation that combines multiple
activations into one that ideally summarizes the
information. Themost standard operation of this
class is the maxmaxmaxmaxmaxmaxmaxmaxmaxmaxmax poolpoolpoolpoolpoolpoolpoolpoolpoolpoolpoolinginginginginginginginginginging layer which, similarly
to convolution, can operate in 1d and 2d, and is
defined by a kerkerkerkerkerkerkerkerkerkerkernelnelnelnelnelnelnelnelnelnelnel sizesizesizesizesizesizesizesizesizesizesize.

This layer computes the maximum activation per
channel, over non-overlapping sub-tensors of
spatial size equal to the kernel size. These values
are stored into a result tensor with the same num-
ber of channels as the input, and whose spatial
size is divided by the kernel size. As the convo-
lution, this operator has three meta-parameters
paddingpaddingpaddingpaddingpaddingpaddingpaddingpaddingpaddingpaddingpadding, stridestridestridestridestridestridestridestridestridestridestride, and dididididididididididilalalalalalalalalalalationtiontiontiontiontiontiontiontiontiontion, with the stride be-
ing equal to the kernel size by default.

The max operation can be intuitively interpreted
as a logical disjunction, or when it follows a
series of convolutional layer that compute lo-
cal scores for the presence of parts, as a way of
encoding that at least one instance of a part is
present. It loses precise location, which makes
it invariant to local deformations.

A standard alternative is the avavavavavavavavavavaverererererererererererageageageageageageageageageageage poolpoolpoolpoolpoolpoolpoolpoolpoolpoolpoolinginginginginginginginginginging
layer that computes the average instead of the
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Figure 4.6: A 1d max pooling takes as input a D×
T tensor X , computes the max over non-overlapping
1×L sub-tensors and stores the values in a resulting
D×(T/L) tensor Y .
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max over the sub-tensors. This is a linear opera-
tion, while max pooling is not.
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4.5 Dropout

Some layers have been designed to explicitly
facilitate training, or improve the quality of the
learned representations.

One of the main contributions of that sort was
dropoutdropoutdropoutdropoutdropoutdropoutdropoutdropoutdropoutdropoutdropout [Srivastava et al., 2014]. Such a layer has
no trainable parameter but one meta-parameter
p, and takes as input a tensor of arbitrary shape.

It is usually switched off during test, in which
case its output is equal to its input. When it is
active, it has a probability p to set to zero each
activation of the input tensor independently, and
it re-scales all the activations by a factor 1

1−p
to maintain the expected value unchanged (see
Figure 4.7).

The motivation behind dropout is to favor
meaningful individual activation and discourage
group representation. Since the probability that
a group of k activations remains intact through
a dropout layer is (1−p)k , joint representations
get unreliable, which makes the training proce-
dure avoid them. It can also be seen as a noise
injection that makes the training more robust.

When dealing with images and 2d tensors, the
short-term correlation of the signals and the re-
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Figure 4.7: Dropout can process a tensor of arbitrary
shape. During training (left), it sets activations at ran-
dom to zero with probability p and applies a multiply-
ing factor to keep the expected values unchanged. Dur-
ing test (right), it keeps all the activations unchanged.

sulting redundancy negates the effect of dropout
since activations set to zero can be inferred from
their neighbors. Hence, dropout for 2d tensors
sets entire channels to zero instead of individual
activations.

Although dropout is generally used to improve
training and is inactive during inference, it can
be used in certain setups as a randomization
strategy, for instance to estimate empirically con-
fidence scores [Gal and Ghahramani, 2015].
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4.6 Normalizing layers

An important class of operators to facilitate the
training of deep architectures are the nornornornornornornornornornornormalmalmalmalmalmalmalmalmalmalmaliziziziziziziziziziziz-
inginginginginginginginginginging laylaylaylaylaylaylaylaylaylaylayersersersersersersersersersersers which force the empirical mean and
variance of groups of activations.

The main layer in that family is batchbatchbatchbatchbatchbatchbatchbatchbatchbatchbatch nornornornornornornornornornornormalmalmalmalmalmalmalmalmalmalmal-
izaizaizaizaizaizaizaizaizaizaizationtiontiontiontiontiontiontiontiontiontion [Ioffe and Szegedy, 2015] which is the
only standard layer to process batches instead
of individual samples. It is parameterized by a
meta-parameter D and two series of trainable
scalar parameters β1,...,βD and γ1,...,γD .

Given a batch of B samples x1,...,xB of dimen-
sion D, it first computes for each of the D com-
ponents an empirical mean m̂d and variance v̂d
across the batch

m̂d=
1

B

B∑
b=1

xb,d

v̂d=
1

B

B∑
b=1

(xb,d−m̂d)
2

from which it computes for every component
xb,d a normalized value zb,d, with empirical
mean 0 and variance 1, and from it the final
result value yb,d with mean βd and standard de-
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batchnorm layernorm

Figure 4.8: Batch normalization normalizes across the
sample index dimension B and all spatial dimensions
if any, so B,H,W for a B×D×H×W batch tensor,
and scales/shifts according toD, which is implemented
as a component-wise product by γ and a sum with β
of the corresponding sub-tensors (left). Layer normal-
ization normalizes across D and spatial dimensions,
and scales/shifts according to the same (right).
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viation γd

zb,d=
xb,d−m̂d√
v̂d+ϵ

yb,d= γdzb,d+βd.

Because this normalization is defined across a
batch, it is done only during training. During
test, the layer transforms individual samples ac-
cording to the m̂ds and v̂ds estimated with a
moving average over the full training set, which
boils down to a fix affine transformation per-
component.

The motivation behind batch normalization was
to avoid that a change of scaling in an early layer
of the network during training impacts all the
layers that follow, that then have to adapt their
trainable parameters accordingly. Although the
real mode of action may be more complicated
than this initial motivation, this layer facilitates
considerably the training of deep models.

In the case of 2d tensors, to follow the prin-
ciple of convolutional layers of processing all
locations similarly, the normalization is done
per-channel across all 2d positions, and β and
γ remain vectors of dimension D so that the
scaling/shift does not depend on the 2d posi-
tion. Hence if the tensor to process is of shape
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B×D×H×W , the layer computes (m̂d,v̂d), for
d=1,...,D from the corresponding B×H×W
slice, normalizes it accordingly, and finally scales
and shifts its components with the trainable pa-
rameters βd and γd.

So, given a B×D tensor, batch normalization
normalizes it across B and scales/shifts it ac-
cording to D, which can be implemented as a
component-wise product by γ and a sum with
β. Given a B×D×H×W it normalizes across
B,H,W and scales/shifts according to D (see
Figure 4.8, left).

This can be generalized depending on these di-
mensions. For instance layerlayerlayerlayerlayerlayerlayerlayerlayerlayerlayer nornornornornornornornornornornormalmalmalmalmalmalmalmalmalmalmalizaizaizaizaizaizaizaizaizaizaizationtiontiontiontiontiontiontiontiontiontion [Ba
et al., 2016], computes moments and normal-
izes across all components of individual samples,
and scale and shift components individually (see
Figure 4.8, right). So, given a B×D tensor, it
normalizes across D, and scales/shifts also ac-
cording to D. Given a B×D×H×W tensor, it
normalizes it across D,H,W and scales/shifts
according to the same.

