

Sathyajith	Bhat

Practical	Docker	with	Python
Build,	Release	and	Distribute	your	Python	App	with
Docker

Sathyajith	Bhat
Bangalore,	Karnataka,	India

Any	source	code	or	other	supplementary	material	referenced	by	the	author	in	this
book	is	available	to	readers	on	GitHub	via	the	book's	product	page,	located	at
www.apress.com/978-1-4842-3783-0	.	For	more	detailed	information,	please
visit	http://www.apress.com/source-code	.

ISBN	978-1-4842-3783-0 e-ISBN	978-1-4842-3784-7
https://doi.org/10.1007/978-1-4842-3784-7

Library	of	Congress	Control	Number:	2018952361

©	Sathyajith	Bhat	2018

This	work	is	subject	to	copyright.	All	rights	are	reserved	by	the	Publisher,
whether	the	whole	or	part	of	the	material	is	concerned,	specifically	the	rights	of
translation,	reprinting,	reuse	of	illustrations,	recitation,	broadcasting,
reproduction	on	microfilms	or	in	any	other	physical	way,	and	transmission	or
information	storage	and	retrieval,	electronic	adaptation,	computer	software,	or
by	similar	or	dissimilar	methodology	now	known	or	hereafter	developed.

Trademarked	names,	logos,	and	images	may	appear	in	this	book.	Rather	than	use
a	trademark	symbol	with	every	occurrence	of	a	trademarked	name,	logo,	or
image	we	use	the	names,	logos,	and	images	only	in	an	editorial	fashion	and	to
the	benefit	of	the	trademark	owner,	with	no	intention	of	infringement	of	the
trademark.	The	use	in	this	publication	of	trade	names,	trademarks,	service
marks,	and	similar	terms,	even	if	they	are	not	identified	as	such,	is	not	to	be
taken	as	an	expression	of	opinion	as	to	whether	or	not	they	are	subject	to
proprietary	rights.

While	the	advice	and	information	in	this	book	are	believed	to	be	true	and
accurate	at	the	date	of	publication,	neither	the	authors	nor	the	editors	nor	the
publisher	can	accept	any	legal	responsibility	for	any	errors	or	omissions	that	may
be	made.	The	publisher	makes	no	warranty,	express	or	implied,	with	respect	to
the	material	contained	herein.

http://www.apress.com/978-1-4842-3783-0
http://www.apress.com/source-code
https://doi.org/10.1007/978-1-4842-3784-7

the	material	contained	herein.

Distributed	to	the	book	trade	worldwide	by	Springer	Science+Business	Media
New	York,	233	Spring	Street,	6th	Floor,	New	York,	NY	10013.	Phone	1-800-
SPRINGER,	fax	(201)	348-4505,	e-mail	orders-ny@springer-sbm.com,	or	visit
www.springeronline.com.	Apress	Media,	LLC	is	a	California	LLC	and	the	sole
member	(owner)	is	Springer	Science	+	Business	Media	Finance	Inc	(SSBM
Finance	Inc).	SSBM	Finance	Inc	is	a	Delaware	corporation.

To	my	parents,	Jayakar	and	Jyothika	Bhat,	who	have	unconditionally	supported
me	throughout	my	entire	life.

Introduction
Docker	has	exploded	in	popularity	and	has	become	the	de	facto	target	as	a
containerization	image	format	as	well	as	a	containerization	runtime.	With
modern	applications	getting	more	and	more	complicated,	the	increased	focus	on
microservices	has	led	to	adoption	of	Docker,	as	it	allows	for	applications	along
with	their	dependencies	to	be	packaged	into	a	file	as	a	container	that	can	run	on
any	system.	This	allows	for	faster	turnaround	times	in	application	deployment
and	less	complexity	and	it	negates	the	chances	of	the	“it-works-on-my-server-
but-not-on-yours”	problem.

Practical	Docker	with	Python	covers	the	fundamentals	of	containerization,
gets	you	acquainted	with	Docker,	breaks	down	terminology	like	Dockerfile	and
Docker	Volumes,	and	takes	you	on	a	guided	tour	of	building	a	chatbot	using
Python.	You’ll	learn	how	to	package	a	traditional	application	as	a	Docker	Image.

Book	Structure
This	book	is	divided	into	seven	chapters—we	start	the	first	chapter	with	a	brief
introduction	to	Docker	and	containerization.	We	then	take	a	101	class	of	Docker,
including	installing,	configuring,	and	understanding	some	Docker	jargon.	In
Chapter	3	,	we	take	a	look	at	our	project	and	look	at	how	to	configure	our
chatbot.

In	Chapters	4	to	6	,	we	dive	into	the	meat	of	Docker,	focusing	on
Dockerfiles,	Docker	Networks,	and	Docker	Volumes.	These	chapters	include
practical	exercises	on	how	to	incorporate	each	of	these	into	the	project.	Finally,
we	take	a	look	at	Docker	Compose	and	see	how	we	can	run	multi-container
applications.

Acknowledgments
Thank	you	to	my	wife,	Jyothsna,	for	being	patient	and	supporting	me	in	my
career	and	while	writing	this	book.

I	would	like	to	thank	Nikhil	Karkal,	Siddhi	Chavan,	and	Divya	Modi	from
Apress	for	helping	me	immensely	through	all	stages	of	the	book.

I	would	like	to	thank	my	technical	reviewer,	Swapnil	Kulkarni,	for	providing
pertinent	feedback.

I	would	also	like	to	acknowledge	the	immense	support	provided	by	Saurabh
Minni,	Ninad	Pundalik,	Prashanth	H.	N.,	Mrityunjay	Iyer,	and	Abhijith	Gopal
over	the	past	couple	of	years.

Table	of	Contents
Chapter	1	:	Introduction	to	Containerization

What	Is	Docker?

Docker	the	Company

Docker	the	Software	Technology

Understanding	Problems	that	Docker	Solves

Containerization	Through	the	Years

1979:	chroot

2000:	FreeBSD	Jails

2005:	OpenVZ

2006:	cgroups

2008:	LXC

Knowing	the	Difference	Between	Containers	and	Virtual	Machines

Summary

Chapter	2	:	Docker	101

Installing	Docker

Installing	Docker	on	Windows

Installing	on	MacOS

Installing	on	Linux

Understanding	Jargon	Around	Docker

Hands-On	Docker

Summary

Chapter	3	:	Building	the	Python	App

About	the	Project

Setting	Up	Telegram	Messenger

BotFather:	Telegram’s	Bot	Creation	Interface

Newsbot:	The	Python	App

Summary

Chapter	4	:	Understanding	the	Dockerfile

Dockerfile

Build	Context

Dockerignore

Building	Using	Docker	Build

Dockerfile	Instructions

Guidelines	and	Recommendations	for	Writing	Dockerfiles

Multi-Stage	Builds

Dockerfile	Exercises

Summary

Chapter	5	:	Understanding	Docker	Volumes

Data	Persistence

Example	of	Data	Loss	Within	Docker	Container

Docker	Volume	Exercises

Summary

Chapter	6	:	Understanding	Docker	Networks

Why	Do	We	Need	Container	Networking?

Default	Docker	Network	Drivers

Working	with	Docker	Networks

Docker	Networking	Exercises

Summary

Chapter	7	:	Understanding	Docker	Compose

Overview	of	Docker	Compose

Installing	Docker	Compose

Docker	Compose	Basics

Docker	Compose	File	Reference

Docker	Compose	CLI	Reference

Docker	Volume	Exercises

Summary

Index

About	the	Author	and	About	the	Technical	Reviewer

About	the	Author
Sathyajith	Bhat
is	a	seasoned	DevOps/SRE	professional
currently	working	as	a	DevOps	engineer	on
Adobe	I/O,	which	is	Adobe’s	developer
ecosystem	and	community.	Prior	to	this,	he	was
the	lead	Ops/SRE	at	Styletag.com.	He
transitioned	to	Ops/SRE	after	being	a	lead
analyst	at	CGI,	working	primarily	on	Oracle
Fusion	stack	(Oracle	DB/PL/SQL/Oracle	Forms
and	other	related	middleware)	designing,
architecting,	and	implementing	complete	end-
to-end	solutions	for	a	major	insurance	provider
in	the	Nordics.

In	his	free	time,	Sathya	is	part	of	the
Barcamp	Bangalore	planning	team,	handling	DevOps	and	Social	Media	for
BCB.	Sathya	is	also	a	co-organizer	of	the	AWS	Users	Group	Bangalore,
organizing	monthly	meetups	and	workshops	and	occasionally	speaking	at	them.
He	is	also	a	volunteer	Community	Moderator	at	Super	User	and	Web	Apps
Stack	Exchange,	keeps	the	servers	for	the	Indian	Video	Gamer	forums	up	and
running,	and	was	previously	a	moderator	for	Chip-India	and	Tech	2	forums.

You	can	reach	out	to	Sathya	from	these	links:
Email:	sathya@sathyasays.com
Blog:	https://sathyasays.com
Twitter:	https://twitter.com/sathyabhat
LinkedIn:	https://linkedin.com/in/sathyabhat

	
About	the	Technical	Reviewer
Swapnil	Kulkarni
is	a	cloud	architect	and	open	source	enthusiast	with	experience	in	Blockchain,
cloud	native	solutions,	containers,	and	enterprise	software	product	architectures.
He	has	diverse	experiences	in	different	private,	hybrid	cloud	architectures	with
Amazon	Web	Services,	Azure,	OpenStack,	CloudStack,	and	IBM	Cloud,	to

https://sathyasays.com
https://twitter.com/sathyabhat
https://linkedin.com/in/sathyabhat

name	a	few.	He	is	an	Active	Technology
Contributor	(ATC)	in	OpenStack,	spanning
across	multiple	projects.	He’s	also	core	reviewer
in	the	OpenStack	Kolla	and	OpenStack
Requirements	Project.	He	has	contributed	to
different	open	source	communities,	including
OpenStack,	Docker,	and	Kubernetes,	and	has
multiple	upcoming	open	source	platforms	for
containerization.	Swapnil	has	also	presented	at
multiple	OpenStack	summits—LinuxCon	and
ContainerCon	to	name	a	few.	Swapnil	shares	his
tech	views	and	experiments	on	his	blog
mentioned	here.	He	is	also	a	technical	reviewer
for	multiple	publication	houses	in	emerging
technologies	and	has	a	passion	for	learning	and
implementing	different	concepts.	You	can	reach
out	to	him	via	email	or	connect	with	him	on	his	social	media	handles.

Email:	toswapnilkulkarni@gmail.com
Blog:	https://cloudnativetech.wordpress.com
Twitter:	https://twitter.com/coolsvap
LinkedIn:	https://www.linkedin.com/in/coolsvap

	

https://cloudnativetech.wordpress.com
https://twitter.com/coolsvap
https://www.linkedin.com/in/coolsvap

(1)

©	Sathyajith	Bhat	2018
Sathyajith	Bhat,	Practical	Docker	with	Python
https://doi.org/10.1007/978-1-4842-3784-7_1

1.	Introduction	to	Containerization
Sathyajith	Bhat1	

Bangalore,	Karnataka,	India

	

In	this	chapter,	we	look	at	what	Docker	is,	as	well	as	what	containerization	is
and	how	it	is	different	from	virtualization.

What	Is	Docker?
When	we	answer	this	question,	we	need	to	clarify	the	word	“docker,”	because
Docker	has	become	synonymous	with	containers.

Docker	the	Company
Docker	Inc.	is	the	company	behind	Docker.	Docker	Inc.	was	founded	as
dotCloud	Inc.	in	2010	by	Solomon	Hykes.	dotCloud	engineers	built	abstraction
and	tooling	for	Linux	Containers	and	used	the	Linux	Kernel	features	cgroups
and	namespaces	with	the	intention	of	reducing	complexity	around	using	Linux
containers.	dotCloud	made	their	tooling	open	source	and	changed	the	focus	from
the	PaaS	business	to	focus	on	containerization.	Docker	Inc.	sold	dotCloud	to
cloudControl,	which	eventually	filed	for	bankruptcy.

Docker	the	Software	Technology
Docker	is	the	technology	that	provides	for	operating	system	level	virtualization
known	as	containers	.	It	is	important	to	note	that	this	is	not	the	same	as	hardware
virtualization.	We	will	explore	this	later	in	the	chapter.	Docker	uses	the	resource
isolation	features	of	the	Linux	kernel	such	as	cgroups,	kernel	namespaces,	and
OverlayFS,	all	within	the	same	physical	or	virtual	machine.	OverlayFS	is	a
union-capable	filesystem	that	combines	several	files	and	directories	into	one	in
order	to	run	multiple	applications	that	are	isolated	and	contained	from	one	other,

https://doi.org/10.1007/978-1-4842-3784-7_1

all	within	the	same	physical	or	virtual	machine.

Understanding	Problems	that	Docker	Solves
For	the	longest	period,	setting	up	a	developer’s	workstation	was	a	highly
troublesome	task	for	sysadmins.	Even	with	complete	automation	of	the
installation	of	developer	tools,	when	you	have	a	mix	of	different	operating
systems,	different	versions	of	operating	systems,	and	different	versions	of
libraries	and	programming	languages,	setting	up	a	workspace	that	is	consistent
and	provides	a	uniform	experience	is	nearly	impossible.	Docker	solves	much	of
this	problem	by	reducing	the	moving	parts.	Instead	of	targeting	operating
systems	and	programming	versions,	the	target	is	now	the	Docker	engine	and	the
runtime.	The	Docker	engine	provides	a	uniform	abstraction	from	the	underlying
system,	making	it	very	easy	for	developers	to	test	their	code	Things	get	even
more	complicated	on	the	production	landscape.	Assume	that	we	have	a	Python
web	application	that	is	running	on	Python	2.7	on	Amazon	Web	Services	EC2
instance.	In	an	effort	to	modernize	the	codebase,	the	application	had	some	major
upgrades,	including	a	change	in	Python	version	from	2.7	to	version	3.5.	Assume
that	this	version	of	Python	is	not	available	in	the	packages	offered	by	the	Linux
distribution	currently	running	the	existing	codebases.	Now	to	deploy	this	new
application,	we	have	the	choice	of	either	of	the	following:

Replace	the	existing	instance
Set	up	the	Python	Interpreter	by

Changing	the	Linux	distribution	version	to	one	that	includes	the	newer
Python	packages
Adding	a	third-party	channel	that	offers	a	packaged	version	of	the	newer
Python	version
Doing	an	in-place	upgrade,	keeping	the	existing	version	of	the	Linux
distribution
Compiling	Python	3.5	from	sources,	which	brings	in	additional
dependencies
Or	using	something	like	virtualenv,	which	has	its	own	set	of	tradeoffs

Whichever	way	you	look	at	it,	a	new	version	deployment	for	application	code
brings	about	lots	of	uncertainty.	As	an	operations	engineer,	limiting	the	changes
to	the	configuration	is	critical.	Factoring	in	an	operating	system	change,	a
Python	version	change,	and	a	change	in	application	code	results	in	a	lot	of
uncertainty.

Docker	solves	this	issue	by	dramatically	reducing	the	surface	area	of	the
uncertainty.	Your	application	is	being	modernized?	No	problem.	Build	a	new

uncertainty.	Your	application	is	being	modernized?	No	problem.	Build	a	new
container	with	the	new	application	code	and	dependencies	and	ship	it.	The
existing	infrastructure	remains	the	same.	If	the	application	doesn’t	behave	as
expected,	then	rolling	back	is	as	simple	as	redeploying	the	older	container—it	is
not	uncommon	to	have	all	the	generated	Docker	images	stored	in	a	Docker
registry.	Having	an	easy	way	to	roll	back	without	messing	with	the	current
infrastructure	dramatically	reduces	the	time	required	to	respond	to	failures.

Containerization	Through	the	Years
While	containerization	has	picked	up	in	pace	and	has	exploded	in	popularity
over	the	past	couple	of	years,	the	concept	of	containerization	goes	back	to	the
1970s.

1979:	chroot
The	chroot	system	call	was	introduced	in	Version	7	UNIX	in	1979.	The
premise	of	chroot	was	that	it	changed	the	apparent	root	directory	for	the
current	running	process	and	its	children.	A	process	initiated	within	a	chroot
cannot	access	files	outside	the	assigned	directory	tree.	This	environment	was
known	as	the	chroot	jail.

2000:	FreeBSD	Jails
Expanding	on	the	chroot	concept,	FreeBSD	added	support	for	a	feature	that
allowed	for	partitioning	of	the	FreeBSD	system	into	several	independent,
isolated	systems	called	jails.	Each	jail	is	a	virtual	environment	on	the	host
system	with	its	own	set	of	files,	processes,	and	user	accounts.	While	chroot
only	restricted	processes	to	a	view	of	the	filesystem,	FreeBSD	jails	restricted
activities	of	the	jailed	process	to	the	whole	system,	including	the	IP	addresses
that	were	bound	to	it.	This	made	FreeBSD	jails	the	ideal	way	to	test	out	new
configurations	of	Internet-connected	software,	making	it	easy	to	experiment	with
different	configurations	while	not	allowing	for	changes	from	the	jail	to	affect	the
main	system	outside.

2005:	OpenVZ
OpenVZ	was	quite	popular	in	providing	operating	system	virtualization	for	low-
end	Virtual	Private	Server	(VPS)	providers.	OpenVZ	allowed	for	a	physical
server	to	run	multiple	isolated	operating	system	instances,	known	as	containers.
OpenVZ	uses	a	patched	Linux	kernel,	sharing	it	with	all	the	containers.	Each
container	acts	as	a	separate	entity	and	has	its	own	virtualized	set	of	files,	users,

groups,	process	trees,	and	virtual	network	devices.