Contrary to batch normalization, since it pro-
cesses samples individually, it behaves the same
during training and test.
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4.7 Skip connections

Another technique that mitigates the vanishing
gradient and allows the training of deep architec-
ture are the skipskipskipskipskipskipskipskipskipskipskip conconconconconconconconconconconnecnecnecnecnecnecnecnecnecnecnectionstionstionstionstionstionstionstionstionstionstions [Long et al., 2014;
Ronneberger et al., 2015]. They are not layers
per se, but an architectural design in which out-
puts of some layers are transported as-is to other
layers further in the model, bypassing process-
ing in-between. This unmodified signal can be
concatenated or added to the input to the layer
the connection branches into (see Figure 4.9). A
particular type of skip connections are the residresidresidresidresidresidresidresidresidresidresid-
ualualualualualualualualualualual conconconconconconconconconconconnecnecnecnecnecnecnecnecnecnecnectionstionstionstionstionstionstionstionstionstionstions which combine the signal with
a sum, and usually skip only a few layers (see
Figure 4.9, right).

The main desirable property of this design is to
ensure that, even in the case of gradient-killing
processing at a certain stage, the gradient will
still propagate through the skip connections.
Residual connections in particular allow to build
deep models with up to several hundreds layers,
and key models, such as the residresidresidresidresidresidresidresidresidresidresidualualualualualualualualualualual netnetnetnetnetnetnetnetnetnetnetworksworksworksworksworksworksworksworksworksworksworks
[He et al., 2015] in computer vision, see § 5.2,
and the TransTransTransTransTransTransTransTransTransTransTransformformformformformformformformformformformersersersersersersersersersersers [Vaswani et al., 2017] in
natural language processing, see § 5.3, are en-
tirely composed of blocks of layers with residual
connections.
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Figure 4.9: Skip connections, highlighted in red on this
figure, transport the signal unchanged across multiple
layers. Some architectures (center) that downscale and
re-upscale the representation size to operate at multiple
scales, have skip connections to feed outputs from the
early parts of the network to later layers operating at
the same scales [Long et al., 2014; Ronneberger et al.,
2015]. The residual connections (right) are a special
type of skip connections that sum the original signal
to the transformed one, and are usually short-term,
bypassing at max a handful of layers [He et al., 2015].
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Their role can also be to facilitate multi-scale rea-
soning in models that reduce the signal size be-
fore re-expanding it, by connecting layers with
compatible size. In the case of residual connec-
tions, they may also facilitate the learning by
simplifying the task to finding a differential im-
provement instead of a full update.
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4.8 Attention layers

In many applications there is a need for a pro-
cessing able to combine local information at lo-
cations far apart in a tensor. This can be for
instance distant details for coherent and realistic
imimimimimimimimimimimageageageageageageageageageageage synsynsynsynsynsynsynsynsynsynsynthethethethethethethethethethethesississississississississississis, or words at different positions
in a paragraph to make a grammatical or seman-
tic decision in natnatnatnatnatnatnatnatnatnatnatuuuuuuuuuuuralralralralralralralralralralral lanlanlanlanlanlanlanlanlanlanlanguageguageguageguageguageguageguageguageguageguageguage proproproproproproproproproproprocesscesscesscesscesscesscesscesscesscesscessinginginginginginginginginginging.

Fully connected layers cannot process large di-
mension signals, nor signals of variable size, and
convolutional layers are not able to propagate
information quickly. Strategies that aggregate
the results of convolutions, for instance by aver-
aging them over large spatial areas, suffer from
mixing multiple signals into a limited number of
dimensions.

AtAtAtAtAtAtAtAtAtAtAttentententententententententententiontiontiontiontiontiontiontiontiontiontion laylaylaylaylaylaylaylaylaylaylayersersersersersersersersersersers are specifically addressing this
problem by computing for every component of
the resulting tensor an attention score to every
component of the input tensor, without locality
constraints, and averaging features across the
full tensor accordingly [Vaswani et al., 2017].

Even though they are substantially more com-
plicated than other layers, they have become a
standard element in many recent models. They
are in particular the key building block of TransTransTransTransTransTransTransTransTransTransTrans-
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A ·

Y

Figure 4.10: The attention operator Y =att(Q,K,V )
computes first an attention matrix A as the per-query
softargmax of Q⊤K , and then computes the product
between A and V . See Equation 4.3. This operator can
be made causalcausalcausalcausalcausalcausalcausalcausalcausalcausalcausal by forcing all the upper-diagonal terms
of the matrix A to zero before the normalization.

formformformformformformformformformformformersersersersersersersersersersers, the dominant architecture for large lan-
guage models. See § 5.3 and § 7.1.

Attention operator

Given

• a tensor Q of queriesqueriesqueriesqueriesqueriesqueriesqueriesqueriesqueriesqueriesqueries of size NQ×DQK,
• a tensorK of keyskeyskeyskeyskeyskeyskeyskeyskeyskeyskeys of size NKV×DQK, and
• a tensor V of valvalvalvalvalvalvalvalvalvalvaluesuesuesuesuesuesuesuesuesuesues of size NKV×DV,

the atatatatatatatatatatattentententententententententententiontiontiontiontiontiontiontiontiontiontion opopopopopopopopopopoperererererererererereraaaaaaaaaaatortortortortortortortortortortor computes a tensor

Y =att(K,Q,V )
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Figure 4.11: The attention operator can be inter-
preted as matching every query Qn with all the
keys K1,...,KM to get normalized attention scores
An,1,...,An,M (left, and Equation 4.1), and then aver-
aging the values V1,...,VM with these scores to com-
pute the resulting Yn (right, and Equation 4.2).

of dimensionNQ×DV. To do so, it first computes
for every query index n and every key indexm
an attention score An,m as the sofsofsofsofsofsofsofsofsofsofsoftttttttttttargmaxargmaxargmaxargmaxargmaxargmaxargmaxargmaxargmaxargmaxargmax of
the dot products between the query Qn and the
keys:

An,m=
exp

(
1√
DQKQ

⊤
nKm

)
∑

rexp
(

1√
DQKQ

⊤
nKr

) , (4.1)

where the scaling factor 1√
DQK keeps the range

of values roughly unchanged even for largeDQK.

Then a retrieved value is computed for each
query by averaging the values according to the
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attention scores:

Yn=
∑
m

An,mVm. (4.2)

See Figure 4.10. So if a query Qn matches one
keyKm far more than all the others, the corre-
sponding attention score An,m will be close to
one, and the retrieved value Yn will be the value
Vm associated to that key. But if it matches sev-
eral keys equally, then Yn will be the average of
the associated values.

This computation can be implemented efficiently
as

att(Q,K,V )= softargmax

(
QK⊤
√
DQK

)
︸ ︷︷ ︸

A

V. (4.3)

This operator can be made causalcausalcausalcausalcausalcausalcausalcausalcausalcausalcausal by forcing the
attention matrix to be lower-diagonal, allowing
Yn to depend only on keys and values of indices
less then or equal to n.

Multi-head Attention Layer

This parameter-less attention operator is the
key element in the multimultimultimultimultimultimultimultimultimultimulti-headheadheadheadheadheadheadheadheadheadhead atatatatatatatatatatattentententententententententententiontiontiontiontiontiontiontiontiontiontion layerlayerlayerlayerlayerlayerlayerlayerlayerlayerlayer
depicted in Figure 4.12. This layer has for meta-
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Figure 4.12: The Multi-head Attention layer applies
for each of its h=1,...,H heads a parametrized lin-
ear transformation to individual elements of the input
sequences XQ,XK,XV to get sequences Q,K,V that
are processed by the attention operator to compute Yh.
These H sequences are concatenated along features,
and individual elements are passed through one last
linear operator to get the final result sequence Y .
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parameters a numberH of heads, and the shapes
of three series of H trainable weight matrices

• W Q of size H×D×DQK,
• W K of size H×D×DQK, and
• W V of size H×D×DV,

to compute respectively the queries, the keys,
and the values from the input, and a final weight
matrix W O of size HDV×D to aggregate the
per-head results.