2006:	cgroups
Originally	known	as	process	containers,	cgroups	(short	for	control	groups)
was	started	by	Google	engineers.	cgroups	is	a	Linux	kernel	feature	that	limits
and	isolates	resource	usage	(such	as	CPU,	memory,	disk	I/O,	and	network)	to	a
collection	of	processes.	cgroups	have	been	redesigned	multiple	times,	each
redesign	accounting	for	its	growing	number	of	use	cases	and	required	features.

2008:	LXC
LXC	provides	operating-system	level	virtualization	by	combining	Linux	kernel’s
cgroups	and	support	for	isolated	namespaces	to	provide	an	isolated
environment	for	applications.	Docker	initially	used	LXC	for	providing	the
isolation	features,	but	then	switched	to	its	own	library.

Knowing	the	Difference	Between	Containers	and
Virtual	Machines
Many	people	assume	that	since	containers	isolate	the	applications,	they	are	the
same	as	virtual	machines.	At	first	glance	it	looks	like	it,	but	the	fundamental
difference	is	that	containers	share	the	same	kernel	as	the	host.

Docker	only	isolates	a	single	process	(or	a	group	of	processes,	depending	on
how	the	image	is	built)	and	all	the	containers	run	on	the	same	host	system.	Since
the	isolation	is	applied	at	the	kernel	level,	running	containers	does	not	impose	a
heavy	overhead	on	the	host	as	compared	to	virtual	machines.	When	a	container
is	spun	up,	the	selected	process	or	group	of	processes	still	runs	on	the	same	host,
without	the	need	to	virtualize	or	emulate	anything.	Figure	1-1	shows	the	three
apps	running	on	three	different	containers	on	a	single	physical	host.

Figure	1-1 	Representation	of	three	apps	running	on	three	different	containers

In	contrast,	when	a	virtual	machine	is	spun	up,	the	hypervisor	virtualizes	an
entire	system—from	the	CPU	to	RAM	to	storage.	To	support	this	virtualized
system,	an	entire	operating	system	needs	to	be	installed.	For	all	practical
purposes,	the	virtualized	system	is	an	entire	computer	running	in	a	computer.
Now	if	you	can	imagine	how	much	overhead	it	takes	to	run	a	single	operating
system,	imagine	how	it’d	be	if	you	ran	a	nested	operating	system!	Figure	1-2
shows	a	representation	of	the	three	apps	running	on	three	different	virtual
machines	on	a	single	physical	host.

Figure	1-2 	Representation	of	three	apps	running	on	three	different	virtual	machines

Figures	1-1	and	1-2	give	an	indication	of	three	different	applications	running
on	a	single	host.	In	the	case	of	a	VM,	not	only	do	we	need	the	application’s
dependent	libraries,	we	also	need	an	operating	system	to	run	the	application.	In
comparison,	with	containers,	the	sharing	of	the	host	OS’s	kernel	with	the
application	means	that	the	overhead	of	an	additional	OS	is	removed.	Not	only
does	this	greatly	improve	the	performance,	it	also	lets	us	improve	the	resource
utilization	and	minimize	wasted	compute	power.

Summary
In	this	chapter,	you	learned	a	bit	about	Docker	the	company,	Docker	Containers,
and	containers	compared	to	virtual	machines.	You	also	learned	a	bit	about	the
real-world	problems	that	containers	are	trying	to	solve.	In	the	upcoming	chapter,
you	take	an	introductory	tour	of	Docker	and	run	a	couple	of	hands-on	sessions
on	building	and	running	containers.

(1)

©	Sathyajith	Bhat	2018
Sathyajith	Bhat,	Practical	Docker	with	Python
https://doi.org/10.1007/978-1-4842-3784-7_2

2.	Docker	101
Sathyajith	Bhat1	

Bangalore,	Karnataka,	India

	

Now	that	you	understand	what	Docker	is	and	why	its	popularity	has	exploded,
this	chapter	covers	some	basics	about	the	different	terminology	associated	with
Docker.	In	this	chapter,	you	will	learn	how	to	install	Docker	and	learn	Docker
terms	such	as	images,	containers,	Dockerfiles,	and	Docker	Compose.	You	will
also	work	with	some	simple	Docker	commands	for	creating,	running,	and
stopping	Docker	containers.

Installing	Docker
Docker	supports	Linux,	MacOS,	and	Windows	platforms.	It’s	straightforward	to
install	Docker	on	most	platforms	and	we’ll	get	to	that	in	a	bit.	Docker	Inc.
provides	Community	and	Enterprise	editions	of	the	Docker	platform.	The
Enterprise	edition	has	the	same	features	as	the	Community	edition,	but	it
provides	additional	support	and	certified	containers,	plugins,	and	infrastructure.
For	the	purpose	of	this	book	and	for	most	general	development	and	production
use,	the	Community	edition	is	suitable,	thus	we	will	be	using	that	in	this	book.

Installing	Docker	on	Windows
You	need	to	meet	certain	prerequisites	before	you	can	install	Docker	on
Windows.	These	include	the	following:

Hyper-V	support
Hardware	virtualization	support,	typically	be	enabled	from	your	system	BIOS
Only	64-bit	editions	of	Windows	10	(Pro/Education/Enterprise	editions
having	the	Anniversary	Update	v1607)	are	supported	at	the	moment

Notice	that	this	looks	like	what	a	virtualization	setup	would	require,	and	you

https://doi.org/10.1007/978-1-4842-3784-7_2

Notice	that	this	looks	like	what	a	virtualization	setup	would	require,	and	you
learned	in	the	previous	chapter	that	Docker	is	not	virtualization.	So	why	does
Docker	for	Windows	require	features	required	for	virtualization?

The	short	answer	is	that	Docker	relies	on	numerous	features,	such	as
namespaces	and	cgroups,	and	these	are	not	available	on	Windows.	To	get	around
this	limitation,	Docker	for	Windows	creates	a	lightweight	Hyper-V	container
running	a	Linux	kernel.

At	the	time	of	writing,	Docker	includes	experimental	support	for	Native
containers	that	allow	for	creation	of	containers	without	the	need	for	Hyper-V.

Let’s	focus	on	installing	Docker	CE	for	Windows.	This	section	assumes	that
all	prerequisites	have	been	met	and	that	Hyper-V	is	enabled.	Head	over	to
https://store.docker.com/editions/community/docker-ce-

desktop-windows	to	download	Docker	CE.

Note 	Make	sure	you	select	the	Stable	channel	and	click	on	the	Get	Docker
CE	button.

You	may	be	prompted	to	enable	Hyper-V	and	container	support	as	part	of	the
install,	as	shown	in	Figure	2-1.

Figure	2-1 	Enable	Hyper-V	and	the	Containers	feature

Click	OK	and	finish	the	installation.	You	may	be	required	to	restart	your
system,	as	enabling	Hyper-V	is	a	Windows	system	feature.	If	it’s	not	installed,
this	feature	will	be	installed	and	that	requires	a	restart	to	enable	the	feature.

Once	the	install	is	complete,	open	a	command	prompt	window	(or
PowerShell,	if	that	is	your	preference)	and	type	the	command	shown	in	Listing

https://store.docker.com/editions/community/docker-ce-desktop-windows

2-1	to	check	that	Docker	is	installed	and	is	working	correctly.

docker	run	--rm	hello-world

Listing	2-1 	Check	That	Docker	Is	Working

If	the	install	went	fine,	you	should	see	the	response	shown	in	Listing	2-2.

docker	run	--rm	hello-world

Unable	to	find	image	'hello-world:latest'	locally

latest:	Pulling	from	library/hello-world

ca4f61b1923c:	Pull	complete

Digest:

sha256:66ef312bbac49c39a89aa9bcc3cb4f3c9e7de3788c94415

8df3ee0176d32b751

Status:	Downloaded	newer	image	for	hello-

world:latest

Hello	from	Docker!

This	message	shows	that	your	installation	appears

to	be	working	correctly.

...

Listing	2-2 	Response	from	the	Docker	Run	Command

We	will	take	a	deeper	look	later	into	what	the	commands	mean,	so	do	not
worry	about	understanding	them.	If	we	see	the	message	"Installation
appears	to	be	working	correctly",	you	should	be	good	for	now.

Installing	on	MacOS
Installing	Docker	for	Mac	is	much	like	installing	any	other	application.	Go	to
https://store.docker.com/editions/community/docker-ce-

desktop-mac	,	click	the	Get	Docker	for	CE	Mac	(stable)	link,	and	double-
click	the	file	to	run	the	installer	that	is	downloaded.	Drag	the	Docker	whale	to
the	Applications	folder	to	install	it,	as	shown	in	Figure	2-2.

https://store.docker.com/editions/community/docker-ce-desktop-mac

Figure	2-2 	Installing	Docker	for	Mac

Once	Docker	is	installed,	open	the	Terminal	app	and	run	the	command	listed
in	Listing	2-3	to	confirm	the	install	was	successful.

docker	run	--rm	hello-world

Listing	2-3 	Check	That	Docker	for	Mac	Is	Working

If	the	install	went	fine,	you	should	see	the	response	shown	in	Listing	2-4.

docker	run	--rm	hello-world

Unable	to	find	image	'hello-world:latest'	locally

latest:	Pulling	from	library/hello-world

ca4f61b1923c:	Pull	complete

Digest:

sha256:66ef312bbac49c39a89aa9bcc3cb4f3c9e7de3788c94415

8df3ee0176d32b751

Status:	Downloaded	newer	image	for	hello-

world:latest

Hello	from	Docker!

This	message	shows	that	your	installation	appears

to	be	working	correctly.

...

Listing	2-4 	Response	from	the	Docker	Run	Command

The	"Hello	from	Docker!"	message	indicates	that	Docker	is	installed
and	is	working	correctly.

Installing	on	Linux
To	install	Docker	on	Linux,	visit
https://www.docker.com/community-edition	.	Select	the	distro
you’re	using	and	follow	the	commands	to	install	Docker.

The	following	section	outlines	the	steps	needed	to	install	Docker	on	Ubuntu.

1.
Update	the	apt	index:

sudo	apt-get	update

	

2.
Install	the	necessary	packages	required	to	use	a	repository	over	HTTPS:

sudo	apt-get	install	\

				apt-transport-https	\

				ca-certificates	\

				curl	\

				software-properties-common

	

3.
Install	Docker’s	official	GPG	key:

curl	-fsSL

https://download.docker.com/linux/ubuntu/gpg	|	sudo

apt-key	add	-

	

4.
Add	Docker’s	stable	repository:

sudo	add-apt-repository	\

			"deb	[arch=amd64]

https://download.docker.com/linux/ubuntu	\

			$(lsb_release	-cs)	\

			stable"

	

5.

https://www.docker.com/community-edition

5.
Update	the	apt	package	index:

sudo	apt-get	update

	

6.
Install	Docker:

sudo	apt-get	install	docker-ce

	

Additional	Steps
Docker	communicates	via	a	UNIX	socket	that	is	owned	by	the	root	user.	We	can
avoid	having	to	type	sudo	by	following	these	steps:

Warning 	The	Docker	group	rights	are	still	equivalent	to	the	root	user.

1.
Create	the	docker	group:

sudo	groupadd	docker

	

2.
Add	your	user	to	the	docker	group:

sudo	usermod	-aG	docker	$USER

	

3.
Log	out	and	log	back	in.	Run	the	command	shown	in	Listing	2-5	to	confirm
the	Docker	has	been	installed	correctly.

docker	run	--rm	hello-world

Listing	2-5 	Check	That	Docker	for	Linux	Is	Working

	

If	the	install	went	fine,	you	should	see	the	response	shown	in	Listing	2-6.

docker	run	--rm	hello-world

Unable	to	find	image	'hello-world:latest'	locally

latest:	Pulling	from	library/hello-world

ca4f61b1923c:	Pull	complete

Digest:

Digest:

sha256:66ef312bbac49c39a89aa9bcc3cb4f3c9e7de3788c94415

8df3ee0176d32b751

Status:	Downloaded	newer	image	for	hello-

world:latest

Hello	from	Docker!

This	message	shows	that	your	installation	appears

to	be	working	correctly.

...

Listing	2-6 	Response	from	the	Docker	Run	Command

Understanding	Jargon	Around	Docker
Now	that	we	have	Docker	installed	and	running,	let’s	understand	the	different
terminologies	that	are	associated	with	Docker.

Layers
A	layer	is	a	modification	applied	to	a	Docker	image	as	represented	by	an
instruction	in	a	Dockerfile.	Typically,	a	layer	is	created	when	a	base	image	is
changed—for	example,	consider	a	Dockerfile	that	looks	like	this:

FROM	ubuntu

Run	mkdir	tmplogs

RUN	apt-get	install	vim

RUN	apt-get	install	htop

Now	in	this	case,	Docker	will	consider	Ubuntu	image	as	the	base	image
and	add	three	layers:

One	layer	for	creating	tmplogs
One	other	layer	that	installs	vim
A	third	layer	that	installs	htop

When	Docker	builds	the	image,	each	layer	is	stacked	on	the	next	and	merged
into	a	single	layer	using	the	union	filesystem.	Layers	are	uniquely	identified
using	sha256	hashes.	This	makes	it	easy	to	reuse	and	cache	them.	When
Docker	scans	a	base	image,	it	scans	for	the	IDs	of	all	the	layers	that	constitute
the	image	and	begins	to	download	the	layers.	If	a	layer	exists	in	the	local	cache,
it	skips	downloading	the	cached	image.

Docker	Image
Docker	image	is	a	read-only	template	that	forms	the	foundation	of	your
application.	It	is	very	much	similar	to,	say,	a	shell	script	that	prepares	a	system
with	the	desired	state.	In	simpler	terms,	it’s	the	equivalent	of	a	cooking	recipe
that	has	step-by-step	instructions	for	making	the	final	dish.

A	Docker	image	starts	with	a	base	image—typically	the	one	selected	is	that
of	an	operating	system	are	most	familiar	with,	such	as	Ubuntu.	On	top	of	this
image,	we	can	add	build	our	application	stack	adding	the	packages	as	and	when
required.

There	are	many	pre-built	images	for	some	of	the	most	common	application
stacks,	such	as	Ruby	on	Rails,	Django,	PHP-FPM	with	nginx,	and	so	on.	On
the	advanced	scale,	to	keep	the	image	size	as	low	as	possible,	we	can	also	start
with	slim	packages,	such	as	Alpine	or	even	Scratch,	which	is	Docker’s	reserved,
minimal	starting	image	for	building	other	images.

Docker	images	are	created	using	a	series	of	commands,	known	as
instructions,	in	the	Dockerfile.	The	presence	of	a	Dockerfile	in	the	root	of	a
project	repository	is	a	good	indicator	that	the	program	is	container-friendly.	We
can	build	our	own	images	from	the	associated	Dockerfile	and	the	built	image	is
then	published	to	a	registry.	We	will	take	a	deeper	look	at	Dockerfile	in	later
chapters.	For	now,	consider	the	Docker	image	as	the	final	executable	package
that	contains	everything	to	run	an	application.	This	includes	the	source	code,	the
required	libraries,	and	any	dependencies.

Docker	Container
A	Docker	image,	when	it’s	run	in	a	host	computer,	spawns	a	process	with	its
own	namespace,	known	as	a	Docker	container.	The	main	difference	between	a
Docker	image	and	a	container	is	the	presence	of	a	thin	read/write	layer	known	as
the	container	layer.	Any	changes	to	the	filesystem	of	a	container,	such	as	writing
new	files	or	modifying	existing	files,	are	done	to	this	writable	container	layer
than	the	lower	layers.

An	important	aspect	to	grasp	is	that	when	a	container	is	running,	the	changes
are	applied	to	the	container	layer	and	when	the	container	is	stopped/killed,	the
container	layer	is	not	saved.	Hence,	all	changes	are	lost.	This	aspect	of
containers	is	not	understood	very	well	and	for	this	reason,	stateful	applications
and	those	requiring	persistent	data	were	initially	not	recommended	as
containerized	applications.	However,	with	Docker	Volumes,	there	are	ways	to
get	around	this	limitation.	We	discuss	Docker	Volumes	more	in	Chapter	5,
“Understanding	Docker	Volumes”.

Bind	Mounts	and	Volumes
We	mentioned	previously	that	when	a	container	is	running,	any	changes	to	the
container	are	present	in	the	container	layer	of	the	filesystem.	When	a	container	is
killed,	the	changes	are	lost	and	the	data	is	no	longer	accessible.	Even	when	a
container	is	running,	getting	data	out	of	it	is	not	very	straightforward.	In
addition,	writing	into	the	container’s	writable	layer	requires	a	storage	driver	to
manage	the	filesystem.	The	storage	driver	provides	an	abstraction	on	the
filesystem	available	to	persist	the	changes	and	this	abstraction	often	reduces
performance.

For	these	reasons,	Docker	provides	different	ways	to	mount	data	into	a
container	from	the	Docker	host:	volumes,	bind	mounts,	and	tmpfs	volumes.
While	tmpfs	volumes	are	stored	in	the	host	system’s	memory	only,	bind
mounts	and	volumes	are	stored	in	the	host	filesystem.

We	explore	Docker	Volumes	in	detail	in	Chapter	5,	“Understanding	Docker
Volumes”.

Docker	Registry
We	mentioned	earlier	that	you	can	leverage	existing	images	of	common
application	stacks—have	you	ever	wondered	where	these	are	and	how	you	can
use	them	in	building	your	application?	A	Docker	Registry	is	a	place	where	you
can	store	Docker	images	so	that	they	can	be	used	as	the	basis	for	an	application
stack.	Some	common	examples	of	Docker	registries	include	the	following:

Docker	Hub
Google	Container	Registry
Amazon	Elastic	Container	Registry
JFrog	Artifactory

Most	of	these	registries	also	allow	for	the	visibility	level	of	the	images	that
you	have	pushed	to	be	set	as	public/private.	Private	registries	will	prevent	your
Docker	images	from	being	accessible	to	the	public,	allowing	you	to	set	up	access
control	so	that	only	authorized	users	can	use	your	Docker	image.

Dockerfile
A	Dockerfile	is	a	set	of	instructions	that	tells	Docker	how	to	build	an	image.	A
typical	Dockerfile	is	made	up	of	the	following:

A	FROM	instruction	that	tells	Docker	what	the	base	image	is
An	ENV	instruction	to	pass	an	environment	variable
A	RUN	instruction	to	run	some	shell	commands	(for	example,	install-

dependent	programs	not	available	in	the	base	image)
A	CMD	or	an	ENTRYPOINT	instruction	that	tells	Docker	which	executable	to
run	when	a	container	is	started

As	you	can	see,	the	Dockerfile	instruction	set	has	clear	and	simple	syntax,
which	makes	it	easy	to	understand.	We	take	a	deeper	look	at	Dockerfiles	later	in
the	book.

Docker	Engine
Docker	Engine	is	the	core	part	of	Docker.	Docker	Engine	is	a	client-server
application	that	provides	the	platform,	the	runtime,	and	the	tooling	for	building
and	managing	Docker	images,	Docker	containers,	and	more.	Docker	Engine
provides	the	following:

Docker	daemon
Docker	CLI
Docker	API

Docker	Daemon

The	Docker	daemon	is	a	service	that	runs	in	the	background	of	the	host
computer	and	handles	the	heavy	lifting	of	most	of	the	Docker	commands.	The
daemon	listens	for	API	requests	for	creating	and	managing	Docker	objects,
such	as	containers,	networks,	and	volumes.	Docker	daemon	can	also	talk	to
other	daemons	for	managing	and	monitoring	Docker	containers.	Some
examples	of	inter-daemon	communication	include	communication	Datadog
for	container	metrics	monitoring	and	Aqua	for	container	security	monitoring.

Docker	CLI
Docker	CLI	is	the	primary	way	that	you	will	interact	with	Docker.	Docker	CLI
exposes	a	set	of	commands	that	you	can	provide.	The	Docker	CLI	forwards	the
request	to	Docker	daemon,	which	then	performs	the	necessary	work.

While	the	Docker	CLI	includes	a	huge	variety	of	commands	and	sub-
commands,	the	most	common	commands	that	we	will	work	with	in	this	book	are
as	mentioned:

docker	build

docker	pull

docker	run

docker	exec

Tip 	Docker	maintains	an	extensive	reference	of	all	the	Docker	commands
on	its	documentation	page	at
https://docs.docker.com/engine/reference/commandline/cli/

.

At	any	point	in	time,	prepending	help	to	a	command	will	reveal	the	command’s
required	documentation.	For	example,	if	you’re	not	quite	sure	where	to	start	with
Docker	CLI,	you	could	type	the	following:

docker	help

Usage:		docker	COMMAND

A	self-sufficient	runtime	for	containers

Options:

						--config	string						Location	of	client

config	files	(default

																											".docker")

		-D,	--debug														Enable	debug	mode

		-H,	--host	list										Daemon	socket(s)	to

connect	to

		-l,	--log-level	string			Set	the	logging	level

																											("debug"|"info"|"warn"|"

error"|"fatal")

																											(default	"info")

[..]

If	you’d	like	to	know	more	about	Docker	pull,	you	would	type	the
following:

docker	help	pull

Usage:		docker	pull	[OPTIONS]	NAME[:TAG|@DIGEST]

Pull	an	image	or	a	repository	from	a	registry

Options:

		-a,	--all-tags																Download	all	tagged

https://docs.docker.com/engine/reference/commandline/cli/

images	in	the	repository

						--disable-content-trust			Skip	image

verification	(default	true)

						--platform	string									Set	platform	if

server	is	multi-platform

																																capable

Docker	API
Docker	also	provides	an	API	for	interacting	with	the	Docker	Engine.	This	is
particularly	useful	if	there’s	a	need	to	create	or	manage	containers	from	within
applications.	Almost	every	operation	supported	by	the	Docker	CLI	can	be	done
via	the	API.

The	simplest	way	to	get	started	by	Docker	API	is	to	use	curl	to	send	an
API	request.	For	Windows	Docker	hosts,	we	can	reach	the	TCP	endpoint:

curl	http://localhost:2375/images/json

[{"Containers":-1,"Created":1511223798,"Id":"sha256

:f2a91732366c0332ccd7afd2a5c4ff2b9af81f549370f7a19acd4

60f87686bc7","Labels":null,"ParentId":"","RepoDigests"

:["hello-

world@sha256:66ef312bbac49c39a89aa9bcc3cb4f3c9e7de3788

c944158df3ee0176d32b751"],"RepoTags":["hello-

world:latest"],"SharedSize":-1,"Size":1848,"VirtualSiz

e":1848}]

On	Linux	and	Mac,	the	same	effect	can	be	achieved	by	using	curl	to	send
requests	to	the	UNIX	socket:

curl	--unix-socket	varrun/docker.sock	-X	POST

http://images/json

[{"Containers":-1,"Created":1511223798,"Id":"sha256

:f2a91732366c0332ccd7afd2a5c4ff2b9af81f549370f7a19acd4

60f87686bc7","Labels":null,"ParentId":"","RepoDigests"

:["hello-

world@sha256:66ef312bbac49c39a89aa9bcc3cb4f3c9e7de3788

c944158df3ee0176d32b751"],"RepoTags":["hello-

world:latest"],"SharedSize":-1,"Size":1848,"VirtualSiz

e":1848}]

Docker	Compose
Docker	Compose	is	a	tool	for	defining	and	running	multi-container	applications.
Much	like	how	Docker	allows	you	to	build	an	image	for	your	application	and
run	it	in	your	container,	Compose	use	the	same	images	in	combination	with	a
definition	file	(known	as	the	compose	file)	to	build,	launch,	and	run	multi-
container	applications,	including	dependent	and	linked	containers.

The	most	common	use	case	for	Docker	Compose	is	to	run	applications	and
their	dependent	services	(such	as	databases	and	caching	providers)	in	the	same
simple,	streamlined	manner	as	running	a	single	container	application.	We	take	a
deeper	look	at	Docker	Compose	in	Chapter	7,	“Understanding	Docker
Compose”.

Docker	Machine
Docker	Machine	is	a	tool	for	installing	Docker	Engines	on	multiple	virtual	hosts
and	then	managing	the	hosts.	Docker	Machine	allows	you	to	create	Docker	hosts
on	local	as	well	remote	systems,	including	on	cloud	platforms	like	Amazon	Web
Services,	DigitalOcean,	and	Microsoft	Azure.

Hands-On	Docker
Let’s	try	some	of	the	things	you’ve	read	about	so	far.	Before	we	start	exploring
the	various	commands,	it’s	time	to	ensure	that	your	Docker	install	is	correct	and
that	it	is	working	as	expected.

Tip 	To	makes	things	easy	to	read	and	understand,	we	have	used	a	tool
called	jq	for	processing	Docker’s	JSON	output.	You	can	download	and
install	jq	from	https://stedolan.github.io/jq/	.

Open	a	terminal	window	and	type	the	following	command:

docker	info

You	should	see	a	result	like	the	following:

docker	info

Containers:	0

	Running:	0

	Paused:	0

	Stopped:	0

Images:	1

https://stedolan.github.io/jq/

Images:	1

Server	Version:	17.12.0-ce

Storage	Driver:	overlay2

	Backing	Filesystem:	extfs

	Supports	d_type:	true

	Native	Overlay	Diff:	true

Logging	Driver:	json-file

Cgroup	Driver:	cgroupfs

Plugins:

	Volume:	local

	Network:	bridge	host	ipvlan	macvlan	null	overlay

	Log:	awslogs	fluentd	gcplogs	gelf	journald	json-

file	logentries	splunk	syslog

Swarm:	inactive

Runtimes:	runc

Default	Runtime:	runc

Init	Binary:	docker-init

containerd	version:

89623f28b87a6004d4b785663257362d1658a729

runc	version:

b2567b37d7b75eb4cf325b77297b140ea686ce8f

init	version:	949e6fa

Security	Options:

	seccomp

		Profile:	default

Kernel	Version:	4.9.60-linuxkit-aufs

Operating	System:	Docker	for	Windows

OSType:	linux

Architecture:	x86_64

CPUs:	2

Total	Memory:	1.934GiB

Name:	linuxkit-00155d006303

ID:

Y6MQ:YGY2:VSAR:WUPD:Z4DA:PJ6P:ZRWQ:C724:6RKP:YCCA:3NPJ

:TRWO

Docker	Root	Dir:	varlib/docker

Debug	Mode	(client):	false

Debug	Mode	(server):	true

	File	Descriptors:	19

	Goroutines:	35

	System	Time:	2018-02-11T15:56:36.2281139Z

	EventsListeners:	1

Registry:	https://index.docker.io/v1/

Labels:

Experimental:	true

Insecure	Registries:

	127.0.0.0/8

Live	Restore	Enabled:	false

If	you	do	not	see	this	message	or	something	similar,	refer	to	the	previous
sections	to	install	and	validate	your	Docker	install.

Working	with	Docker	Images
Let’s	look	at	the	available	Docker	images.	To	do	this,	type	the	following
command:

docker	image	ls

Here’s	a	listing	of	the	images	available	locally.

REPOSITORY				TAG						IMAGE

ID							CREATED												SIZE

hello-world			latest			f2a91732366c			2	months

ago							1.85kB

If	you	had	pulled	more	images	or	run	more	containers,	you’d	have	seen	a
bigger	list.	Let’s	look	at	the	hello-world	image	now.	To	do	this,	type	the
following:

docker	image	inspect	hello-world

[

{

								"Id":

"sha256:f2a91732366c0332ccd7afd2a5c4ff2b9af81f549370f7

a19acd460f87686bc7",

														"RepoTags":	[

												"hello-world:latest"

],

								"RepoDigests":	[

												"hello-

world@sha256:66ef312bbac49c39a89aa9bcc3cb4f3c9e7de3788

c944158df3ee0176d32b751"

],

								"Parent":	"",

								"Comment":	"",

								"Created":	"2017-11-

21T00:23:18.797567713Z",

								"Container":

"fb0b4536aac3a96065e1bedb2b637a6019feec666c76995922069

56c9d3adf5f",

								"ContainerConfig":	{

												"Hostname":	"fb0b4536aac3",

												"Domainname":	"",

												"User":	"",

												"AttachStdin":	false,

												"AttachStdout":	false,

												"AttachStderr":	false,

												"Tty":	false,

												"OpenStdin":	false,

												"StdinOnce":	false,

												"Env":	[

																"PATH=/usr/local/sbin:/usr/local/bi

n:/usr/sbin:/usr/bin:/sbin:/bin"

],

												"Cmd":	[

																"binsh",

																"-c",

																"#(nop)	",

																"CMD	[\"/hello\"]"

],

												"ArgsEscaped":	true,

												"Image":

"sha256:2243ee460b69c4c036bc0e42a48eaa59e82fc7737f7c9b

d2714f669ef1f8370f",

												"Volumes":	null,

												"WorkingDir":	"",

												"Entrypoint":	null,

												"OnBuild":	null,

												"Labels":	{}

								},

								"DockerVersion":	"17.06.2-ce",

								"Author":	"",

								"Config":	{

												"Hostname":	"",

												"Domainname":	"",

												"User":	"",

												"AttachStdin":	false,

												"AttachStdout":	false,

												"AttachStderr":	false,

												"Tty":	false,

												"OpenStdin":	false,

												"StdinOnce":	false,

												"Env":	[

																"PATH=/usr/local/sbin:/usr/local/bi

n:/usr/sbin:/usr/bin:/sbin:/bin"

],

												"Cmd":	[

																"/hello"

],

												"ArgsEscaped":	true,

												"Image":

"sha256:2243ee460b69c4c036bc0e42a48eaa59e82fc7737f7c9b

d2714f669ef1f8370f",

												"Volumes":	null,

												"WorkingDir":	"",

												"Entrypoint":	null,

												"OnBuild":	null,

												"Labels":	null

								},

								"Architecture":	"amd64",

								"Os":	"linux",

								"Size":	1848,

								"VirtualSize":	1848,

								"GraphDriver":	{

												"Data":	{

																"MergedDir":

"varlib/docker/overlay2/5855bd20ab2f521c39e1157f98f235

b46d7c12c9d8f69e252f0ee8b04ac73d33/merged",

																"UpperDir":

"varlib/docker/overlay2/5855bd20ab2f521c39e1157f98f235

b46d7c12c9d8f69e252f0ee8b04ac73d33/diff",

																"WorkDir":

"varlib/docker/overlay2/5855bd20ab2f521c39e1157f98f235

b46d7c12c9d8f69e252f0ee8b04ac73d33/work"

												},

												"Name":	"overlay2"

								},

								"RootFS":	{

												"Type":	"layers",

												"Layers":	[

																"sha256:f999ae22f308fea973e5a25b576

99b5daf6b0f1150ac2a5c2ea9d7fecee50fdf"

]

								},

								"Metadata":	{

												"LastTagTime":	"0001-01-01T00:00:00Z"

}

}

]

The	docker	inspect	command	provides	a	lot	of	information	about	the
image.	Of	importance	are	the	image	properties	Env,	Cmd,	and	Layers,	which
tell	us	about	these	environment	variables.	They	tell	us	which	executable	runs
when	the	container	is	started	and	the	layers	associated	with	these	environment
variables.

docker	image	inspect	hello-world	|	jq	.

[].Config.Env

[

[

		"PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/u

sr/bin:/sbin:/bin"

]

Here’s	the	startup	command	on	the	container:

docker	image	inspect	hello-world	|	jq	.

[].Config.Cmd

[

		"/hello"

]

Here	are	the	layers	associated	with	the	image:

docker	image	inspect	hello-world	|	jq	.

[].RootFS.Layers

[

		"sha256:f999ae22f308fea973e5a25b57699b5daf6b0f115

0ac2a5c2ea9d7fecee50fdf"

]

Working	with	a	Real-World	Docker	Images
Let’s	look	at	a	more	complex	image	now.	Nginx	is	a	very	popular	reverse
proxy	server	for	HTTP/S	(among	others),	as	well	as	a	load	balancer	and	a
webserver.

To	pull	down	the	nginx	image,	type	the	following:

docker	pull	nginx

Using	default	tag:	latest

latest:	Pulling	from	library/nginx

e7bb522d92ff:	Pull	complete

e7bb522d92ff:	Pull	complete

6edc05228666:	Pull	complete

cd866a17e81f:	Pull	complete

Digest:

sha256:285b49d42c703fdf257d1e2422765c4ba9d3e37768d6ea8

3d7fe2043dad6e63d

Status:	Downloaded	newer	image	for	nginx:latest

Notice	the	first	line:

Using	default	tag:	latest

Every	Docker	image	has	an	associated	tag.	Tags	typically	include	names	and
version	labels.	While	it	is	not	mandatory	to	associate	a	version	tag	with	a	Docker
image	name,	these	tags	make	it	easier	to	roll	back	to	previous	versions.	Without
a	tag	name,	Docker	must	fetch	the	image	with	the	latest	tag.	You	can	also
provide	a	tag	name	to	force-fetch	a	tagged	image.

Docker	Store	lists	the	different	tags	associated	with	the	image.	If	you’re
looking	for	a	specific	tag/version,	it’s	best	to	check	Docker	Store.	Figure	2-3
shows	a	typical	tag	listing	of	an	image.

Figure	2-3 	Docker	Store	listing	of	nginx	and	the	available	tags

Let’s	try	to	pull	the	1.12-alpine-perl	version	of	nginx.	This
command	is	the	same	as	before;	you	only	have	to	append	the	tag	with	a	colon	to
explicitly	mention	the	tag:

docker	pull	nginx:1.12-alpine-perl

1.12-alpine-perl:	Pulling	from	library/nginx

550fe1bea624:	Pull	complete

20a55c7b3b0e:	Pull	complete

552be5624b14:	Pull	complete

40fc04944e91:	Pull	complete

Digest:

sha256:b7970b06de2b70acca1784ab92fb06d60f4f714e901a55b

6b5211c22a446dbd2

Status:	Downloaded	newer	image	for	nginx:1.12-

alpine-perl

The	different	hex	numbers	that	you	see	are	the	associated	layers	of	the
image.	By	default,	Docker	pulls	the	image	from	Docker	Hub.	You	can	manually
specify	a	different	registry,	which	is	useful	if	the	Docker	images	are	not
available	on	Docker	Hub	and	are	instead	stored	elsewhere,	such	as	an	on-
premise	hosted	artifactory.	To	do	this,	you	have	to	prepend	the	registry	path	to
the	image	name.	So,	if	the	registry	is	hosted	on	docker-
private.registry	and	is	being	served	on	1337	port,	the	pull	command	will
now	be:

docker	pull	docker-private.registry:1337/nginx

If	the	registry	needs	authentication,	you	can	log	in	to	the	registry	by	typing
docker	login:

docker	login	docker-private.registry:1337

Now	that	you	have	the	image,	try	to	start	a	container.	To	start	a	container	and
run	the	associated	image,	you	have	to	type	docker	run.

docker	run	-p	80:80	nginx

Let’s	try	making	a	curl	request	to	see	if	the	nginx	webserver	is	running:

curl	http://localhost:80

<!DOCTYPE	html>

<html>

<head>

<title>Welcome	to	nginx!</title>

<style>

				body	{

								width:	35em;

								margin:	0	auto;

								font-family:	Tahoma,	Verdana,	Arial,	sans-

serif;

}

</style>

</head>

<body>

<h1>Welcome	to	nginx!</h1>

<h1>Welcome	to	nginx!</h1>

<p>If	you	see	this	page,	the	nginx	web	server	is

successfully	installed	and	working.	Further

configuration	is	required.</p>

<p>For	online	documentation	and	support	please

refer	to

nginx.org.