It takes as input three sequences

• XQ of size NQ×D,
• XK of size NKV×D, and
• XV of size NKV×D,

from which it computes, for h=1,...,H

Yh=att
(
XQW Q

h ,X
KW K

h ,X
VW V

h

)
.

These sequences Y1,...,YH are concatenated
along the feature dimension and each individual
element of the resulting sequence is multiplied
byW O to get the final result

Y =(Y1 | ··· |YH)W O.

As we will see in § 5.3 and on Figure 5.6, this
layer is used to build two model sub-structures:
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selfselfselfselfselfselfselfselfselfselfself-atatatatatatatatatatattentententententententententententiontiontiontiontiontiontiontiontiontiontion blocksblocksblocksblocksblocksblocksblocksblocksblocksblocksblocks, in which the three input
sequences XQ, XK, and XV are the same, and
crosscrosscrosscrosscrosscrosscrosscrosscrosscrosscross-atatatatatatatatatatattentententententententententententiontiontiontiontiontiontiontiontiontiontion blocksblocksblocksblocksblocksblocksblocksblocksblocksblocksblocks, where XK and XV are
the same.

It is noteworthy that the attention operator, and
consequently the multi-head attention layer, is
invariant to a permutation of the keys and values,
and equivariant to a permutation of the queries,
as it would permute the resulting tensor simi-
larly.
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4.9 Token embedding

In many situations, we need to convert discrete
tokens into vectors. This can be donewith an ememememememememememem-
bedbedbedbedbedbedbedbedbedbedbeddingdingdingdingdingdingdingdingdingdingding layerlayerlayerlayerlayerlayerlayerlayerlayerlayerlayer which consists of a lookup table
that directly maps integers to vectors.

Such a layer is defined by two meta-parameters:
the number N of possible token values, and the
dimensionD of the output vectors, and one train-
able N×D weight matrixM .

Given as input an integer tensor X of dimen-
sion D1×···×DK and values in {0,...,N−1}
such a layer returns a real-valued tensor Y of
dimension D1×···×DK×D with

∀d1,...,dK ,
Y [d1,...,dK ] =M [X[d1,...,dK ]].
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4.10 Positional encoding

While the processing of a fully connected layer
is specific to both the positions of the features
in the input tensor, and to the position of the
resulting activation in the output tensor, convo-
lutional layers and multi-head attention layers
are oblivious to the absolute position in the ten-
sor. This is key to their strong invariance and
inductive bias, which is beneficial to deal with a
stationary signal.

However this can be an issue in certain situations
where a proper processing has to access the abso-
lute positioning. This is the case for instance for
image synthesis, where the statistics of a scene
is not totally stationary, or in natural language
processing where the relative positions of words
strongly modulate the meaning of a sentence.

The standard way to cope with this problem is to
add or concatenate to the feature representation,
at every position, a popopopopopopopopopoposisisisisisisisisisisitionaltionaltionaltionaltionaltionaltionaltionaltionaltionaltional enenenenenenenenenenencodcodcodcodcodcodcodcodcodcodcodinginginginginginginginginginging, that is a
feature vector that depends on the location, and
allows to recover it. It can be learned as other
layer parameters, or defined analytically.

For instance for a series of vectors of dimension
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D, Vaswani et al. [2017] add

pos-enc[t,d] = sin
(

t
T d/D

)
if d∈ 2N

cos
(

t
T (d−1)/D

)
otherwise,

with T =104.
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Chapter 5

Architectures

The field of deep learning has developed through
the years for each application domain multiple
deep architectures that exhibit good trade-off
with respect to multiple criteria of interest: e.g.
ease of training, accuracy of prediction, memory
footprint, computational cost, scalability.
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5.1 Multi-Layer Perceptrons

The simplest deep architecture is the MultiMultiMultiMultiMultiMultiMultiMultiMultiMultiMulti-
LayerLayerLayerLayerLayerLayerLayerLayerLayerLayerLayer PerPerPerPerPerPerPerPerPerPerPercepcepcepcepcepcepcepcepcepcepceptrontrontrontrontrontrontrontrontrontrontron (MLPMLPMLPMLPMLPMLPMLPMLPMLPMLPMLP), which takes the form
of a succession of fullyfullyfullyfullyfullyfullyfullyfullyfullyfullyfully conconconconconconconconconconconnectednectednectednectednectednectednectednectednectednectednected laylaylaylaylaylaylaylaylaylaylayersersersersersersersersersersers sepa-
rated by acacacacacacacacacacactititititititititititivavavavavavavavavavavationtiontiontiontiontiontiontiontiontiontion funcfuncfuncfuncfuncfuncfuncfuncfuncfuncfunctionstionstionstionstionstionstionstionstionstionstions. See an example
on Figure 5.1. For historical reasons, in such a
model, the number of hidhidhidhidhidhidhidhidhidhidhiddendendendendendendendendendenden laylaylaylaylaylaylaylaylaylaylayersersersersersersersersersersers refers to the
number of linear layers, excluding the last one.

A key theoretical result is the uniuniuniuniuniuniuniuniuniuniuniververververververververververversalsalsalsalsalsalsalsalsalsalsal apapapapapapapapapapapproxproxproxproxproxproxproxproxproxproxproxiiiiiiiiiii-
mamamamamamamamamamamationtiontiontiontiontiontiontiontiontiontion thethethethethethethethethethetheoooooooooooremremremremremremremremremremrem [Cybenko, 1989] that states that
if the activation function σ is not polynomial,

X

fully-conn

relu

fully-conn

relu

fully-conn

Y

50

25

10

2

Figure 5.1: This multi-layer perceptron takes as input
a one dimension tensor of size 50, is composed of three
fully connected layers with outputs of dimensions re-
spectively 25, 10, and 2, the two first followed by ReLU
layers.
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any continuous function f can be approximated
arbitrarily well uniformly on a compact by a
model of the form l2◦σ◦l1 where l1 and l2 are
affine. Such a model is a MLP with a single hid-
den layer, and this result implies that it can ap-
proximate anything of practical value. However
this approximation holds if the dimension of the
first linear layer’s output can be arbitrarily large.

In spite of their simplicity, MLPs remain an im-
portant tool when the dimension of the signal
to process is not too large.
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5.2 Convolutional networks

The standard architecture for processing imimimimimimimimimimimagesagesagesagesagesagesagesagesagesagesages
is a conconconconconconconconconconconvovovovovovovovovovovolululululululululululutionaltionaltionaltionaltionaltionaltionaltionaltionaltionaltional netnetnetnetnetnetnetnetnetnetnetworkworkworkworkworkworkworkworkworkworkwork, or conconconconconconconconconconconvnetvnetvnetvnetvnetvnetvnetvnetvnetvnetvnet, that
combines multiple conconconconconconconconconconconvovovovovovovovovovovolululululululululululutionaltionaltionaltionaltionaltionaltionaltionaltionaltionaltional laylaylaylaylaylaylaylaylaylaylayersersersersersersersersersersers, either
to reduce the signal size before it can be pro-
cessed by fullyfullyfullyfullyfullyfullyfullyfullyfullyfullyfully conconconconconconconconconconconnectednectednectednectednectednectednectednectednectednectednected laylaylaylaylaylaylaylaylaylaylayersersersersersersersersersersers, or to output a
2d signal also of large size.

LeNet-like

The original LeNetLeNetLeNetLeNetLeNetLeNetLeNetLeNetLeNetLeNetLeNet model for image classifica-
tion [LeCun et al., 1998] combines a series of 2d
convolutional layers and max pooling layers that
play the role of feature extractor, with a series of
fully connected layers which act like a MLP and
performs the classification per se. See Figure 5.2
for an example.

This architecture was the blueprint for many
models that share its structure and are simply
larger, such as AlexNet [Krizhevsky et al., 2012]
or the VGG family [Simonyan and Zisserman,
2014].

Residual networks

Standard convolutional neural networks that fol-
low the architecture of the LeNet family are not
easily extended to deep architectures and suffer
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Figure 5.2: Example of a small LeNetLeNetLeNetLeNetLeNetLeNetLeNetLeNetLeNetLeNetLeNet-like network for
classifying 28×28 grayscale images of handwritten
digits [LeCun et al., 1998]. Its first half is convolutional,
and alternates convolutional layers per se and max
pooling layers, reducing the signal dimension for 28×
28 scalars to 256. Its second half processes this 256
dimension feature vector through a one hidden layer
perceptron to compute 10 logit scores corresponding to
the ten possible digits.
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Figure 5.3: A residual block.

from the vanishing gradient problem. The residresidresidresidresidresidresidresidresidresidresid-
ualualualualualualualualualualual netnetnetnetnetnetnetnetnetnetnetworksworksworksworksworksworksworksworksworksworksworks, or resnetsresnetsresnetsresnetsresnetsresnetsresnetsresnetsresnetsresnetsresnets, proposed by He et al.
[2015] explicitly address the issue of the van-
ishing gradient with residresidresidresidresidresidresidresidresidresidresidualualualualualualualualualualual conconconconconconconconconconconnecnecnecnecnecnecnecnecnecnecnectionstionstionstionstionstionstionstionstionstionstions (see
§ 4.7), that allow hundreds of layers. They have
become standard architectures for computer vi-
sion applications, and exist in multiple versions
depending on the number of layers. We are go-
ing to look in detail at the architecture of the
ResNetResNetResNetResNetResNetResNetResNetResNetResNetResNetResNet-5050505050505050505050 for classification.

89 144



X

conv-2d k=1

batchnorm

relu

conv-2d k=3 s=S p=1

batchnorm

relu

conv-2d k=1

batchnorm

+

relu

Y

conv-2d k=1 s=S

batchnorm

C×H×W

C
S ×H×W

C
S × H

S × W
S

4C
S × H

S × W
S

4C
S × H

S × W
S

Figure 5.4: A downscaling residual block. It admits a
meta-parameter S, the stride of the first convolution
layer, which modulates the reduction of the tensor size.

As other resnets, it is composed of a series of
residresidresidresidresidresidresidresidresidresidresidualualualualualualualualualualual blocksblocksblocksblocksblocksblocksblocksblocksblocksblocksblocks, each of them combining sev-
eral convolutional layers, batch norm layers, and
ReLU layers, wrapped into a residual connection.
Such a block is pictured on Figure 5.3.

A key requirement for high performance with
real images is to propagate a signal with a large
number of channels, to allow a rich represen-
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Figure 5.5: Structure of the ResNet-50 [He et al., 2015].
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tation. However the parameter count of a con-
volutional layer, and its computational cost, are
quadratic with the number of channels. This
residual block mitigates this problem by first re-
ducing the number of channels with a 1×1 con-
volution, then operating spatially with a 3×3
convolution on this reduced number of chan-
nels, and then up-scaling the number of chan-
nels, again with a 1×1 convolution.

The network reduces the dimensionality of the
signal to finally compute the logits for the clas-
sification. This is done thanks to an architec-
ture composed of several sections, each starting
with a downdowndowndowndowndowndowndowndowndowndownscalscalscalscalscalscalscalscalscalscalscalinginginginginginginginginginging residresidresidresidresidresidresidresidresidresidresidualualualualualualualualualualual blockblockblockblockblockblockblockblockblockblockblock that halves
the height and width of the signal, and doubles
the number of channels, followed by a series
of residual blocks. Such a downscaling resid-
ual block has a structure similar to a standard
residual block, except that it requires a residual
connection that changes the tensor shape. This
is achieved with a 1×1 convolution with a stride
of two (see Figure 5.4).

The overall structure of the ResNet-50 is pre-
sented on Figure 5.5. It starts with a 7×7 con-
volutional layer that converts the three chan-
nel input image to a 64 channel image of half
the size, followed by four sections of residual
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blocks. Surprisingly, in the first section, there
is no downscaling, only an increase of the num-
ber of channels by a factor of 4. The output of
the last residual block is 2048×7×7, which is
converted to a vector of dimension 2048 by an
average pooling of kernel size 7×7, and then
processed through a fully connected layer to get
the final logits, here for 1000 classes.
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5.3 Attention models

As stated in § 4.8, many applications, in partic-
ular from natural language processing, greatly
benefit from models that include attention mech-
anisms. The architecture of choice for such tasks,
which has been instrumental in recent advances
in deep learning, is the TransTransTransTransTransTransTransTransTransTransTransformerformerformerformerformerformerformerformerformerformerformer proposed
by Vaswani et al. [2017].

Transformer

The original Transformer, pictured on Figure 5.7,
was designed for sequence-to-sequence trans-
lation. It combines an encoder that processes
the input sequence to get a refined representa-
tion, and an autoregressive decoder that gener-
ates each token of the result sequence, given the
encoder’s representation of the input sequence,
and the output tokens generated so far. As the
residual convolutional networks of § 5.2, both
the encoder and the decoder of the Transformer
are sequences of compounded blocks built with
residual connections.

The selfselfselfselfselfselfselfselfselfselfself-atatatatatatatatatatattentententententententententententiontiontiontiontiontiontiontiontiontiontion blockblockblockblockblockblockblockblockblockblockblock, pictured on the left of
Figure 5.6, combines a MultiMultiMultiMultiMultiMultiMultiMultiMultiMultiMulti-HeadHeadHeadHeadHeadHeadHeadHeadHeadHeadHead AtAtAtAtAtAtAtAtAtAtAttentententententententententententiontiontiontiontiontiontiontiontiontiontion
layerlayerlayerlayerlayerlayerlayerlayerlayerlayerlayer, see § 4.8, that recombines information
globally, allowing any position to collect infor-
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Figure 5.6: SelfSelfSelfSelfSelfSelfSelfSelfSelfSelfSelf-atatatatatatatatatatattentententententententententententiontiontiontiontiontiontiontiontiontiontion blockblockblockblockblockblockblockblockblockblockblock (left) and crosscrosscrosscrosscrosscrosscrosscrosscrosscrosscross-atatatatatatatatatatattententententententententententen-
tiontiontiontiontiontiontiontiontiontiontion blockblockblockblockblockblockblockblockblockblockblock (right). These specific structures proposed by
Radford et al. [2018] differ slightly from the original
architecture of Vaswani et al. [2017], in particular by
having the layer normalization first in the residual
blocks.

mation from any other positions, with a one
hidden layer MLPMLPMLPMLPMLPMLPMLPMLPMLPMLPMLP that updates representations
at every position separately.

The crosscrosscrosscrosscrosscrosscrosscrosscrosscrosscross-atatatatatatatatatatattentententententententententententiontiontiontiontiontiontiontiontiontiontion blockblockblockblockblockblockblockblockblockblockblock, pictured on the right
of Figure 5.6, is similar except that it takes as
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Figure 5.7: Original encoder-decoder TransTransTransTransTransTransTransTransTransTransTransformerformerformerformerformerformerformerformerformerformerformer
modelmodelmodelmodelmodelmodelmodelmodelmodelmodelmodel for sequence-to-sequence translation [Vaswani
et al., 2017].
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input two sequences, one to compute the queries,
and one the keys and values.