Commercial	support	is	available	at

nginx.com.</p>

<p>Thank	you	for	using	nginx.</p>

</body>

</html>

This	confirms	that	our	nginx	container	is	indeed	up	and	running.	In	this,	we
see	an	extra	flag	called	-p.	This	flag	tells	Docker	to	publish	the	exposed	port
from	the	Docker	container	to	the	host.

The	first	parameter	after	the	flag	is	the	port	on	the	Docker	host	that	must	be
published	and	the	second	parameter	refers	to	the	port	within	the	container.	We
can	confirm	that	the	image	publishes	the	port	using	the	docker	inspect
command:

docker	image	inspect	nginx	|	jq	.

[].Config.ExposedPorts

{

		"80/tcp":	{}

}

We	can	change	the	port	on	which	the	service	is	published	on	the	Docker	host
by	changing	the	first	parameter	after	the	-p	flag:

docker	run	-p	8080:80	nginx

Now,	try	running	a	curl	request	to	port	8080:

curl	http://localhost:8080

You	should	see	the	same	response.	To	list	all	the	running	containers,	you	can
type	docker	ps:

docker	ps

docker	ps

CONTAINER

ID			IMAGE			COMMAND																				CREATED	STATUS

									PORTS																		NAMES

fac5e92fdfac			nginx			"nginx	-g	'daemon	of..."			5

seconds	ago	Up	3	seconds			0.0.0.0:80-

>80/tcp					elastic_hugle

3ed1222964de			nginx			"nginx	-g	'daemon

of..."			16	minutes	agoUp	16	minutes		0.0.0.0:8080-

>80/tcp			clever_thompson

The	point	to	note	is	the	NAMES	column.	Docker	automatically	assigns	a
random	name	when	a	container	is	started.	Since	you’d	like	more	meaningful
names,	you	can	provide	a	name	to	the	container	by	providing	-n	required-
name	as	the	parameter.

Tip 	Docker	names	are	of	the	format	adjective_surname	and	are
randomly	generated,	with	the	exception	that	if	the	adjective	selected	is	boring
and	the	surname	is	Wozniak,	Docker	retries	the	name	generation.

Another	point	to	note	is	that	when	we	created	a	second	container	with	port
publishing	to	port	8080,	the	other	container	continues	to	run.	To	stop	the
container,	you	have	to	type	docker	stop:

docker	stop	<container-id>

where	container-id	is	available	from	the	list.	If	the	stop	was	successful,
Docker	will	echo	the	container	ID	back.	If	the	container	refuses	to	stop,	you	can
issue	a	kill	command	to	force	stop	and	kill	the	container:

docker	stop	<container-id>

Let’s	try	stopping	a	container.	Type	the	following:

docker	stop	fac5e92fdfac

docker	stop	fac5e92fdfac

fac5e92fdfac

Now,	let’s	try	killing	the	other	container:

docker	kill	3ed1222964de

3ed1222964de

Let’s	confirm	that	the	containers	are	no	longer	running.	For	this,	type	the
following:

docker	ps

CONTAINER

ID		IMAGE		COMMAND		CREATED		STATUS		PORTS		NAMES

So,	what	about	the	stopped	containers—where	are	they?	By	default,
docker	ps	only	shows	the	active,	running	containers.	To	list	all	the
containers,	type	the	following:

docker	ps	-a

CONTAINER

ID			IMAGE			COMMAND																			CREATED						ST

ATUS									PORTS															NAMES

fac5e92fdfac			nginx			"nginx	-g	'daemon	of..."		6

minutes	agoExited	(0)	4	minutes

ago											elastic_hugle

3ed1222964de			nginx			"nginx	-g	'daemon	of..."		22

minutes	agoExited	(137)	3	minutes

ago									clever_thompson

febda50b0a80			nginx			"nginx	-g	'daemon	of..."		28

minutes	agoExited	(137)	24	minutes

ago								objective_franklin

dc0c33a79fb7			nginx			"nginx	-g	'daemon	of..."		33

minutes	agoExited	(137)	28	minutes

ago								vigorous_mccarthy

179f16d37403			nginx			"nginx	-g	'daemon	of..."		34

minutes	agoExited	(137)	34	minutes	ago								nginx-

test

Even	though	the	containers	have	been	stopped	and/or	killed,	these	containers

Even	though	the	containers	have	been	stopped	and/or	killed,	these	containers
continue	to	exist	in	the	local	filesystem.	You	can	remove	the	containers	by
typing	the	following:

docker	rm	<container-id>

docker	rm	fac5e92fdfac

fac5e92fdfac

Now	confirm	that	the	container	was	indeed	removed:

docker	ps	-a

CONTAINER

ID			IMAGE			COMMAND																			CREATED							S

TATUS									PORTS															NAMES

3ed1222964de			nginx			"nginx	-g	'daemon	of..."		28

minutes	agoExited	(137)	9	minutes

ago									clever_thompson

febda50b0a80			nginx			"nginx	-g	'daemon	of..."		34

minutes	agoExited	(137)	30	minutes

ago								objective_franklin

dc0c33a79fb7			nginx			"nginx	-g	'daemon	of..."		39

minutes	agoExited	(137)	34	minutes

ago								vigorous_mccarthy

179f16d37403			nginx			"nginx	-g	'daemon	of..."		40

minutes	agoExited	(137)	40	minutes	ago								nginx-

test

You	can	see	from	this	table	that	that	container	with	the	ID	fac5e92fdfac
is	no	longer	shown	and	hence	has	been	removed.

Similarly,	you	can	list	all	the	images	present	in	the	system	by	typing	the
following:

docker	image	ls

REPOSITORY		TAG															IMAGE

ID						CREATED						SIZE

nginx							1.12-alpine-perl		b6a456f1d7ae		4	weeks

ago		57.7MB

nginx							latest												3f8a4339aadd		6	weeks

ago		108MB

hello-world	latest												f2a91732366c		2

months	ago	1.85kB

kitematic/		latest												03b4557ad7b9		2	years

ago		7.91MBhello-world-nginx

Let’s	try	to	remove	the	nginx	image:

docker	rmi	3f8a4339aadd

Error	response	from	daemon:	conflict:	unable	to

delete	3f8a4339aadd	(must	be	forced)	-	image	is	being

used	by	stopped	container	dc0c33a79fb7

In	this	case,	Docker	refuses	to	remove	the	image	because	there	is	a	reference
to	this	image	from	another	container.	Until	we	remove	all	the	containers	that	use
a	particular	image,	we	will	not	be	able	to	remove	the	image	altogether.

Summary
In	this	chapter,	you	learned	about	how	to	install	Docker	on	various	operating
systems.	We	also	learned	how	to	validate	that	Docker	is	installed	and	working
correctly	and	learned	about	some	commonly	used	terms	associated	with	Docker.
Finally,	you	run	through	few	practical	exercises	using	Docker,	including	how	to
pull	an	image,	run	a	container,	list	the	running	containers,	and	stop	and	remove	a
container.

In	the	next	chapter,	we	take	a	brief	look	at	Telegram,	including	how	to	create
and	register	a	bot	with	Telegram	and	understand	how	to	run	a	Python-based
Telegram	Messaging	bot	that	will	fetch	posts	from	Reddit.

(1)

©	Sathyajith	Bhat	2018
Sathyajith	Bhat,	Practical	Docker	with	Python
https://doi.org/10.1007/978-1-4842-3784-7_3

3.	Building	the	Python	App
Sathyajith	Bhat1	

Bangalore,	Karnataka,	India

	

For	many	people	getting	into	programming,	one	of	their	first	problems	is	not
understanding	the	language	syntax,	rather	the	problem	starts	with	“what	can	I
build?”.	Programming	is	seldom	learned	by	just	reading.	Many	people	will	read
couple	of	definitive	guides	and	look	at	the	syntax,	while	rarely	diving	into	the
actual	practical	aspects.	This	is	a	mistake.

For	this	reason,	this	book	provides	you	with	a	sample	Python	project.	The
project	is	not	very	complicated	for	those	getting	started	with	Python,	but	at	the
same	time	it’s	easy	to	continue	working	further	on	the	project,	extending	and
customizing	it	as	required.

About	the	Project
Note 	This	book	assumes	you	have	basic	knowledge	of	Python	and	have
Python	3.0	and	above	installed.

To	help	you	get	acquainted	with	Docker,	the	book	will	teach	you	how	to	take	an
existing	Python	app,	run	it	using	the	Python	command	line,	introduce	different
Docker	components,	and	transition	the	app	into	a	Dockerized	image.

The	Python	app	is	a	simple	application	with	a	bot	interface	using	Telegram
Messenger	to	fetch	the	latest	10	stories	from	Reddit.	Using	Telegram,	we	will	be
able	to	subscribe	to	a	list	of	subreddits.	The	web	application	will	check	the
subscribed	subreddits	for	new	posts	and	if	it	finds	new	topics,	will	publish	the
topics	to	the	bot	interface,	which	will	then	deliver	the	message	to	Telegram
Messenger,	when	requested	by	the	user.

Initially,	we	will	not	be	saving	the	preferences	(i.e.,	subreddit	subscriptions)
and	will	focus	on	getting	the	bot	up	and	running.	Once	things	are	working	fine,

https://doi.org/10.1007/978-1-4842-3784-7_3

and	will	focus	on	getting	the	bot	up	and	running.	Once	things	are	working	fine,
we	will	save	the	preferences	to	a	text	file,	and	eventually,	to	a	database.

Setting	Up	Telegram	Messenger
Before	we	can	proceed,	we	will	need	a	Telegram	Messenger	account.	To	sign
up,	go	to	https://telegram.org	,	download	the	application	for	the
platform	of	your	choice,	and	install	it.	Once	it’s	running,	you’ll	be	asked	to
provide	a	cell	phone	number.	Telegram	uses	this	to	validate	your	account.	Enter
the	cell	phone	number	as	shown	in	Figure	3-1.

Figure	3-1 	Telegram	Messenger	signup	page

Once	we’ve	entered	our	number,	we	should	be	getting	a	one-time	password
to	log	in.	Enter	the	one-time	password	and	sign	in,	as	shown	in	Figure	3-2.

https://telegram.org

Figure	3-2 	Telegram	one-time	password

BotFather:	Telegram’s	Bot	Creation	Interface
Telegram	uses	a	bot	called	“BotFather”	as	its	interface	for	creating	and	updating
bots.	To	get	started	with	BotFather,	in	the	search	panel	type	BotFather.	From
the	chat	window,	type	/start.

This	will	trigger	BotFather	to	provide	an	introductory	set	of	messages,	as
shown	in	Figure	3-3.

Figure	3-3 	BotFather	options

Creating	the	Bot	with	BotFather
We	will	be	using	BotFather	to	generate	a	new	bot.	Start	by	typing	/newbot	in
Telegram	Messenger.	This	will	trigger	a	series	of	questions	that	you	need	to
answer	(most	of	them	are	straightforward).	Due	to	Telegram’s	restrictions,	the
username	for	a	bot	must	always	end	with	bot.	This	means	that	you	might	not
get	your	desired	username—just	keep	this	in	mind.	See	Figure	3-4.

Figure	3-4 	Telegram	bot	ready	for	action

Along	with	the	link	to	the	documentation,	you	will	notice	that	Telegram	has
issued	you	a	token.	HTTP	is	a	stateless	protocol—the	webserver	does	not	know
and	does	not	keep	track	of	who	is	requesting	the	resource,	so	the	client	needs	to
identify	itself	so	the	webserver	can	identify	the	client,	authorize	it,	and	serve	the
request.	Telegram	uses	the	API	token	(henceforth,	referred	to	as	<token>,
including	code	samples)	as	way	of	identifying	and	authorizing	bots.

Note 	The	token	is	extremely	sensitive	and	if	it’s	leaked	online,	anyone	can
post	messages	as	your	bot.	Do	not	check	it	in	with	your	version	control	or
publish	it	anywhere!

When	you’re	working	with	APIs	you	are	not	familiar	with,	it’s	always	a	good
idea	to	use	a	tool	to	test	and	explore	the	endpoints	instead	of	typing	the	code
right	away.	Some	examples	of	REST	API	test	tools	include	Insomnia,	Postman,
and	curl.

Telegram’s	Bot	API	documentation	is	available	at
https://core.telegram.org/bots/api	.	To	make	a	request,	you’ll
have	to	include	the	<token>	as	part	of	the	request.	The	general	URL	is:

https://api.telegram.org/bot<token>/METHOD_NAME

Let’s	try	a	sample	API	request	that	confirms	the	token	is	working	as	expected.
Telegram	Bot	API	provides	a	/getMe	endpoint	for	testing	the	auth	token.
Let’s	try	it	out,	first	without	the	token:

curl	https://api.telegram.org/bot/getMe

{

		"ok":	false,

		"error_code":	404,

		"description":	"Not	Found"

}

We	can	see	that	without	the	bot	token,	Telegram	doesn’t	honor	our	request.	Let’s
try	it	with	the	token:

curl	https://api.telegram.org/bot<token>/getMe

{

		"ok":	true,

		"result":	{

				"id":	495637361,

				"is_bot":	true,

				"first_name":	"SubRedditFetcherBot",	"username":

"SubRedditFetcher_Bot"

}

}

https://insomnia.rest/
https://www.getpostman.com/
https://curl.haxx.se/
https://core.telegram.org/bots/api

}

We	can	see	with	the	proper	token,	Telegram	identified	and	authorized	our	bot.
This	confirms	that	our	bot	token	is	proper	and	we	can	go	ahead	with	the	app.

Newsbot:	The	Python	App
Newsbot	is	a	Python	script	that	interacts	with	our	bot	with	the	help	of	Telegram
Bot	API.	Newsbot	does	the	following	things:

Continuously	polls	the	Telegram	API	for	new	updates	being	posted	to	the	bot.
If	the	keyword	for	fetching	new	updates	was	detected,	fetches	the	news	from
the	selected	subreddits.

Behind	the	scenes,	Newsbot	also	handles	these	scenarios:

If	there’s	a	new	message	starting	with	/start	or	/help,	it	shows	a
simple	help	text	explaining	what	to	do.

If	there’s	a	message	starting	with	/sources	followed	by	a	list	of
subreddits,	it	accepts	them	as	the	subreddits	from	where	the	Reddit	posts	must
be	fetched.

Newsbot	depends	on	a	couple	of	Python	libraries:

Praw	or	Python	Reddit	API	Wrapper,	for	fetching	posts	from	subreddits.
Requests,	one	of	the	most	popular	Python	libraries	for	providing	a	simpler,

cleaner	API	for	making	HTTP	requests.

Installing	Dependencies	of	Newsbot
To	get	started	with	this	bot,	let’s	install	the	dependencies.	To	do	this,	type	this:

pip3	install	-r	requirements.txt

Note 	pip	(the	acronym	for	Pip	installs	packages)	is	a	package	manager	for
installing	Python	libraries.	Pip	is	included	with	Python	2.7.9	and	later,	and
Python	3.4	and	later.	pip3	indicates	that	we	are	installing	libraries	for	Python
3.	If	pip	is	not	installed,	install	it	before	proceeding.

The	-r	flag	tells	pip	to	install	the	required	packages	from
requirements.txt.

pip	will	check,	download,	and	install	the	dependencies.	If	all	goes	well,	it	should
show	the	following	output:

Collecting	praw==3.6.0	(from	-r	requirements.txt	(line

https://core.telegram.org/bots/api

Collecting	praw==3.6.0	(from	-r	requirements.txt	(line

1))	Downloading	praw-3.6.0-py2.py3-none-any.whl	(74kB)

Collecting	requests==2.18.4	(from	-r	requirements.txt

(line	2))	[...]

Installing	collected	packages:	requests,	update-

checker,	decorator,	six,	praw	Successfully	installed

decorator-4.0.11	praw-3.6.0	requests-2.18.4	six-1.10.0

update-checker-0.16

If	there	were	some	packages	already	installed,	then	pip	will	not	reinstall	the
package	and	will	inform	us	that	the	dependency	is	installed	with	a
"Requirement	already	satisfied"	message.