The encoder of the Transformer (see Figure
5.7, bottom), recodes the input sequence of dis-
crete tokensX1,...XT with an ememememememememememembedbedbedbedbedbedbedbedbedbedbeddingdingdingdingdingdingdingdingdingdingding layerlayerlayerlayerlayerlayerlayerlayerlayerlayerlayer,
see § 4.9, and adds a popopopopopopopopopoposisisisisisisisisisisitionaltionaltionaltionaltionaltionaltionaltionaltionaltionaltional enenenenenenenenenenencodcodcodcodcodcodcodcodcodcodcodinginginginginginginginginginging, see
§ 4.10, before processing it with several self-
attention blocks to generate a refined represen-
tation Z1,...,ZT .

The decoder (see Figure 5.7, top), takes as in-
put the sequence Y1,...,YS−1 of result tokens
produced so far, similarly recodes them through
an embedding layer, adds a positional encoding
and processes it through alternating causalcausalcausalcausalcausalcausalcausalcausalcausalcausalcausal self-
attention blocks, and cross-attention blocks, to
produce the logits predicting the next tokens.
These cross-attention blocks compute their keys
and values from the encoder’s result represen-
tation Z1,...,ZT , which allows the resulting se-
quence to be a function of the original sequence
X1,...,XT .

As we saw in § 3.2, being causalcausalcausalcausalcausalcausalcausalcausalcausalcausalcausal means that for
a given s the logits for P̂ (Ys |Yt<s) it computes
depend only on the tokens Yt,t < s in the in-
put sequence (see Figure 3.1). This ensures that,
given a full input sequence, the output at every
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Figure 5.8: GPT model [Radford et al., 2018].

position is the output that would have been ob-
tained if the input was only available until just
before that position.

Generative Pre-trained Transformer

The Generative Pre-trained Transformer (GPTGPTGPTGPTGPTGPTGPTGPTGPTGPTGPT,
Radford et al., 2018, 2019), pictured on Figure 5.8
is a pure autoregressive model that consists of a
succession of causal self-attention blocks, hence
a causal version of the original Transformer en-
coder. This class of models scales extremely well,
up to hundreds of billions of trainable parame-
ters [Brown et al., 2020].
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Vision Transformer

Transformers have been put to use for image
classification with the ViViViViViViViViViViVisionsionsionsionsionsionsionsionsionsionsion TransTransTransTransTransTransTransTransTransTransTransformerformerformerformerformerformerformerformerformerformerformer (ViTViTViTViTViTViTViTViTViTViTViT)
model [Dosovitskiy et al., 2020], see Figure 5.9.

It splits the three-channel input image intoM
patches of resolutionP×P , that it flattens to cre-
ate a sequence of vectors X1,...,XM of shape
M×3P 2. This sequence is multiplied by a train-
able matrixW E of shape 3P 2×D to map it to a
M×D sequence, to which is concatenated one
trainable vector E0. The resulting (M+1)×D
sequence E0,...,EM is then processed through
multiple self-attention blocks. See § 5.3 and Fig-
ure 5.6.

The first element Z0 in the result sequence,
which corresponds to E0 and is not associated
to any part of the image, is finally processed by
a two hidden layer MLP to get the final C logits.
Such a token added for a readout of a class pre-
diction was introduced by Devlin et al. [2018]
in the BERT model and is referred to as a CLSCLSCLSCLSCLSCLSCLSCLSCLSCLSCLS
tototototototototototokenkenkenkenkenkenkenkenkenkenken.
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Part III

Applications
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Chapter 6

Prediction

A first category of applications such as face
recognition, sentiment analysis, object detection,
or speech recognition, requires to predict an un-
known value from an available signal.
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6.1 Image denoising

A direct application of deep models to image pro-
cessing is to recover from degradation by using
the redundancy in the statistical structure of im-
ages. The petals of a sunflower on a grayscale
picture can be colored with high confidence, and
the texture of a geometric shape such as a table
on a low-light grainy picture can be corrected
by averaging it over a large area likely to be
uniform.

A dededededededededededenoisnoisnoisnoisnoisnoisnoisnoisnoisnoisnoisinginginginginginginginginginging auauauauauauauauauauautoentoentoentoentoentoentoentoentoentoentoencodercodercodercodercodercodercodercodercodercodercoder is a model that takes
as input a degraded signal X̃ and computes an
estimate of the original one X .

Such amodel is trained by collecting a large num-
ber of clean samples paired with their degraded
inputs. The latters can be captured in degraded
conditions, such as low-light or inadequate fo-
cus, or generated algorithmically, for instance
by converting the clean sample to grayscale, re-
ducing its size, or compressing it aggressively
with a lossy compression method.

The standard training procedure for denoising
autoencoders uses the MSE loss, in which case
the model aims at computing E(X | X̃). This
quantity may be problematic when X is not to-
tally determined by X̃ , in which case some parts
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of the generated signal may be an unrealistic
blurry average.

104 144



6.2 Image classification

ImImImImImImImImImImImageageageageageageageageageageage clasclasclasclasclasclasclasclasclasclasclassisisisisisisisisisisififififififififififificacacacacacacacacacacationtiontiontiontiontiontiontiontiontiontion is the simplest strategy to
extract semantics from an image, and consists
of predicting a class among a finite predefined
number of classes, given an input image.

The standard models for this task are convolu-
tional networks, such as ResNets, see § 5.2, and
attention-based models such as ViT, see § 5.3.
Those models generate a vector of logits with as
many dimensions as there are classes.

The training procedure simply minimizes the
cross-entropy loss, see § 3.1. Usually perfor-
mance can be improved with datadatadatadatadatadatadatadatadatadatadata augaugaugaugaugaugaugaugaugaugaugmenmenmenmenmenmenmenmenmenmenmentatatatatatatatatatata-
tiontiontiontiontiontiontiontiontiontiontion, which consists of modifying the training
sampleswith hand-designed random transforma-
tions, that do not change the semantic content of
the image, such as cropping, scaling, mirroring,
or color changes.
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6.3 Object detection

A more complex task for image understanding
is obobobobobobobobobobobjectjectjectjectjectjectjectjectjectjectject dededededededededededetectectectectectectectectectectectiontiontiontiontiontiontiontiontiontiontion, in which case the objective
is, given an input image, to predict the classes
and positions of objects of interest.

An object position is formalized as the four coor-
dinates (x1,y1,x2,y2) of a rectangular bounding
box, and the ground truth associated to each
training image is a list of such bounding boxes,
each labeled with the class of the object in it.

The standard approach to solve this task, for
instance by the SinSinSinSinSinSinSinSinSinSinSingleglegleglegleglegleglegleglegle ShotShotShotShotShotShotShotShotShotShotShot DeDeDeDeDeDeDeDeDeDeDetectectectectectectectectectectectortortortortortortortortortortor (SSDSSDSSDSSDSSDSSDSSDSSDSSDSSDSSD, Liu
et al., 2015), is to use a convolutional neural
network that produces a sequence of image
representations Zs of size Ds×Hs×Ws, s=
1,...,S, with decreasing spatial resolution Hs×
Ws down to 1×1 for s=S (see Figure 6.1). Each
of those tensors covers the input image in full,
so the h,w indices correspond to a partitioning
of the image lattice into regular squares that
gets coarser when s increases. As seen in § 4.2,
and illustrated on Figure 4.4, due to the succes-
sion of convolutional layers, a feature vector
(Zs[0,h,w],...,Zs[Ds−1,h,w]) is a descriptor
of an area of the image, called its rererererererererererecepcepcepcepcepcepcepcepcepcepceptivetivetivetivetivetivetivetivetivetivetive fieldfieldfieldfieldfieldfieldfieldfieldfieldfieldfield,
that is larger than this square but centered on
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Figure 6.1: A convolutional object detector processes the
input image to generate a sequence of representations
of decreasing resolutions. It computes for every h,w, at
every scale s, a pre-defined number of bounding boxes
whose centers are in the image area corresponding to
that cell, and whose size are such that they fit in its
receptive field. Each prediction takes the form of the
estimates (x̂1,x̂2,ŷ1,ŷ2), represented by the red boxes
above, and a vector of C+1 logits for the C classes of
interest, and an additional “no object” class.
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Figure 6.2: Examples of object detection with the Single-
Shot Detector [Liu et al., 2015].
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it. This results in a non-ambiguous matching of
any bounding box (x1,x2,y1,y2) to a s,h,w, de-
termined respectively bymax(x2−x1,y2−y1),
y1+y2

2 , and x1+x2
2 .

Detection is achieved by adding S convolutional
layers, each processing a Zs and computing
for every tensor indices h,w the coordinates of
a bounding box, and the associated logits. If
there are C object classes, there are C+1 logits,
the supplementary one standing for “no object.”
Hence each additional convolution layers has
4+C+1 output channels. The SSD algorithm in
particular generates several bounding boxes per
s,h,w, each dedicated to a hard-coded range of
aspect-ratios.

Training sets for object detection are costly to
create, since the labeling with bounding boxes
requires a slow human intervention. To miti-
gate this issue, the standard approach is to start
with a convolutional model that has been preprepreprepreprepreprepreprepre-
trainedtrainedtrainedtrainedtrainedtrainedtrainedtrainedtrainedtrainedtrained on a large classification data set such as
VGG-16 for the original SSD, and to replace its
final fully connected layers by additional con-
volutional ones. Surprisingly, models trained
for classification only have learned feature rep-
resentations that can be re-purposed for object
detection, even though that task involves the
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regression of geometric quantities.

During training every ground truth bounding
box is associated to its s,h,w, and induces a loss
term composed of a cross entropy loss for the
logits, and a regression loss such as MSE for the
bounding box coordinates. Every other s,h,w
free of bounding-box match induces a cross-
entropy only penalty to predict the class “no
object”.
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6.4 Semantic segmentation

The finest grain prediction task for image under-
standing is sesesesesesesesesesesemanmanmanmanmanmanmanmanmanmanmantictictictictictictictictictictic segsegsegsegsegsegsegsegsegsegsegmenmenmenmenmenmenmenmenmenmenmentatatatatatatatatatatationtiontiontiontiontiontiontiontiontiontion, which con-
sists of predicting for every pixel the class of the
object it belongs to. This can be achieved with
a standard convolutional neural network, that
outputs a convolutional map with as many chan-
nels as classes, that carry the estimated logits for
every pixel.

While a standard residual network for instance
can generate a dense output of same resolution
as its input, as for object detection, this task
requires to operate at multiple scales. This is
necessary so that any object, or sufficiently in-
formative sub-part, whatever its size, is captured
somewhere in the model by the feature represen-
tation at a single tensor position. Hence, stan-
dard architectures for that task downscale the
image with a series of convolutional layers, to in-
crease the receptive field of the activations, and
re-upscale it with a series of transposed convo-
lutional layers, or other upscaling methods such
as bilinear interpolation to make the prediction
at high resolution.

However, a strict downscaling-upscaling archi-
tecture does not allow to operate at a fine grain
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Figure 6.3: Semantic segmentation results with the
Pyramid Scene Parsing Network [Zhao et al., 2016].

when making the final prediction, since all the
signal has been transmitted through a low res-
olution representation at some point. Models
that apply such downscaling-upscaling serially
mitigate this issues with skipskipskipskipskipskipskipskipskipskipskip conconconconconconconconconconconnecnecnecnecnecnecnecnecnecnecnectionstionstionstionstionstionstionstionstionstionstions from
layers at a certain resolution, before downscal-
ing, to layers at the same resolution, after upscal-
ing [Long et al., 2014; Ronneberger et al., 2015].
Models that do it in parallel, after a convolutional
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backbone, concatenate the resulting multi-scale
representation after upscaling, before making
the final per-pixel prediction [Zhao et al., 2016].

Training is achieved with a standard cross-
entropy summed over all the pixels. As for object
detection, training can start from a netnetnetnetnetnetnetnetnetnetnetworkworkworkworkworkworkworkworkworkworkwork preprepreprepreprepreprepreprepre-
trainedtrainedtrainedtrainedtrainedtrainedtrainedtrainedtrainedtrainedtrained on a large-scale image classification data
set to compensate for the limited availability of
segmentation ground-truth.
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6.5 Speech recognition

SpeechSpeechSpeechSpeechSpeechSpeechSpeechSpeechSpeechSpeechSpeech recogrecogrecogrecogrecogrecogrecogrecogrecogrecogrecognininininininininininitiontiontiontiontiontiontiontiontiontiontion consists of converting a
sound sample into a sequence of words. There
have been plenty of approaches to this problem
historically, but a conceptually simple and recent
one proposed by Radford et al. [2022] consists of
casting it as a sequence-to-sequence translation
and then solving it with a standard attention-
based TransTransTransTransTransTransTransTransTransTransTransformerformerformerformerformerformerformerformerformerformerformer, that we described in § 5.3.

Their model first converts the sound signal into
a spectrogram, which is a one dimension series
T×D, that encodes at every time step a vector of
energies in D frequency bands. The associated
text is encoded with the BPEBPEBPEBPEBPEBPEBPEBPEBPEBPEBPE tototototototototototokkkkkkkkkkkenizerenizerenizerenizerenizerenizerenizerenizerenizerenizerenizer, see § 3.2.

The spectrogram is processed through a few 1d
convolutional layers, and the resulting repre-
sentation is fed into the encoder of the Trans-
former. The decoder directly generates a discrete
sequence of tokens, that correspond to one of the
possible tasks considered during training. Multi-
ple objectives are considered for training: tran-
scription of English or non-English text, transla-
tion from any language to English, or a detection
of non-speech sequences, such as background
music or ambient noise.

This approach allows to leverage extremely large
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data sets that combine multiple types of sound
sources with diverse ground truth.

It is noteworthy that even though the ultimate
goal of this approach is to produce a transla-
tion as deterministic as possible given the input
signal, it is formally the sampling of a text dis-
tribution conditioned on a sound sample, hence
a synthesis process. The decoder is in fact ex-
tremely similar to the generative model of § 7.1.
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6.6 Text-image representations

A powerful approach to image understanding
consists of learning consistent image and text
representations.

The Contrastive Language Image Pre-training
(CLIPCLIPCLIPCLIPCLIPCLIPCLIPCLIPCLIPCLIPCLIP) proposed by Radford et al. [2021] com-
bines an image encoder f , which can be a
ResNetResNetResNetResNetResNetResNetResNetResNetResNetResNetResNet-5050505050505050505050, see § 5.2, and a text encoder g, which
is a GPTGPTGPTGPTGPTGPTGPTGPTGPTGPTGPT, see § 5.3. To use a GPT as a text encoder,
instead of a standard autoregressive model, they
add to the input sequence an “end of sentence”
token, and use the representation of this token
in the last layer as the embedding. Both embed-
dings have the same dimension which, depend-
ing on the configuration, is between 512 and
1024.