Running	Newsbot
Let’s	start	the	bot.	The	bot	requires	the	<token>	to	be	passed	an	environment
variable	to	the	script	named	NBT_ACCESS_TOKEN,	so	prepend	this	and	run	as
follows:

NBT_ACCESS_TOKEN=<token>	python	newsbot.py

If	all’s	well,	you	should	be	seeing	periodic	OK	messages	like	shown	here.	This
means	that	Newsbot	is	running	and	is	actively	listening	for	updates.

python	newsbot.py

INFO:	get_updates	-	received	response:	{'ok':	True,

'result':	[]}

INFO:	get_updates	-	received	response:	{'ok':	True,

'result':	[]}

INFO:	get_updates	-	received	response:	{'ok':	True,

'result':	[]}

INFO:	get_updates	-	received	response:	{'ok':	True,

'result':	[]}

INFO:	get_updates	-	received	response:	{'ok':	True,

'result':	[]}

INFO:	get_updates	-	received	response:	{'ok':	True,

'result':	[]}

Sending	Messages	to	Newsbot
Let’s	try	sending	a	message	to	our	bot	to	see	if	it	responds.	From	the	BotFather

window,	click	on	the	link	to	the	bot	(alternatively,	you	can	also	search	with	the
bot	username).	Click	on	the	start	button.	This	will	trigger	a	/start	command,
which	will	be	intercepted	by	the	bot.

Notice	that	the	log	window	shows	the	incoming	request	and	the	outgoing
message	being	sent:

INFO:	get_updates	-	received	response:	{'ok':	True,

'result':	[]}

INFO:	get_updates	-	received	response:	{'ok':	True,

'result':	[]}

INFO:	get_updates	-	received	response:	{'ok':	True,

'result':	[]}

INFO:	get_updates	-	received	response:	{'ok':	True,

'result':	[{'update_id':	720594461,	'message':

{'message_id':	5,	'from':	{'id':	7342383,	'is_bot':

False,	'first_name':	'Sathya',	'last_name':	'Bhat',

'username':	'sathyabhat',	'language_code':	'en-US'},

'chat':	{'id':	7342383,	'first_name':	'Sathya',

'last_name':	'Bhat',	'username':	'sathyabhat',	'type':

'private'},	'date':	1516558659,	'text':	'/start',

'entities':	[{'offset':	0,	'length':	6,	'type':

'bot_command'}]}}]}

INFO:	handle_incoming_messages	-	Chat	text	received:

/start	INFO:	post_message	-	posting	Hi!	This	is	a	News

Bot	which	fetches	news	from	subreddits.	Use	"/source"

to	select	a	subreddit	source.

	Example	"source	programming,	games"	fetches	news	from

rprogramming,	r/games.

	Use	"/fetch"	for	the	bot	to	go	ahead	and	fetch	the

news.	At	the	moment,	bot	will	fetch	total	of	10	posts

from	all	subreddits	to	7342383

INFO:	get_updates	-	received	response:	{'ok':	True,

'result':	[]}

Figure	3-5	shows	what	you	will	see	in	the	Telegram	Messenger	window.

Figure	3-5 	The	response	from	bot	to	our	start	message

Let’s	try	setting	a	source	subreddit.	From	the	Telegram	Messenger	window,
type	the	following:

/source	python

You	should	get	a	positive	acknowledgement	from	the	bot	saying	the	source	was
selected,	as	shown	in	Figure	3-6.

Figure	3-6 	Sources	assigned

Let’s	have	the	bot	fetch	us	some	news.	To	do	this,	type	the	following:

/fetch

The	bot	should	send	an	acknowledgement	message	about	fetching	the	posts	and
then	publish	the	posts	from	Reddit.	See	Figure	3-7.

Figure	3-7 	Posts	are	published

The	bot	works	by	fetching	the	top	posts	as	expected.	In	the	next	series	of
chapters,	you	learn	how	to	move	the	application	to	Docker.

Summary
In	this	chapter,	you	learned	about	the	Python	project,	which	is	a	chatbot.	You
also	learned	how	to	install	and	configure	Telegram	Messenger	using	Telegram’s
BotFather	to	create	the	bot,	how	to	install	the	dependencies	for	the	bot,	and
finally,	how	to	run	the	bot	and	ensure	that	it	works	correctly.	In	the	next	chapter,
we	dive	deep	into	Docker,	learn	more	about	the	Dockerfile,	and	Dockerize	our
Newsbot	by	writing	a	Dockerfile	for	it.

(1)

©	Sathyajith	Bhat	2018
Sathyajith	Bhat,	Practical	Docker	with	Python
https://doi.org/10.1007/978-1-4842-3784-7_4

4.	Understanding	the	Dockerfile
Sathyajith	Bhat1	

Bangalore,	Karnataka,	India

	

Now	that	you	have	a	better	understanding	of	Docker	and	its	associated
terminology,	let’s	convert	the	project	into	a	Dockerized	application.	In	this
chapter,	you	take	a	look	at	a	Dockerfile,	including	its	syntax,	and	learn	how	to
write	a	sample	Dockerfile.

By	understanding	the	Dockerfile,	you	are	working	toward	the	first	step	in
writing	a	Dockerfile	for	the	project.

Dockerfile
For	a	traditionally	deployed	application,	building	and	packaging	an	application
was	often	quite	tedious.	With	the	aim	to	automate	the	building	and	packaging	of
the	application,	people	turned	to	different	utilities,	such	as	GNU	Make,	maven,
gradle,	etc.,	to	build	the	application	package.	Similarly,	in	the	Docker	world,	a
Dockerfile	is	an	automated	way	to	build	your	Docker	images.

The	Dockerfile	contains	special	instructions,	which	tell	the	Docker	Engine
about	the	steps	required	to	build	an	image.	To	invoke	a	build	using	Docker,	you
issue	the	Docker	build	command.

A	typical	Dockerfile	looks	like	this:

FROM	ubuntu:latest

LABEL	author="sathyabhat"

LABEL	description="An	example	Dockerfile"

RUN	apt-get	install	python

COPY	hello-world.py

CMD	python	hello-world.py

https://doi.org/10.1007/978-1-4842-3784-7_4

Looking	at	the	Dockerfile,	it’s	easy	to	comprehend	what	we’re	telling	the
Docker	Engine	to	build.	However,	don’t	let	the	simplicity	fool	you—the
Dockerfile	lets	you	build	complex	conditions	when	generating	your	Docker
image.	When	a	Docker	build	command	is	issued,	it	builds	the	Docker	images
from	the	Dockerfile	within	context.

Build	Context
A	build	context	is	a	file	or	set	of	files	available	at	a	specific	path	or	URL.	To
understand	this	better,	we	might	have	some	supporting	files	that	we	need	during
a	Docker	image	build—for	instance,	an	application	specific	config	file	that	was
been	generated	earlier	and	needs	to	be	part	of	the	container.

The	build	context	can	be	local	or	remote—we	can	even	set	the	build	context
to	the	URL	of	a	Git	repository,	which	can	come	in	handy	if	the	source	files	are
not	located	on	the	same	host	as	the	Docker	daemon	or	if	we’d	like	to	test	out
feature	branches.	We	simply	set	the	context	to	the	branch.	The	build	command
looks	like	this:

docker	build	https://github.com/sathyabhat/sample-

repo.git#mybranch

Similarly,	to	build	images	based	on	your	Git	tags,	the	build	command
would	look	like	this:

docker	build	https://github.com/sathyabhat/sample-

repo.git#mytag

Working	on	a	feature	via	a	pull	request?	Want	to	try	out	that	pull	request?
Not	a	problem;	you	can	even	set	the	context	to	a	pull	request	as	follows:

docker	build	https://github.com/sathyabhat/sample-

repo.git#pull/1337/head

The	build	command	sets	the	context	to	the	path	or	URL	provided,
uploading	the	files	to	the	Docker	daemon	and	allowing	it	to	build	the	image.
You	are	not	limited	to	the	build	context	of	the	URL	or	path.	If	you	pass	an	URL
to	a	remote	tarball,	the	tarball	at	the	URL	is	downloaded	onto	the	Docker
daemon	and	the	build	command	is	issued	with	that	as	the	build	context.

Caution 	If	you	provide	the	Dockerfile	on	the	root	(/)	directory	and	set	that

as	the	context,	this	will	transfer	your	hard	disk	contents	to	the	Docker
daemon.

Dockerignore
You	should	now	understand	that	the	build	context	transfers	the	contents	of	the
current	directory	to	the	Docker	daemon	during	the	build.	Consider	the	case
where	the	context	directory	has	a	lot	of	files/directories	that	are	not	relevant	to
the	build	process.	Uploading	these	files	can	cause	a	significant	increase	in
traffic.	Dockerignore,	much	like	gitignore,	allows	you	to	define	files
which	are	exempt	from	being	transferred	during	the	build	process.

The	ignore	list	is	provided	by	a	file	known	as	.dockerignore	and	when
the	Docker	CLI	finds	this	file,	it	modifies	the	context	to	exclude	the
files/patterns	provided	in	the	file.	Anything	starting	with	a	hash	(#)	is	considered
a	comment	and	ignored.	Here’s	a	sample	.dockerignore	file	that	excludes	a
temp	directory,	a	.git	directory,	and	the	.DS_Store	directory:

.dockerignore	Listing

/temp

.DS_Store

.git

Building	Using	Docker	Build
We’ll	return	to	the	sample	Dockerfile	a	bit	later.	Let’s	try	a	simple	Dockerfile
first.	Copy	the	following	contents	to	a	file	and	save	it	as	a	Dockerfile:

Dockerfile	Listing

FROM	ubuntu:latestCMD	echo	Hello	World!

Now	build	this	image:

docker	build	.

You	should	see	a	response	like	this:

Sending	build	context	to	Docker	daemon		2.048kB

Step	1/2	:	FROM	ubuntu:latest

latest:	Pulling	from	library/ubuntu

22dc81ace0ea:	Pull	complete

1a8b3c87dba3:	Pull	complete

1a8b3c87dba3:	Pull	complete

91390a1c435a:	Pull	complete

07844b14977e:	Pull	complete

b78396653dae:	Pull	complete

Digest:

sha256:e348fbbea0e0a0e73ab0370de151e7800684445c509d461

95aef73e090a49bd6

Status:	Downloaded	newer	image	for	ubuntu:latest

	--->	f975c5035748

Step	2/2	:	CMD	echo	Hello	World!

	--->	Running	in	26723ca45a12

Removing	intermediate	container	26723ca45a12

	--->	7ae54947f6a4

Successfully	built	7ae54947f6a4

We	can	see	that	the	Docker	build	works	in	steps,	each	step	corresponding	to
one	instruction	of	the	Dockerfile.	Try	the	build	process	again.

Dockerfile	Listing

docker	build	.

Sending	build	context	to	Docker	daemon		2.048kB

Step	1/2	:	FROM	ubuntu:latest

	--->	f975c5035748

Step	2/2	:	CMD	echo	Hello	World!

	--->	Using	cache

	--->	7ae54947f6a4

Successfully	built	7ae54947f6a4

In	this	case,	the	build	process	is	much	faster	since	Docker	has	already	cached
the	layers	and	doesn’t	have	to	pull	them	again.	To	run	this	image,	use	the
docker	run	command	followed	by	the	image	ID	7ae54947f6a4:

docker	run	7ae54947f6a4

Hello	World!

The	Docker	runtime	was	able	to	start	a	container	and	run	the	command
defined	by	the	CMD	instruction.	Hence,	we	get	the	output.	Now,	starting	a
container	from	an	image	by	typing	the	image	ID	gets	tedious	fast.	You	can	make
this	easier	by	tagging	the	image	with	an	easy-to-remember	name.	You	can	do
this	by	using	the	docker	tag	command,	as	follows:

docker	tag	image_id	tag_name

docker	tag	7ae54947f6a4	sathya:hello-world

You	can	also	do	this	as	part	of	the	build	process	itself:

docker	build	-t	sathya:hello-world	.

Sending	build	context	to	Docker	daemon		2.048kB

Step	1/2	:	FROM	ubuntu:latest

	--->	f975c5035748

Step	2/2	:	CMD	echo	Hello	World!

	--->	Using	cache

	--->	7ae54947f6a4

Successfully	built	7ae54947f6a4

Successfully	tagged	sathya:hello-world

The	last	line	tells	you	that	the	image	was	tagged	successfully.	You	can	verify
this	by	searching	for	docker	images	as	follows:

docker	images	sathya:hello-world

REPOSITORY										TAG																	IMAGE

IDCREATED													SIZE

sathya														hello-

world									7ae54947f6a4								24	minutes

ago						112MB

Docker	also	validates	that	the	Dockerfile’s	instructions	are	valid	and	in	the
proper	syntax.	Consider	the	earlier	Dockerfile,	shown	here.

Dockerfile	Listing

FROM	ubuntu:latest

LABEL	author="sathyabhat"

LABEL	description="An	example	Dockerfile"

RUN	apt-get	install	python

COPY	hello-world.py

CMD	python	hello-world.py

If	you	try	to	build	this	Dockerfile,	Docker	will	complain	with	an	error:

docker	build	-t	sathyabhat:python-hello-world	.

Sending	build	context	to	Docker	daemon		2.048kB

Error	response	from	daemon:	Dockerfile	parse	error

line	5:	COPY	requires	at	least	two	arguments,	but	only

one	was	provided.	Destination	could	not	be	determined.

We’ll	get	back	to	fixing	this	problem	a	little	later	in	the	chapter.	For	now,
let’s	look	at	some	of	the	commonly	used	Dockerfile	instructions.

Dockerfile	Instructions
When	looking	at	a	Dockerfile,	you’re	mostly	likely	to	run	into	the	following
instructions:

FROM

ADD

COPY

RUN

CMD

ENTRYPOINT

ENV

VOLUME

LABEL

EXPOSE

Let’s	see	what	they	do.

FROM
As	you	learned	earlier,	every	image	needs	to	start	from	a	base	image.	The	FROM
instruction	tells	the	Docker	Engine	which	base	image	to	use	for	subsequent
instructions.	Every	valid	Dockerfile	must	start	with	a	FROM	instruction.	The
syntax	is	as	follows:

FROM	<image>	[AS	<name>]

OR

FROM	<image>[:<tag>]	[AS	<name>]

OR

FROM	<image>[@<digest>]	[AS	<name>]

Where	<image>	is	the	name	of	a	valid	Docker	image	from	any
public/private	repository.	If	the	tag	is	skipped,	Docker	will	fetch	the	image
tagged	as	the	latest.	This	is	verified	by	this	simple	step.	Create	a	Dockerfile	with
contents	as	shown	here:

Dockerfile	Listing

FROM	ubuntu

CMD	echo	Hello	World!

Build	the	image

docker	build	.

Sending	build	context	to	Docker	daemon		2.048kB

Step	1/2	:	FROM	ubuntu:latest

	--->	f975c5035748

Step	2/2	:	CMD	echo	Hello	World!

	--->	7ae54947f6a4

Successfully	built	7ae54947f6a4

Now	modify	the	Dockerfile	to	include	the	latest	tag,	as	shown.
Dockerfile	Listing

FROM	ubuntu:latest

CMD	echo	Hello	World!

Build	the	image:

docker	build	.

Sending	build	context	to	Docker	daemon		2.048kB

Step	1/2	:	FROM	ubuntu:latest

	--->	f975c5035748

Step	2/2	:	CMD	echo	Hello	World!

	--->	7ae54947f6a4

Successfully	built	7ae54947f6a4

You	can	see	in	the	first	step	that	the	image	hash	remains	the	same,
confirming	that	skipping	the	image	tag	will	result	in	Docker	fetching	the	image
with	the	latest	tag.

Note 	We	recommend	always	providing	a	tag	to	avoid	unexpected	changes
that	might	not	have	been	tested	when	a	latest	tagged	image	was	built.

WORKDIR
WORKDIR	instruction	sets	the	current	working	directory	for	RUN,	CMD,
ENTRYPOINT,	COPY,	and	ADD	instructions.	The	syntax	is	as	follows:

WORKDIR	pathto/directory

WORKDIR	can	be	set	multiple	times	in	a	Dockerfile	and,	if	a	relative
directory	succeeds	a	previous	WORKDIR	instruction,	it	will	be	relative	to	the
previously	set	working	directory.	The	following	example	demonstrates	this.

Dockerfile	Listing

FROM	ubuntu:latest

WORKDIR	/usr

CMD	pwd

This	Dockerfile	fetches	the	latest	tagged	image	from	Ubuntu	as	the	base
image,	sets	the	current	working	directory	to	/usr,	and	prints	the	current
working	directory	when	the	image	is	run.

Let’s	try	building	and	running	this	and	then	examining	the	output:

docker	build	-t	sathyabhat:workdir	.

Sending	build	context	to	Docker	daemon		2.048kB

Step	1/3	:	FROM	ubuntu:latest

	--->	f975c5035748

Step	2/3	:	WORKDIR	/usr

	--->	Using	cache

	--->	8b0b5742b476

Step	3/3	:	CMD	pwd

	--->	Using	cache

	--->	4a827ca4a571

Successfully	built	4a827ca4a571

Successfully	tagged	sathyabhat:workdir

docker	run	sathyabhat:workdir

/usr

The	result	of	pwd	makes	it	clear	that	the	current	working	directory	is	set	as
/usr	by	way	of	the	WORKDIR	instruction.

Now	we’ll	modify	the	Dockerfile	to	add	couple	of	WORKDIR	instructions.

Dockerfile	Listing

FROM	ubuntu:latest

WORKDIR	/usr

WORKDIR	src

WORKDIR	app

CMD	pwd

Now	build	and	run	the	new	image:

docker	build	-t	sathyabhat:workdir	.