Those two models are trained from scratch from
a data set of 400 million image-text pairs (ik,tk)
collected from the internet. The training proce-
dure follows the standard mini batch stochastic
gradient descent approach but relies on a conconconconconconconconconconcon-
trastivetrastivetrastivetrastivetrastivetrastivetrastivetrastivetrastivetrastivetrastive losslosslosslosslosslosslosslosslosslossloss. The embeddings are computed for
every image and every text of the N pairs in
the mini-batch, and a cosine similarity measure
is computed not only between text and image
embeddings from each pair, but also across pairs,
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resulting in a N×N matrix of similarity score

lm,n= f(im)⊤g(tn), m=1,...,N,n=1,...,N.

The model is trained with cross entropy so that,
for ∀n the values l1,n,...,lN,n interpreted as logit
scores predict n, and similarly for ln,1,...,ln,N .

This means in practice that ∀n,m, s.t. n ̸=m the
similarity ln,n is unambiguously greater than
both ln,m and lm,n.

When it has been trained, this model can be used
to do zerozerozerozerozerozerozerozerozerozerozero-shotshotshotshotshotshotshotshotshotshotshot preprepreprepreprepreprepreprepredicdicdicdicdicdicdicdicdicdicdictiontiontiontiontiontiontiontiontiontiontion, that is classifying a
signal in absence of training examples by defin-
ing a series of candidate classes with text de-
scriptions, and computing the similarity of the
embedding of an image with the embedding of
each of those descriptions (see Figure 6.4).

Additionally, since the textual descriptions are
often detailed, such a model has to capture richer
representation of images, and pick up cues over-
looked by classifier networks. This translates to
excellent performance on challenging datasets
such as ImageNet Adversarial [Hendrycks et al.,
2019] whichwas specifically designed to degrade
or erase cues on which standard predictors rely.
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Figure 6.4: The CLIP text-image embedding [Radford
et al., 2021] allows to do zero-shot prediction by pre-
dicting what class description embedding is the most
consistent with the image embedding.
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Chapter 7

Synthesis

A second category of applications distinct from
prediction is synthesis. It consists of fitting a
density model to training samples, and providing
means to sample from this model.
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7.1 Text generation

The standard approach to texttexttexttexttexttexttexttexttexttexttext synsynsynsynsynsynsynsynsynsynsynthethethethethethethethethethethesississississississississississis is to use
an attention-based auauauauauauauauauauautoretoretoretoretoretoretoretoretoretoretoregresgresgresgresgresgresgresgresgresgresgressivesivesivesivesivesivesivesivesivesivesive modelmodelmodelmodelmodelmodelmodelmodelmodelmodelmodel. The
most successful in this domain is the GPTGPTGPTGPTGPTGPTGPTGPTGPTGPTGPT [Rad-
ford et al., 2018], that we described in § 5.3.

The encoding into tokens and the decoding is
done with the BPEBPEBPEBPEBPEBPEBPEBPEBPEBPEBPE tototototototototototokkkkkkkkkkkenizerenizerenizerenizerenizerenizerenizerenizerenizerenizerenizer, see § 3.2.

When it has been trained on very large datasets,
a LargeLargeLargeLargeLargeLargeLargeLargeLargeLargeLarge LanLanLanLanLanLanLanLanLanLanLanguageguageguageguageguageguageguageguageguageguageguage ModelModelModelModelModelModelModelModelModelModelModel (LLMLLMLLMLLMLLMLLMLLMLLMLLMLLMLLM) exhibits ex-
tremely powerful properties. Besides the syntac-
tic and grammatical structure of the language, it
has to integrate very diverse knowledge, e.g. to
predict the word following “The capital of Japan
is”, “if water is heated to 100 Celsius degrees it
turns into”, or “because her puppy was sick, Jane
was”.

More surprising, when such a model is put
in a statistical context by a “prompt” carefully
crafted, it can exhibit abilities for question an-
swering, problem solving, and chain-of-thought
that appear eerily close to high-level reasoning
[Chowdhery et al., 2022; Bubeck et al., 2023].
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7.2 Image generation

Multiple deep methods have been developed to
model and sample from a high dimension density.
A powerful one for imimimimimimimimimimimageageageageageageageageageageage synsynsynsynsynsynsynsynsynsynsynthethethethethethethethethethethesississississississississississis relies on
inverting a difdifdifdifdifdifdifdifdifdifdiffufufufufufufufufufufusionsionsionsionsionsionsionsionsionsionsion proproproproproproproproproproprocesscesscesscesscesscesscesscesscesscesscess.

The principle consists of defining analytically
a process that gradually degrades any sample,
and consequently transforms the complex and
unknown density of the data, into a simple and
well-known density such as a normal, and to
train a deep architecture to invert this degrada-
tion process [Ho et al., 2020].

In practice, given a fixed T , the diffusion process
defines a probabilities over series of T+1 sam-
ples as follows: samples x0 uniformly in the data
set, and then go on sampling xt+1∼ p(xt+1 |xt)
where p is analytically defined and such that it
gradually erases the structure that was in x0.
The setup should be such that the distribution
p(xT ) of xT is known, so in particular does not
depend on p(x0), and can be sampled.

For instance, in the setup of Ho et al. [2020], the
data is normalized to mean 0 and variance 1, and
the diffusion process consists of adding a bit of
white noise and re-normalizing the variance to
1. This process reduces exponentially the im-
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xT

x0

Figure 7.1: Image synthesis with denoising diffusion
[Ho et al., 2020]. Each sample starts as a white noise
xT (top), and is gradually de-noised by sampling iter-
atively xt−1 |xt ∼𝒩 (xt+f(xt,t;w),σt).
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portance of x0, and xt’s density can rapidly be
approximated with a normal.

The denoiser f is a deep architecture that
should model, and allow to sample from,
f(xt−1,xt,t;w)≃ p(xt−1 |xt). It can be shown
that if this one step reverse process is accurate
enough, sampling xT ∼ p(xT ) and denoising T
steps with f results in a x0 that follows p(x0).

Training f can be achieved by generating a large
number of sequences x(n)0 ,...,x

(n)
T , picking a tn

in each, and maximizing∑
n

logf(x
(n)
tn−1,x

(n)
tn ,tn;w).

Given the form of their diffusion process, Ho
et al. [2020] have a denoising of the form

xt−1 |xt∼𝒩 (xt+f(xt,t;w);σt),

where σt is defined analytically.

In practice, what such a model does is to ini-
tially hallucinate structures by pure luck in the
random noise, and then to gradually build more
elements that emerge from the noise by reinforc-
ing the most likely continuation of the image
obtained so far.
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The missing bits

For the sake of concision, this volume skips a lot
of important topics, in particular:

• ReReReReReReReReReReRecurcurcurcurcurcurcurcurcurcurcurrentrentrentrentrentrentrentrentrentrentrent NeuNeuNeuNeuNeuNeuNeuNeuNeuNeuNeuralralralralralralralralralralral NetNetNetNetNetNetNetNetNetNetNetworksworksworksworksworksworksworksworksworksworksworks (RNNRNNRNNRNNRNNRNNRNNRNNRNNRNNRNN) were the
standard approach to deal with temporal se-
quences such as text or sound samples, before
attention models demonstrated greater perfor-
mance. These architectures possess an inter-
nal hidhidhidhidhidhidhidhidhidhidhiddendendendendendendendendendenden statestatestatestatestatestatestatestatestatestatestate, that get updated every time
a component of the sequence get processed.
Their main components are layers such as LSTM
[Hochreiter and Schmidhuber, 1997] or GRU
[Cho et al., 2014]. Training a recurrent archi-
tecture amounts to unfolding it in time, which
results in a long composition of operators. This
historically prompted the design of key tech-
niques now used for deep architectures such as
recrecrecrecrecrecrecrecrecrecrectititititititititititifiersfiersfiersfiersfiersfiersfiersfiersfiersfiersfiers and gating, a form of skip connections
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which are modulated dynamically.