Sending	build	context	to	Docker	daemon		2.048kB

Step	1/5	:	FROM	ubuntu:latest

	--->	f975c5035748

Step	2/5	:	WORKDIR	/usr

	--->	Using	cache

	--->	8b0b5742b476

Step	3/5	:	WORKDIR	src

Removing	intermediate	container	5b1b88e4da20

	--->	5ac5d4dafe05

Step	4/5	:	WORKDIR	app

Removing	intermediate	container	b9679196e934

	--->	b94f50750702

Step	5/5	:	CMD	pwd

	--->	Running	in	f78c97738bed

Removing	intermediate	container	f78c97738bed

	--->	90ebd71d1794

Successfully	built	90ebd71d1794

Successfully	tagged	sathyabhat:workdir

Note	that	the	image	ID	has	changed,	so	that’s	a	new	image	being	built	with
the	same	tag:

docker	run	sathyabhat:workdir

usrsrc/app

As	expected,	the	WORKDIR	instructions	of	the	relative	directory	has
appended	to	the	initial	absolute	directory	set.	By	default,	the	WORKDIR	is	set	as

/	so	any	WORKDIR	instructions	featuring	a	relative	directory	will	be	appended
to	/.	Here’s	an	example	demonstrating	this.	Let’s	modify	the	Dockerfile	as
follows.

Dockerfile	Listing

FROM	ubuntu:latest

WORKDIR	var

WORKDIR	log/nginx

CMD	pwd

Build	the	image:

docker	build	-t	sathyabhat:workdir	.

Sending	build	context	to	Docker	daemon		2.048kB

Step	1/4	:	FROM	ubuntu:latest

	--->	f975c5035748

Step	2/4	:	WORKDIR	var

Removing	intermediate	container	793a97be060e

	--->	ae4b53721bab

Step	3/4	:	WORKDIR	log/nginx

Removing	intermediate	container	b557dfe11cf3

	--->	04fb3808cb35

Step	4/4	:	CMD	pwd

	--->	Running	in	6ce9f7854160

Removing	intermediate	container	6ce9f7854160

	--->	bfd10d1dfd4a

Successfully	built	bfd10d1dfd4a

Successfully	tagged	sathyabhat:workdir

And	let’s	run	it:

docker	run	sathyabhat:workdir

varlog/nginx

Notice	that	we	did	not	set	any	absolute	working	directory	in	the	Dockerfile.
The	relative	directories	were	appended	to	the	default.

ADD	and	COPY
At	first	glance,	the	ADD	and	COPY	instructions	seem	to	do	the	same—they	allow

you	to	transfer	files	from	the	host	to	the	container’s	filesystem.	COPY	supports
basic	copying	of	files	to	the	container,	while	ADD	has	support	for	features	like
tarball	auto	extraction	and	remote	URL	support.

Syntax	for	both	is	quite	similar:

ADD	<source>	<destination>

COPY	<source>	<destination>

For	Dockerfiles	used	to	build	Linux	containers,	both	of	these	instructions	let
you	change	the	owner/group	of	the	files	being	added	to	the	container.	This	is
done	with	the	--chown	flag,	as	follows:

ADD	--chown=<user>:<group>	<source>	<destination>

COPY	--chown=<user>:<group>	<source>	<destination>

For	example,	if	you	want	to	move	the	requirements.txt	file	from	the
current	working	directory	to	the	usrshare/app	directory,	the	instruction
would	be	as	follows:

ADD	requirements.txt	usrshare/app

COPY		requirements.txt	usrshare/app

Both	ADD	and	COPY	support	wildcards	while	specifying	patterns.	For
example,	having	the	following	instructions	in	your	Dockerfile	will	copy	all	files
with	the	.py	extension	to	the	apps	directory	of	the	image.

ADD	*.py	apps

COPY	*.py	apps

Docker	recommends	using	COPY	over	ADD,	especially	when	it’s	a	local	file
that’s	being	copied.	There	are	a	few	gotchas	to	be	considered	when	using	COPY
versus	ADD	and	the	behavior	of	COPY/ADD	instructions:

If	the	<destination>	does	not	exist	in	the	image,	it	will	be	created.
All	new	files/directories	are	created	with	UID	and	GID	as	0,	i.e.,	as	the	root
user.	To	change	this,	use	the	--chown	flag.
If	the	files/directories	contain	special	characters,	they	will	need	to	be	escaped.
The	<destination>	can	be	an	absolute	or	relative	path.	In	case	of	relative
paths,	the	relativeness	will	be	inferred	from	the	path	set	by	the	WORKDIR

instruction.
If	the	<destination>	doesn’t	end	with	a	trailing	slash,	it	will	be
considered	a	file	and	the	contents	of	the	<source>	will	be	written	into
<destination>.
If	the	<source>	is	specified	as	a	wildcard	pattern,	the	<destination>
must	be	a	directory	and	must	end	with	a	trailing	slash;	otherwise,	the	build
process	will	fail.
The	<source>	must	be	within	the	build	context—it	cannot	be	a
file/directory	outside	of	the	build	context	because	the	first	step	of	a	Docker
build	process	involves	sending	the	context	directory	to	the	Docker	daemon.
In	case	of	the	ADD	instruction:

If	the	<source>	is	a	URL	and	the	<destination>	is	not	a	directory
and	doesn’t	end	with	a	trailing	slash,	the	file	is	downloaded	from	the	URL
and	copied	into	<destination>.
If	the	<source>	is	a	URL	and	the	<destination>	is	a	directory	and
ends	with	a	trailing	slash,	the	filename	is	inferred	from	the	URL	and	the	file
is	downloaded	and	copied	to	<destination>/<filename>.
If	the	<source>	is	a	local	tarball	of	a	known	compression	format,	the
tarball	is	unpacked	as	a	directory.	Remote	tarballs,	however,	are	not
uncompressed.

RUN
The	RUN	instruction	will	execute	any	commands	in	a	new	layer	on	top	of	the
current	image	and	create	a	new	layer	that	is	available	for	the	next	steps	in	the
Dockerfile.

RUN	has	two	forms:

RUN	<command>	(known	as	the	shell	form)

RUN	["executable",	"parameter	1",	"	parameter	2"]

(known	as	the	exec	form)

In	shell	form,	the	command	is	run	in	a	shell	with	the	command	as	a
parameter.	This	form	provides	for	a	shell	where	shell	variables,	subcommands,
and	commanding	piping	and	chaining	is	possible.

Consider	a	scenario	where	you’d	like	to	embed	the	kernel	release	version
into	the	home	directory	of	the	Docker	image.	With	the	shell	form,	it’s	easy
enough:

RUN	echo	`uname	-rv`	>	$HOME/kernel-info

RUN	echo	`uname	-rv`	>	$HOME/kernel-info

This	wouldn’t	be	possible	with	the	exec	form.	RUN	is	a	build-time	command
and,	as	such,	is	run	when	a	Docker	image	is	built,	rather	than	when	it’s	run.	The
resultant	layer	is	then	cached.	It’s	important	to	note	that	Docker	uses	the
command	string	of	a	RUN	instruction	to	build	the	cache,	rather	than	the	actual
contents	of	the	RUN	instruction.

Consider	the	following	Dockerfile.
Dockerfile	Listing

FROM	ubuntu:16.04

RUN	apt-get	update

When	the	image	is	built,	Docker	will	cache	all	the	layers	of	this	command.
However,	consider	when	we	build	another	Dockerfile,	shown	here.

Dockerfile	Listing

FROM	ubuntu:18.04

RUN	apt-get	update

In	this	case,	Docker	reuses	the	cache	of	the	previous	image	and,	as	a	result,
the	image	build	can	contain	outdated	packages.	The	cache	for	the	RUN
instructions	can	be	invalidated	by	using	the	--no-cache	flag.	Every	RUN
instruction	creates	a	new	layer.	This	can	be	a	good	or	a	bad	thing—it’s	good
because	the	resulting	cache	means	that	future	builds	can	reuse	the	cache	layer.

It	can	be	bad	because	the	cached	layer	might	not	be	compatible	with	future
builds	and	increases	the	size	of	the	Docker	image.	Docker	recommends	chaining
multiple	RUN	commands	into	a	single	command.	For	example,	installing	or
using	multiple	RUN	commands	to	install	the	required	packages:

RUN	apt-get	update

RUN	apt-get	install	foo

RUN	apt-get	install	bar

RUN	apt-get	install	baz

It’s	better	to	wrap	them	in	a	single	RUN	command:

RUN	apt-get	update	&&	apt-get	install	-y	\

				foo	\

			bar		\

			baz

This	reduces	the	number	of	layers	and	makes	for	a	leaner	Docker	image.

CMD	and	ENTRYPOINT
CMD	and	ENTRYPOINT	instructions	define	which	command	is	executed	when
running	a	container.	The	syntax	for	both	are	as	follows:

CMD	["executable","param1","param2"]	(exec	form)

CMD	["param1","param2"]	(as	default	parameters	to

ENTRYPOINT)

CMD	command	param1	param2	(shell	form)

ENTRYPOINT	["executable",	"param1",	"param2"]	(exec

form)

ENTRYPOINT	command	param1	param2	(shell	form)

The	CMD	instruction	provides	the	defaults	for	an	executing	container.	We	can
skip	providing	the	executable	for	a	CMD	instruction,	in	which	case	the	executable
should	be	provided	via	the	ENTRYPOINT	instruction.

Consider	the	following	Dockerfile.
Dockerfile	Listing

FROM	ubuntu:latest

RUN	apt-get	update	&&	\

				apt-get	install	-y	curl	&&	\

				rm	-rf	varlib/apt/lists/*

CMD	curl

In	this	Docker	image,	we	select	Ubuntu	as	the	base	image,	install	curl	on
it,	and	choose	curl	as	the	CMD	instruction.	This	means	that	when	the	container
is	created	and	run,	it	will	run	curl	without	any	parameters.	Let’s	see	the	result
when	we	run	the	container:

docker	run	sathyabhat:curl

curl:	try	'curl	--help'	or	'curl	--manual'	for	more

information

This	is	because	curl	expects	a	parameter	to	be	passed.	We	can	override	the
CMD	instruction	by	passing	arguments	to	the	docker	run	command.	As	an

example,	let’s	try	to	curl	wttr.in,	which	fetches	the	current	weather.

docker	run	sathyabhat:curl	wttr.in

docker:	Error	response	from	daemon:	OCI	runtime

create	failed:	container_linux.go:296:	starting

container	process	caused	"exec:	\"wttr.in\":

executable	file	not	found	in	$PATH":	unknown.

Uh	oh,	an	error.	As	mentioned,	the	parameters	after	docker	run	are	used
to	override	the	CMD	instruction.	However,	we	have	passed	only	wttr.in	as	the
argument,	not	the	executable	itself.	So,	for	the	override	to	work	properly,	we
need	to	pass	in	the	executable,	i.e.	curl,	as	well:

docker	run	sathyabhat:curl	curl	-s	wttr.in

Weather	report:	Gurgaon,	India

															Haze

			-	-	_	-		24-25	°C

				-	-	_			↖	13	km/h
			-	-	_	-		3	km

															0.0	mm

Passing	an	executable	every	time	to	override	a	parameter	can	be	quite
tedious.	This	is	where	the	combination	of	ENTRYPOINT	and	CMD	shines—we
can	set	ENTRYPOINT	to	the	executable	while	the	parameter	can	be	passed	from
the	command	line	and	will	be	overridden.	Modify	the	Dockerfile	as	shown:

FROM	ubuntu:latest

RUN	apt-get	update	&&	\

				apt-get	install	-y	curl	&&	\

				rm	-rf	varlib/apt/lists/*

ENTRYPOINT	["curl",	"-s"]

Now	we	can	curl	any	URL	by	just	passing	the	URL	as	a	parameter,	instead
of	having	to	add	the	executable	as	well:

docker	run	sathyabhat:curl	wttr.in

Weather	report:	Gurgaon,	India

															Haze

			-	-	_	-		24-25	°C

				-	-	_			↖	13	km/h
			-	-	_	-		3	km

															0.0	mm

Of	course,	curl	is	just	an	example	here—you	can	replace	curl	with	any
other	program	that	accepts	parameters	(such	as	load	testing	utilities,
benchmarking	utilities,	etc.)	and	the	combination	of	CMD	and	ENTRYPOINT
makes	it	easy	to	distribute	the	image.

We	must	note	that	the	ENTRYPOINT	must	be	provided	in	exec	form.
Writing	it	in	shell	form	means	that	the	parameters	are	not	passed	properly	and
will	not	work	as	expected.	Table	4-1	is	from	Docker’s	Reference	Guide	and
explains	which	commands	are	executed	for	various	ENTRYPOINT/CMD
combinations.

Table	4-1 	Commands	for	ENTRYPOINT/CMD	Combinations

	 No
ENTRYPOINT

ENTRYPOINT
exec_entry	p1_entry

ENTRYPOINT	["exec_entry",
"p1_entry"]

No	CMD error,	not

allowed

binsh	-c

exec_entry

p1_entry

exec_entry	p1_entry

CMD

["exec_cmd",

"p1_cmd"]

exec_cmd

p1_cmd

binsh	-c

exec_entry

p1_entry

exec_entry	p1_entry

exec_cmd	p1_cmd

CMD	["p1_cmd",

"p2_cmd"]

p1_cmd	p2_cmd binsh	-c

exec_entry

p1_entry

exec_entry	p1_entry

p1_cmd	p2_cmd

CMD	exec_cmd

p1_cmd

binsh	-c

exec_cmd

p1_cmd

binsh	-c

exec_entry

p1_entry

exec_entry	p1_entry

binsh	-c	exec_cmd	p1_cmd

Gotchas	About	Shell	and	Exec	Form
As	mentioned	earlier,	you	can	specify	RUN,	CMD,	and	ENTRYPOINT	in	shell
form	and	exec	form.	What	should	be	used	will	entirely	depend	on	what	the
requirements	are.	But	as	a	general	guide:

In	shell	form,	the	command	is	run	in	a	shell	with	the	command	as	a	parameter.
This	form	provides	for	a	shell	where	shell	variables,	subcommands,
commanding	piping,	and	chaining	is	possible.
In	exec	form,	the	command	does	not	invoke	a	command	shell.	This	means	that

https://docs.docker.com/engine/reference/builder/#understand-how-cmd-and-entrypoint-interact

normal	shell	processing	(such	as	$VARIABLE	substitution,	piping,	etc.)	will
not	work.
A	program	started	in	shell	form	will	run	as	subcommand	of	binsh	-c.	This
means	the	executable	will	not	be	running	as	PID	and	will	not	receive	UNIX
signals.

As	a	consequence,	a	Ctrl+C	to	send	a	SIGTERM	will	not	be	forwarded	to	the
container	and	the	application	might	not	exit	correctly.

ENV
The	ENV	instruction	sets	the	environment	variables	to	the	image.	The	ENV
instruction	has	two	forms:

ENV	<key>	<value>

ENV	<key>=<value>	...

In	the	first	form,	the	entire	string	after	the	<key>	will	be	considered	the
value,	including	whitespace	characters.	Only	one	variable	can	be	set	per	line	in
this	form.

In	the	second	form,	multiple	variables	can	be	set	at	one	time,	with	the	equals
character	assigning	value	to	the	key.

The	environment	variables	set	are	persisted	through	the	container	runtime.
They	can	be	viewed	using	docker	inspect.

Consider	the	following	Dockerfile.
Dockerfile	Listing

FROM	ubuntu:latest

ENV	LOGS_DIR="varlog"

ENV	APPS_DIR	apps

Let’s	build	the	Docker	image:

docker	build	-t	sathyabhat:env-example	.

Sending	build	context	to	Docker	daemon		2.048kB

Step	1/3	:	FROM	ubuntu:latest

	--->	f975c5035748

Step	2/3	:	ENV	LOGS_DIR="varlog"

	--->	Running	in	2e564f4d1905

Removing	intermediate	container	2e564f4d1905

	--->	c5a8627690d1

Step	3/3	:	ENV	APPS_DIR	apps

	--->	Running	in	3978aeb419d6

Removing	intermediate	container	3978aeb419d6

	--->	8d2a35d35b86

Successfully	built	8d2a35d35b86

You	can	inspect	the	environment	variables	by	using	the	following:

docker	inspect	sathyabhat:env-example	|	jq	.

[0].Config.Env

[

		"PATH=usrlocal/sbin:usrlocal/bin:usrsbin:usrbin:/

sbin:/bin",

		"LOGS_DIR=varlog",

		"APPS_DIR=apps"

]

The	environment	variables	defined	for	a	container	can	be	changed	when
running	a	container	by	the	-e	flag.	In	this	example,	let’s	change	the	LOGS_DIR
value	to	/logs	for	a	container.	This	is	achieved	by:

docker	run	-it	-e	LOGS_DIR="/logs"	sathyabhat:env-

example

We	can	confirm	the	changed	value	as	follows:

printenv	|	grep	LOGS

LOGS_DIR=/logs

VOLUME
The	VOLUME	instruction	tells	Docker	to	create	a	directory	on	the	host	and	mount
it	to	a	path	specified	in	the	instruction.

For	instance,	an	instruction	like	this:

VOLUME	varlogs/nginx

Tells	Docker	to	create	a	directory	on	the	Docker	host	(typically	within	the

Tells	Docker	to	create	a	directory	on	the	Docker	host	(typically	within	the
Docker	root	path)	and	point	to	the	named	directory,	within	the	container	to	the
host	directory.	We	look	at	volumes	in	a	later	chapter	in	the	book.

EXPOSE
The	EXPOSE	instruction	tells	Docker	that	the	container	listens	for	the	specified
network	ports	at	runtime.	The	syntax	follows:

EXPOSE	<port>	[<port>/<protocol>...]

For	example,	if	you	want	to	expose	port	80,	the	EXPOSE	instruction	will	be:

EXPOSE	80

If	you	want	to	expose	port	53	on	TCP	and	UDP,	the	Dockerfile	instruction
would	be:

EXPOSE	53/tcp

EXPOSE	53/udp

We	can	also	mention	the	port	number	and	whether	the	port	listens	on
TCP/UDP	or	both.	If	it’s	not	specified,	Docker	assumes	the	protocol	to	be	TCP.

Note 	An	EXPOSE	instruction	doesn’t	publish	the	port.	For	the	port	to	be
published	to	the	host,	you	need	to	use	the	-p	flag	when	you	do	a	docker
run	to	publish	and	map	the	ports.

Here’s	a	sample	Dockerfile	that	uses	the	nginx	Docker	image	and	exposes	port
80	on	the	container.

Dockerfile	Listing

FROM	nginx:alpine

EXPOSE	80

Build	the	container:

docker	build	-t	sathyabhat:web	.

Sending	build	context	to	Docker	daemon		2.048kB

Step	1/2	:	FROM	nginx:alpine

Step	1/2	:	FROM	nginx:alpine

alpine:	Pulling	from	library/nginx

ff3a5c916c92:	Pull	complete

e42d0afb8d8c:	Pull	complete

27afbd0eb904:	Pull	complete

5a306d33279c:	Pull	complete

Digest:

sha256:8cbbbf68ef2d22852dfcccbe371aaa2d34b3bccb49c34cc

0c2b18434a01e8cb3

Status:	Downloaded	newer	image	for	nginx:alpine

	--->	91ce6206f9d8

Step	2/2	:	EXPOSE	80

	--->	Running	in	ca68af23085a

Removing	intermediate	container	ca68af23085a

	--->	99d0d61cbd38

Successfully	built	99d0d61cbd38

Successfully	tagged	sathyabhat:web

To	run	this	container,	you	have	to	provide	the	host	port	to	which	it	is	to	be
mapped.	Let’s	map	port	8080	on	the	host	to	port	80	of	the	container.	To	do	that,
type	this	command:

docker	run	-d	-p	8080:80	sathyabhat:web

The	-d	flag	makes	the	nginx	container	run	in	the	background;	the	-p	flag
does	the	port	mapping.	Let’s	confirm	that	the	container	is	running:

curl	http://localhost:8080

<!DOCTYPE	html>

<html>

<head>

<title>Welcome	to	nginx!</title>

<style>

				body	{

								width:	35em;

								margin:	0	auto;

								font-family:	Tahoma,	Verdana,	Arial,	sans-

serif;

}

</style>

</head>

<body>

<h1>Welcome	to	nginx!</h1>

<p>If	you	see	this	page,	the	nginx	web	server	is

successfully	installed	and

working.	Further	configuration	is	required.</p>

<p>For	online	documentation	and	support	please

refer	to

nginx.org.

Commercial	support	is	available	at

nginx.com.</p>

<p>Thank	you	for	using	nginx.</p>

</body>

</html>

LABEL
The	LABEL	instruction	adds	metadata	to	an	image	as	a	key/value	pair.

LABEL	<key>=<value>	<key>=<value>	<key>=<value>	...

An	image	can	have	multiple	labels,	which	is	typically	used	to	add	metadata
to	assist	in	searching	and	organizing	images	and	other	Docker	objects.

Docker	recommends	the	following	guidelines:

For	Keys

Authors	of	third-party	tools	should	prefix	each	key	with	reverse	DNS
notation	of	a	domain	owned	by	them.	For	example,
com.sathyasays.my-image.
The	com.docker.*,	io.docker.*,	and	org.dockerproject.*
are	reserved	by	Docker	for	internal	use.
Label	keys	should	begin	and	end	with	lowercase	letters	and	should	contain
only	lowercase	alphanumeric	characters,	as	well	as	the	period	(.)	and
hyphen	(-)	characters.	Consecutive	hyphens	or	periods	are	not	allowed.
The	period	(.)	separates	namespace	fields.

For	Values

Label	values	can	contain	any	data	type	that	can	be	represented	as	string,
including	JSON,	XML,	YAML,	and	CSV.

Guidelines	and	Recommendations	for	Writing	Dockerfiles
Following	are	some	of	the	guidelines	and	best	practices	for	writing	Dockerfiles
as	recommended	by	Docker.

Containers	should	be	ephemeral
Docker	recommends	that	the	image	generated	by	Dockerfile	should	be	as

ephemeral	as	possible.	By	this,	we	should	be	able	stop,	destroy,	and	restart	the
container	at	any	point	with	minimal	setup	and	configuration	to	the	container.
Keep	the	build	context	minimal

We	discussed	build	context	earlier	in	this	chapter.	It’s	important	to	keep
the	build	context	as	minimal	as	possible	to	reduce	the	build	times	and	image
size.	This	can	be	done	by	using	the	.dockerignore	file	effectively.
Use	multistage	builds

Multistage	builds	help	drastically	reduce	the	size	of	the	image	without
having	to	write	complicated	scripts	to	transfer/keep	the	required	artifacts.
Multistage	builds	are	described	in	the	next	section.
Skip	unwanted	packages

Having	unwanted	or	nice-to-have	packages	increases	the	size	of	the
image,	introduces	unwanted	dependent	packages,	and	increases	the	surface
area	for	attacks.
Minimize	the	number	of	layers

While	not	as	big	of	a	concern	as	they	used	to	be,	it’s	still	important	to
reduce	the	number	of	layers	in	the	image.	As	of	Docker	1.10	and	above,	only
RUN,	COPY,	and	ADD	instructions	create	layers.	With	these	in	mind,	having
minimal	instruction	or	combining	many	lines	of	the	respective	instructions
will	reduce	the	number	of	layers,	ultimately	reducing	the	size	of	the	image.

MultiStage	Builds
As	of	version	17.05	and	above,	Docker	added	support	for	multistage	builds,
allowing	for	complex	image	builds	to	be	performed	without	the	Docker	image
being	unnecessarily	bloated.	Multistage	builds	are	especially	useful	for	building
images	of	applications	that	require	some	additional	build-time	dependencies	but
are	not	needed	during	runtime.	Most	common	examples	are	applications	written
using	programming	languages	such	as	Go	or	Java,	where	prior	to	multistage
builds,	it	was	common	to	have	two	different	Dockerfiles,	one	for	build	and	the
other	for	release.	The	orchestration	of	the	artifacts	from	the	build	time	image	to
the	runtime	image	could	be	done	via	shell	scripts.

the	runtime	image	could	be	done	via	shell	scripts.
With	multistage	builds,	a	single	Dockerfile	can	be	leveraged	for	build	and

deploy	images—the	build	images	can	contain	the	build	tools	required	for
generating	the	binary	or	the	artifact	and	in	the	second	stage,	the	artifact	can	be
copied	to	the	runtime	image,	thereby	reducing	considerably	the	size	of	the
runtime	image.	For	a	typical	multistage	build,	a	build	stage	has	several	layers—
each	layer	for	installing	tools	required	to	build	the	application,	generating	the
dependencies,	and	generating	the	application.	In	the	final	layer,	the	application
built	from	the	build	stages	would	be	copied	over	to	the	final	layer	and	only	that
layer	is	considered	for	building	the	image—the	build	layers	are	discarded,
drastically	reducing	the	size	of	the	final	image.

While	this	book	doesn’t	focus	on	multistage	builds	in	detail,	we	do	include
an	exercise	on	how	to	create	a	multistage	build.	We	demonstrate	the	difference
that	using	a	slim	image	with	a	multistage	build	makes	to	the	final	image.

Note 	More	details	about	multistage	builds	are	available	on	Docker’s
website	at	https://docs.docker.com/develop/develop-
images/multistage-build/	.

Dockerfile	Exercises
You	have	learned	a	fair	bit	about	Dockerfiles,	so	it’s	time	to	try	some	exercises
to	better	understand	them.

Building	a	Simple	Hello	World	Docker	Image
At	the	start	of	the	chapter,	we	introduced	a	simple	Dockerfile	that	did	not
build	due	to	syntax	errors.	Here,	you’ll	fix	the	Dockerfile	and	add	some	of	the
instructions	that	you	learned	about	in	this	chapter.

Tip The	source	code	and	Dockerfile	associated	with	this	are
available	as	docker-hello-world.zip.

The	original	Dockerfile	is	shown	here.
Dockerfile	Listing

FROM	ubuntu:latest

LABEL	author="sathyabhat"

LABEL	description="An	example	Dockerfile"

RUN	apt-get	install	python

COPY	hello-world.py

https://docs.docker.com/develop/develop-images/multistage-build/

COPY	hello-world.py

CMD	python	hello-world.py

Trying	to	build	this	will	result	in	an	error	since	hello-world.py	is
missing.	Let’s	fix	the	build	error.	To	do	this,	you	will	add	a	hello-
world.py	file,	which	reads	an	environment	variable,	NAME,	and	prints
"Hello,	$NAME!.	If	the	environment	variable	is	not	defined,	then	it	will
print	"Hello,	World!"

The	contents	of	hello-world.py	are	as	follows:

#!usrbin/env	python3

from	os	import	getenv

if	getenv('NAME')	is	None:

				name	=	'World!'

else:

				name	=	getenv('NAME')

print("Hello	{}".format(name))

The	corrected	Dockerfile	follows.
Corrected	Dockerfile	Listing

FROM	python:3-alpine

LABEL	author="sathyabhat"

LABEL	description="Dockerfile	for	Python	script

which	prints	Hello,	Name"

COPY	hello-world.py	app

ENV	NAME=Sathya

CMD	python3	apphello-world.py

Build	the	Dockerfile:

docker	build	-t	sathyabhat:hello-python	.

Sending	build	context	to	Docker	daemon		3.072kB

Step	1/6	:	FROM	python:3-alpine

	--->	4fcaf5fb5f2b

Step	2/6	:	LABEL	author="sathyabhat"

	--->	29e08fa6b4c2

Step	3/6	:	LABEL	description="Dockerfile	for

Python	script	which	prints	Hello,	Name"

	--->	Running	in	bbabe9d8322a

Removing	intermediate	container	bbabe9d8322a

	--->	abf1d06444ca

Step	4/6	:	COPY	hello-world.py	app

	--->	19454b206b46

Step	5/6	:	ENV	NAME=Sathya

	--->	Running	in	83b5ff92f771

Removing	intermediate	container	83b5ff92f771

	--->	839197bb6542

Step	6/6	:	CMD	python3	apphello-world.py

	--->	Running	in	6dbdd98d868b

Removing	intermediate	container	6dbdd98d868b

	--->	2410783edf5d

Successfully	built	2410783edf5d

Successfully	tagged	sathyabhat:hello-python

Confirm	the	image	name	and	the	size:

docker	images	sathyabhat:hello-python

REPOSITORY		TAG											IMAGE

ID						CREATED								SIZE

sathyabhat		hello-python		2410783edf5d		Less

than						90MB																																						

		a	second	ago

Run	the	Docker	image:

docker	run	sathyabhat:hello-python

Hello,	Sathya!

Try	overriding	the	environment	variable	at	runtime.	You	can	do	this	by
providing	the	-e	parameter	to	the	docker	run	command:

docker	run	-e	NAME=John	sathyabhat:hello-python

Hello,	John!

Congrats!	You	have	successfully	written	your	first	Dockerfile	and	built
your	first	Docker	image.

your	first	Docker	image.

A	Look	At	Slim	Docker	Release	Image	(Using	MultiStage	Builds)
In	this	exercise,	you	will	build	two	Docker	images,	the	first	one	using	a
standard	build	process	using	python:3	as	the	base	image.

Tip The	source	code	and	Dockerfiles	associated	with	both	builds	are
available	as	docker-multi-stage.zip.

Building	the	Docker	Image	Using	a	Standard	Build
Create	a	requirements.txt	file	with	the	following	content:

praw

Now	create	a	Dockerfile	with	the	following	content.
Dockerfile	Listing

FROM	python:3

COPY	requirements.txt	.

RUN	pip	install	-r	requirements.txt

Now	build	the	Docker	image:

docker	build	-t	sathyabhat:base-build	.

Sending	build	context	to	Docker	daemon		3.072kB

Step	1/3	:	FROM	python:3

3:	Pulling	from	library/python

f2b6b4884fc8:	Pull	complete

4fb899b4df21:	Pull	complete

74eaa8be7221:	Pull	complete

2d6e98fe4040:	Pull	complete

414666f7554d:	Pull	complete

135a494fed80:	Pull	complete

6ca3f38fdd4d:	Pull	complete

4de6fcaa1241:	Pull	complete

Digest:

sha256:e5a05b8979f5cd1d43433a75663ed9a9d04227a3473c8

9abfe60b027ca334256

Status:	Downloaded	newer	image	for	python:3

	--->	07d72c0beb99

Step	2/3	:	COPY	requirements.txt	.

	--->	237dd8b9b17c

Step	3/3	:	RUN	pip	install	-r	requirements.txt

	--->	Running	in	c69bebd9dc91

Collecting	praw	(from	-r	requirements.txt	(line

1))

		Downloading	praw-5.4.0-py2.py3-none-any.whl

(94kB)

Collecting	update-checker>=0.16	(from	praw->-r

requirements.txt	(line	1))

		Downloading	update_checker-0.16-py2.py3-none-

any.whl

Collecting	prawcore<0.15,>=0.14.0	(from	praw->-r

requirements.txt	(line	1))

		Downloading	prawcore-0.14.0-py2.py3-none-

any.whl

Collecting	requests>=2.3.0	(from	update-

checker>=0.16->praw->-r	requirements.txt	(line	1))

		Downloading	requests-2.18.4-py2.py3-none-

any.whl	(88kB)

Collecting	urllib3<1.23,>=1.21.1	(from

requests>=2.3.0->update-checker>=0.16->praw->-r

requirements.txt	(line	1))

		Downloading	urllib3-1.22-py2.py3-none-any.whl

(132kB)

Collecting	idna<2.7,>=2.5	(from	requests>=2.3.0-

>update-checker>=0.16->praw->-r	requirements.txt

(line	1))

		Downloading	idna-2.6-py2.py3-none-any.whl

(56kB)

Collecting	chardet<3.1.0,>=3.0.2	(from

requests>=2.3.0->update-checker>=0.16->praw->-r

requirements.txt	(line	1))

		Downloading	chardet-3.0.4-py2.py3-none-any.whl

(133kB)

Collecting	certifi>=2017.4.17	(from

requests>=2.3.0->update-checker>=0.16->praw->-r

requirements.txt	(line	1))

		Downloading	certifi-2018.1.18-py2.py3-none-

any.whl	(151kB)

Installing	collected	packages:	urllib3,	idna,

chardet,	certifi,	requests,	update-checker,

prawcore,	praw

Successfully	installed	certifi-2018.1.18	chardet-

3.0.4	idna-2.6	praw-5.4.0	prawcore-0.14.0	requests-

2.18.4	update-checker-0.16	urllib3-1.22

Removing	intermediate	container	c69bebd9dc91

	--->	ed26b55221f4

Successfully	built	ed26b55221f4

Successfully	tagged	sathyabhat:base-build

The	image	was	built	successfully.	Let’s	see	the	size	of	the	image:

docker	images	sathyabhat:base-build

REPOSITORY		TAG									IMAGE

ID						CREATED									SIZE

sathyabhat		base-build		ed26b55221f4		32	minutes

ago		698MB

The	Docker	image	sits	at	a	fairly	hefty	698MB	even	though	you	didn’t
add	any	of	the	application	code,	just	a	dependency.	Let’s	rewrite	it	to	a
multistage	build.

Building	the	Docker	Image	Using	MultiStage	Build
Dockerfile	Listing

FROM	python:3	as	python-base

COPY	requirements.txt	.

RUN	pip	install	-r	requirements.txt

FROM	python:3-alpine

COPY	--from=python-base	root.cache	root.cache

COPY	--from=python-base	requirements.txt	.

RUN	pip	install	-r	requirements.txt	&&	rm	-rf

root.cache

The	Dockerfile	is	different	in	that	there	are	multiple	FROM	statements,
signifying	the	different	stages.	In	the	first	stage,	we	build	the	required

packages	using	the	python:3	image,	which	has	the	necessary	build	tools.
In	the	second	stage,	we	copy	the	files	installed	from	the	first	stage,

reinstall	them	(notice	this	time,	pip	fetches	the	cached	files	and	doesn’t	build
them	again),	and	then	delete	the	cached	install	files.

docker	images	sathyabhat:multistage-build

REPOSITORY		TAG										IMAGE

ID							CREATED										SIZE

sathyabhat		multistage			4e2ad2b6e221			Less

than								99MB												-

build																						a	second	ago

If	we	look	at	the	size	of	the	second	image,	the	difference	is	significant.

Writing	Dockerfile	For	The	Project
Now	you’ll	try	writing	the	Dockerfile	for	this	project.	Before	you	start	writing
a	Dockerfile,	here	are	some	guidelines	on	Dockerizing	an	application.

Tip The	source	code	and	Dockerfile	associated	with	this	are	available	as
docker-subreddit-fetcher.zip.

Let’s	review	what	you	need	for	this	project:

A	Docker	image	based	on	Python	3
The	project	dependencies	listed	in	requirements.txt
An	environment	variable	named	NBT_ACCESS_TOKEN

Now	that	you	have	what	you	need,	let’s	write	the	Dockerfile	for	the
project.	The	steps	are	as	follows:

1.
Start	with	a	proper	base	image. 	

2.
Make	a	list	of	files	required	for	the	application. 	

3.
Make	a	list	of	environment	variables	required	for	the	application.	

4.
Copy	the	application	files	to	the	image	using	a	COPY	instruction.	

5.
Specify	the	environment	variable	with	the	ENV	instruction. 	
Combining	these	steps,	you	will	arrive	at	the	following	Dockerfile.