• An auauauauauauauauauauautoentoentoentoentoentoentoentoentoentoentoencodercodercodercodercodercodercodercodercodercodercoder is a model that maps the in-
put signal, possibly of high dimension, to a low-
dimension latent representation, and maps it
back to the original signal, ensuring that infor-
mation has been preserved. We saw it in § 6.1
for denoising, but it can be used to discover au-
tomatically a meaningful low-dimension param-
eterization of the data manifold. The VariVariVariVariVariVariVariVariVariVariVariaaaaaaaaaaationaltionaltionaltionaltionaltionaltionaltionaltionaltionaltional
AuAuAuAuAuAuAuAuAuAuAutoentoentoentoentoentoentoentoentoentoentoencodercodercodercodercodercodercodercodercodercodercoder (VAEVAEVAEVAEVAEVAEVAEVAEVAEVAEVAE) proposed by Kingma and
Welling [2013] has a similar structure, but im-
poses through the loss a distribution to the latent
representation. After training, it allows to gener-
ate signals by sampling the latent representation
according to this imposed distribution, and then
mapping back through the decoder.

• GenGenGenGenGenGenGenGenGenGenGenerererererererererereraaaaaaaaaaativetivetivetivetivetivetivetivetivetivetive AdAdAdAdAdAdAdAdAdAdAdververververververververververversarsarsarsarsarsarsarsarsarsarsarialialialialialialialialialialial NetNetNetNetNetNetNetNetNetNetNetworksworksworksworksworksworksworksworksworksworksworks (GANGANGANGANGANGANGANGANGANGANGAN) in-
troduced by Goodfellow et al. [2014] are another
approach to density modeling. It combines a
gengengengengengengengengengengenerererererererererereraaaaaaaaaaatortortortortortortortortortortor, that takes a random input following
a fixed distribution as input and produces a struc-
tured signal such as an image, and a disdisdisdisdisdisdisdisdisdisdiscrimcrimcrimcrimcrimcrimcrimcrimcrimcrimcrimiiiiiiiiiiinanananananananananana-
tortortortortortortortortortortor, that takes as input a sample and predicts
if it comes from the training set, or if it was
generated by the generator. Training optimizes
the discriminator to minimize a standard cross-
entropy loss, and the generator to maximize the
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discriminator’s loss. It can be shown that at the
equilibrium the generator produces samples in-
distinguishable from real data. In practice, when
the gradient flows through the discriminator to
the generator, it informs the latter about the cues
that the discriminator uses, that should be fixed.

• ReReReReReReReReReReReinininininininininininforceforceforceforceforceforceforceforceforceforceforcementmentmentmentmentmentmentmentmentmentment LearnLearnLearnLearnLearnLearnLearnLearnLearnLearnLearninginginginginginginginginginging (RLRLRLRLRLRLRLRLRLRLRL) trains a model
to estimate an accumulated long-term reward
given action choices and an observable state, and
what actions to choose to maximize that reward.
Many problems, for instance strategy games or
robotic control, can be formulated in that frame-
work. Deep models, in particular convolutional
neural networks, have demonstrated excellent
performance for this class of tasks [Mnih et al.,
2015].

• FineFineFineFineFineFineFineFineFineFineFine-tuntuntuntuntuntuntuntuntuntuntuninginginginginginginginginginging deep architectures is an efficient
strategy to deal with small training sets for cer-
tain tasks, such as object detection or semantic
segmentation, as we saw in § 6.3 and § 6.4. Be-
side, due to the dramatic increase in the size
of architectures, particularly attention models,
training a single model can cost several millions
of dollars, and fine-tuning is a crucial, and often
the only way, to achieve high performance on a
specific task.
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• Many applications require to process signals
which are not organized regularly on a grid. For
instance molecules, proteins, 3D meshes, or geo-
graphic locations are more naturally structured
as graphs. Standard convolutional network or
even attention models are poorly adapted to
process such data, and the tool of choice for
such a task are GraphGraphGraphGraphGraphGraphGraphGraphGraphGraphGraph NeuNeuNeuNeuNeuNeuNeuNeuNeuNeuNeuralralralralralralralralralralral NetNetNetNetNetNetNetNetNetNetNetworksworksworksworksworksworksworksworksworksworksworks (GNNGNNGNNGNNGNNGNNGNNGNNGNNGNNGNN,
[Scarselli et al., 2009]). These models are com-
posed of layers that compute activations at each
vertex by combining linearly the activations lo-
cated at its immediate neighboring vertices. This
operation is very similar to a standard convo-
lution, except that the data structure does not
reflect a geometrical information associated to
the feature vectors they carry.
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Afterword

Recent developments in Artificial Intelligence
have been incredibly exciting, and it is difficult
to comment on them without being overly dra-
matic. There are few doubts that these technolo-
gies will trigger fundamental changes in how
we work, how we interact with knowledge and
information, and that they will force us to re-
think concepts as fundamental as intelligence,
understanding, and sentience.

In spite of its weaknesses, in particular its sheer
brutality and its computational cost, deep learn-
ing is likely to remain an important component
of AI systems for the foreseeable future and, as
such, a key element of this new era.
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hidden layer, 85
hidden state, 124

image classification, 105
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image synthesis, 74, 121
images, 87
inductive bias, 16, 42, 53

kernel size, 55, 62
key, 75

Large Language Model, 120
layer, 48
layer normalization, 70
layers, 37
Leaky ReLU, 60
learning rate, 31
learning rate schedule, 43
LeNet, 87
lenet, 88
linear layer, 50
LLM, 120
local minimum, 31
logit, 25
loss, 12

max pooling, 62
mean squared error, 14, 25
memory requirement, 39
memory speed, 20
meta parameter, 13, 41
metric learning, 26
MLP, 85, 95
model, 12
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Multi-Head Attention layer, 94
multi-head attention layer, 77
multi-layer perceptron, 85

natural language processing, 74
NLP, 74
non-linearity, 59
normalizing layer, 67

object detection, 106
over-fitting, 16, 41

padding, 55, 62
parameter, 12
parametric model, 12
peak performance, 21
pooling, 62
positional encoding, 82, 97
posterior probability, 25
pre-trained model, 109, 113

query, 75

random initialization, 51
receptive field, 56, 57, 106
rectified linear unit, 59, 124
recurrent neural network, 124
regression, 17
reinforcement learning, 126
ReLU, 59
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residual block, 90
residual connection, 71, 89
residual network, 71, 89
resnet, 71, 89
ResNet-50, 89, 116
RL, 126
RNN, 124

self-attention block, 80, 94, 95
semantic segmentation, 111
SGD, 34
Single Shot Detector, 106
skip connection, 71, 112
softargmax, 25, 76
softmax, 25
speech recognition, 114
SSD, 106
stochastic gradient descent, 34
stride, 56, 62
supervised learning, 18

tanh, 60
tensor, 22
tensor cores, 20
Tensor Processing Units, 20
test set, 41
text synthesis, 120
tokenizer, 30, 114, 120
tokens, 28
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TPU, 20
trainable parameter, 12
training, 12
training set, 12, 24, 41, 44
Transformer, 71, 75, 94, 96, 114
transposed convolution, 58

under-fitting, 15
universal approximation theorem, 85
unsupervised learning, 18

VAE, 125
validation set, 41
value, 75
vanishing gradient, 40, 47
variational autoencoder, 125
Vision Transformer, 100
ViT, 100
vocabulary, 28

weight, 13
weight decay, 26
weight matrix, 50

zero-shot prediction, 117
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