Dockerfile	Listing

FROM	python:3-alpine

COPY	*	appssubredditfetcher/

WORKDIR	appssubredditfetcher/

RUN	["pip",	"install",	"-r",	"requirements.txt"]

ENV	NBT_ACCESS_TOKEN="<token>"

CMD	["python",	"newsbot.py"]

Take	care	to	replace	<token>	with	the	token	generated	from	the	earlier
chapter.	Let’s	build	the	image:

docker	build	-t	sathyabhat:subreddit_fetcher	.

Sending	build	context	to	Docker	daemon		17.41kB

Step	1/6	:	FROM	python:3-alpine

	--->	4fcaf5fb5f2b

Step	2/6	:	COPY	*	appssubredditfetcher/

	--->	3fe719598159

Step	3/6	:	WORKDIR	appssubredditfetcher/

	--->	ab997e6e51b5

Step	4/6	:	RUN	["pip",	"install",	"-r",

"requirements.txt"]

	--->	7d7ced5dcc8c

Step	5/6	:	ENV

NBT_ACCESS_TOKEN="495637361:AAHIhiDTX1UeX17KJy0-

FsMZEqEtCFYfcP8"

	--->	c6db29f52053

Step	6/6	:	CMD	["python",	"newsbot.py"]

	--->	8aa4ff615bac

Successfully	built	8aa4ff615bac

Successfully	tagged	sathyabhat:subreddit_fetcher

And	run	the	container:

docker	run	--name	subreddit_fetcher_bot

sathyabhat:subreddit_fetcher

You	should	be	seeing	logs	from	the	bot	to	ensure	it’s	running:

INFO:	get_updates	-	received	response:	{'ok':

True,	'result':	[]}

INFO:	get_updates	-	received	response:	{'ok':

True,	'result':	[]}

INFO:	get_updates	-	received	response:	{'ok':

True,	'result':	[]}

INFO:	get_updates	-	received	response:	{'ok':

True,	'result':	[]}

INFO:	get_updates	-	received	response:	{'ok':

True,	'result':	[]}

INFO:	get_updates	-	received	response:	{'ok':

True,	'result':	[]}

Congrats!	You	have	successfully	Dockerized	the	project.

Summary
In	this	chapter,	you	learned	about	Dockerfiles,	the	significance	of	the	build
context,	and	about	dockerignore.	You	also	took	a	deep	dive	into	some
commonly	used	Dockerfile	instructions,	a	brief	glimpse	of	multistage	builds,	and
learned	about	some	guidelines	on	writing	Dockerfiles.	You	completed	the
chapter	with	some	exercises	on	writing	Dockerfiles,	including	how	to	write
Dockerfiles	for	multistage	builds.	You	also	proceeded	to	Dockerize	the	Newsbot
project.	In	the	next	chapter,	we	look	at	how	you	can	persist	data	generated	by
containers	using	Docker	Volumes.

(1)

©	Sathyajith	Bhat	2018
Sathyajith	Bhat,	Practical	Docker	with	Python
https://doi.org/10.1007/978-1-4842-3784-7_5

5.	Understanding	Docker	Volumes
Sathyajith	Bhat1	

Bangalore,	Karnataka,	India

	

In	the	previous	chapters,	we	learned	about	Docker	and	its	associated
terminologies	and	took	a	deeper	look	into	how	we	can	build	Docker	images
using	the	Dockerfile.

In	this	chapter,	we	look	at	data	persistency	strategies	for	Docker	containers
and	learn	why	we	need	special	strategies	for	data	persistence.

Data	Persistence
Traditionally,	most	compute	solutions	come	with	associated	ways	to	persist	and
save	the	data.	In	case	of	virtual	machines,	a	virtual	disk	is	emulated	and	the	data
saved	to	this	virtual	disk	is	saved	as	a	file	on	the	host	computer.	In	the	case	of
cloud	providers	such	as	Amazon	Web	Services	(AWS),	they	provide	us	with	a
root	volume	for	persisting	data	and	block	storage	(Elastic	Block	Store—EBS)
for	persisting	data.

When	it	comes	to	containers,	the	story	is	different.	Containers	were	meant
and	designed	for	stateless	workloads	and	the	design	of	the	container	layers
shows	that.	In	Chapter	2,	we	understood	that	a	Docker	image	is	a	readonly
template	consisting	of	various	layers	and	when	the	image	is	run	as	a	container,
the	container	contains	a	small	write-only	layer	of	the	data.	This	means	that:

The	data	is	locked	tightly	to	the	host	and	makes	running	applications	that
share	data	across	multiple	containers	and	applications	difficult.

The	data	doesn’t	persist	when	the	container	is	terminated	and	extracting
the	data	out	of	the	container	is	difficult.

Writing	to	the	container’s	write	layer	requires	a	storage	driver	to	manage
the	filesystem.	Storage	drivers	do	not	provide	an	acceptable	level	of

https://doi.org/10.1007/978-1-4842-3784-7_5

performance	in	terms	of	read/write	speeds.	Large	amounts	of	data	written	to
the	container’s	write	layer	can	lead	of	the	container	and	the	Docker	daemon
running	out	of	memory.

Example	of	Data	Loss	Within	Docker	Container
To	demonstrate	the	features	of	the	write	layer,	let’s	use	a	container	from	an
Ubuntu	base	image.	We	will	create	a	file	in	the	Docker	container,	stop	the
container,	and	note	the	behavior	of	the	container.
1. Start	by	creating	an	nginx	container:

docker	run	-d	--name	nginx-test		nginx

	
2. Open	a	terminal	within	the	container:

docker	exec	-t	nginx-test	bash

	
3.

Create	a	copy	of	nginx’s	default.conf	to	a	new	config:

cd	etcnginx/conf.d

cp	default.conf	nginx-test.conf

	

4.
We	won’t	be	modifying	the	contents	of	nginx-test.conf	since	it’s
immaterial.	Now	we’ll	stop	the	container.	From	the	Docker	host	terminal,
type:

docker	stop	nginx-test

	

5.
Start	the	container	again:

docker	start	nginx-test

	

6.
Open	a	terminal	within	the	container: 	

docker	exec	-it	nginx-test	bash

7.
Now,	see	if	the	changes	are	still	around:

cd	etcnginx/conf.d

ls

default.conf		nginx-test.conf

	

8.
Since	the	container	was	only	stopped,	the	data	persists.	Let’s	stop,	remove
the	container,	and	then	bring	up	a	new	one	and	observe	what	happens.

docker	stop	nginx-test

docker	rm	nginx-test

	

9.
Start	a	new	container:

docker	run	-d	--name	nginx-test		nginx

	

10.
Now	that	a	new	container	is	up	and	running,	let’s	connect	to	the
container’s	terminal:

docker	exec	-it	nginx-test	bash

	

11.
Examine	contents	of	the	conf.d	directory	of	nginx:

cd	etcnginx/conf.d

ls

default.conf

	

Since	the	container	was	removed,	the	write-only	layer	associated	with	the
container	was	also	removed	and	the	files	are	no	longer	accessible.	For	a
containerized	stateful	application,	such	as	an	application	that	requires	a	database,
the	data	from	the	previous	container	will	no	longer	be	accessible	when	an
existing	container	is	removed	or	a	new	container	is	added.

To	mitigate	this	issue,	Docker	offers	various	strategies	to	persist	the	data.

tmpfs	mounts
Bind	mounts
Volumes

tmpfs	Mounts
As	the	name	suggests,	a	tmpfs	creates	a	mount	in	tmpfs,	which	is	a
temporary	file	storage	facility.	The	directories	mounted	in	tmpfs	appear	as	a
mounted	filesystem	but	are	stored	in	memory,	not	to	persistent	storage	such	as	a
disk	drive.

tmpfs	mounts	are	limited	to	Docker	containers	on	Linux.	A	tmpfs	mount
is	temporary	and	the	data	is	stored	in	Docker’s	hosts	memory.	Once	the
container	is	stopped,	the	tmpfs	mount	is	removed	and	the	files	written	to
tmpfs	mount	are	lost.

To	create	a	tmpfs	mount,	you	can	use	the	--mount	or	--tmpfs	flag
when	running	a	container,	as	shown	here:

docker	run	-it	--name	tmpfs-test	--mount	type=tmpfs,

target=/tmpfs-mount	ubuntu	bash	docker	run	-it	--name

tmpfs-test	--tmpfs	/tmpfs-mount	ubuntu	bash

Let’s	examine	the	container:

	docker	inspect	tmpfs-test	|	jq	.[0].Mounts	[

{

				"Type":	"tmpfs",

				"Source":	"",

				"Destination":	"/tmpfs-mount",	"Mode":	"",

				"RW":	true,

				"Propagation":	""

}

]

This	output	tells	us	that	the	mount	is	of	tmpfs	type,	and	that	the	destination	of
the	mount	is	/tmpfs-mount.	Since	the	tmpfs	mount	doesn’t	let	us	mount	the
host	directory,	the	source	is	empty.

tmpfs	mounts	are	best	for	containers	that	generate	data	that	doesn’t	need	to
be	persisted	and	doesn’t	have	to	be	written	to	the	container’s	writable	layer.

Bind	Mounts
In	bind	mounts,	the	file/directory	on	the	host	machine	is	mounted	into	the
container.	By	contrast,	when	using	a	Docker	volume,	a	new	directory	is	created
within	Docker’s	storage	directory	on	the	Docker	host	and	the	contents	of	the
directory	are	managed	by	Docker.

Tip 	While	searching	for	Docker	bind	mounts/volume	articles	on	the
Internet,	you	are	most	likely	to	find	articles	that	refer	to	use	of	volumes	with
the	-v	flag.	With	Docker	version	17.06,	Docker	encourages	everyone	to	use
the	--mount	syntax.	To	make	it	easier	for	you,	the	examples	use	both	the
flags.	Also	note	that	the	Mounts	key	while	issuing	docker	inspect	is	only
avaiable	with	the	--mount	syntax.

Let’s	see	how	we	can	use	bind	mounts.	We’ll	try	to	mount	our	Docker	host’s
home	directory	to	a	directory	called	host-home	within	the	container.	To	do
this,	type	the	following	command:

docker	run	-it	--name	mount-test	--mount

type=bind,source="$HOME",target=/host-home	ubuntu	bash

docker	run	-it	--name	mount-test	-v	$HOME:/host-home

ubuntu	bash

Inspecting	the	created	container	tells	us	the	different	characteristics	about	the
mount.

docker	inspect	mount-test	|	jq	.[0].Mounts	[

{

				"Type":	"bind",

				"Source":	"Userssathyabhat",	"Destination":

"/host-home",	"Mode":	"",

				"RW":	true,

				"Propagation":	"rprivate"

}

]

This	output	tells	us	that	the	mount	is	of	bind	type,	with	the	source,	i.e.	the
directory	of	the	Docker	host	being	mounted,	is	Userssathyabhat	(the	home
directory),	and	the	destination	of	the	mount	is	/host-home.	The
"Propagation"	property	refers	to	bind	propagation—a	property	indicating
whether	or	not	the	mounts	created	for	a	bind	mount	are	reflected	onto	replicas	of
that	mount.	Bind	propagation	is	applicable	only	to	Linux	hosts,	because	bind
mounts	typically	don’t	need	to	be	modified.	The	RW	flag	indicates	that	the
mounted	directory	can	be	written	to.	Let’s	examine	the	contents	of	the	host-
home	to	see	that	the	mounts	are	indeed	proper.	In	the	terminal	of	the	container,
type	the	following:

cd		/host-home

ls

The	output	of	the	command	should	be	a	listing	of	our	Docker	host	home
directory.

Let’s	try	to	create	a	file	in	the	host-home	directory.	For	this,	type	the
following	command:

cd	/host-home

echo	"This	is	a	file	created	from	container	having

kernel	`uname	-r`"	>	host-home-file.txt

This	command	creates	a	file	called	host-home-file.txt,	which	contains
the	text.	This	is	a	file	created	from	the	container	having	kernel	4.9.87-
linuxkit-aufs	(note	that	the	actual	kernel	version	might	be	different	than
what	is	listed	here)	in	the	/host-home	directory	of	the	container.	And	since
this	is	a	bind	mount	of	the	home	directory	of	the	Docker	host,	the	file	should
also	be	created	in	the	home	directory	of	the	Docker	host.	Let’s	see	if	this	is
indeed	the	case.	Open	a	new	terminal	window	in	your	Docker	host	and	type	the
following	command:

cd	~

ls	-lah	host-home-file.txt

We	should	be	seeing	this	output,	indicating	the	presence	of	the	file:

-rw-r--r--		1	sathyabhat		sathyabhat				73B	Apr	01

11:16	host-home-file.txt

Let’s	check	the	context	of	the	file:

cat	host-home-file.txt

This	is	a	file	created	from	container	having	kernel

4.9.87-linuxkit-aufs

This	confirms	that	the	file	created	in	the	container	is	indeed	available	outside	the
container.	Since	we	are	concerned	with	data	persistence	after	the	container	stops,
is	removed,	and	started	again,	let’s	see	what	happens.

Stop	the	container	by	entering	the	following	command	in	the	Docker	host
terminal.

docker	stop	mount-test

docker	rm	mount-test

Confirm	that	the	file	on	the	Docker	host	is	still	present:

cat	~/host-home-file.txt

This	is	a	file	created	from	container	having	kernel

4.9.87-linuxkit-aufs

Bind	mounts	are	of	immense	help	and	are	most	often	used	during	the
development	phase	of	an	application.	By	having	bind	mounts,	we	can	prepare
the	application	for	production	by	using	the	same	container	as	production	while
mounting	the	source	directory	as	a	bind	mount,	allowing	for	developers	to	have
rapid	code-test-iterate	cycles	without	having	to	rebuild	the	Docker	image.

Caution 	Remember	with	bind	mounts,	the	data	flow	goes	both	ways	on	the
Docker	host	as	well	as	the	container.	Any	destructive	actions	(such	as
deleting	a	directory)	will	negatively	impact	the	Docker	host	as	well.

This	is	even	more	important	if	the	mounted	directory	is	a	broad	one—such	as	the
home	directory	or	even	the	root	directory.	A	script	gone	rogue	or	a	mistaken
rm-rf	can	bring	down	the	Docker	host	completely.	To	mitigate	this,	we	can
create	a	bind	mount	with	the	readonly	option	so	that	the	directory	is	mounted
readonly.	To	do	this,	we	can	provide	a	readonly	parameter	to	the	docker	run

command.	The	commands	are	as	follows:

docker	run	-it	--name	mount-test	--mount

type=bind,source="$HOME",target=/host-home,readonly

ubuntu	bash	docker	run	-it	--name	mount-test	-v

$HOME:/host-home:ro	ubuntu	bash

Let’s	inspect	the	container	that	was	created:

docker	inspect	mount-test	|	jq	.[0].Mounts	[

{

				"Type":	"bind",

				"Source":	"Userssabhat",	"Destination":	"/host-

home",	"Mode":	"ro",

				"RW":	false,

				"Propagation":	"rprivate"

}

]

We	can	see	that	the	"RW"	flag	is	now	false	and	the	mode	is	set	as
"readonly".	Let’s	try	writing	to	the	file	as	earlier:

echo	"This	is	a	file	created	from	container	having

kernel	`uname	-r`"	>	host-home-file.txt	bash:	host-

home-file.txt:	Readonly	file	system

The	write	fails	and	bash	tells	us	that	it	was	because	the	filesystem	is	mounted
readonly.	Any	destructive	operations	are	also	met	with	the	same	error:

rm	host-home-file.txt

rm:	cannot	remove	'host-home-file.txt':	Readonly	file

system

Volumes
Docker	volumes	are	the	current	recommended	method	of	persisting	data	stored
in	containers.	Volumes	are	completely	managed	by	Docker	and	have	many

advantages	over	bind	mounts:

Volumes	are	easier	to	back	up	or	transfer	than	bind	mounts
Volumes	work	on	both	Linux	and	Windows	containers
Volumes	can	be	shared	among	multiple	containers	without	problems

Docker	Volume	Subcommands
Docker	exposes	the	Volume	API	as	a	series	of	subcommands.	The	commands
are	as	follows:

docker	volume	create

docker	volume	inspect

docker	volume	ls

docker	volume	prune

docker	volume	rm

Create	Volume
The	create	volume	command	is	used	to	create	named	volumes.	The	most
common	use	case	is	to	generate	a	named	volume.	The	usage	for	the	command	is:

docker	volume	create	--name=<name	of	the	volume>	--

label=<any	extra	metadata>

Tip 	Docker	object	labels	were	discussed	in	Chapter	4.

Example:

docker	volume	create	--name=nginx-volume

This	creates	a	named	volume	called	nginx-volume.

Inspect
The	inspect	command	displays	detailed	information	about	a	volume.	The
usage	for	this	command	is:

docker	volume	inspect	<name	of	the	volume>

Taking	the	example	of	the	nginx-volume	name,	we	can	find	more	details	by
typing	the	following:

docker	volume	inspect	nginx-volume

docker	volume	inspect	nginx-volume

This	would	bring	up	a	result	as	shown	here:

docker	volume	inspect	nginx-volume	[

{

								"CreatedAt":	"2018-04-17T13:51:02Z",	"Driver":

"local",

								"Labels":	{},

								"Mountpoint":	"varlib/docker/volumes/nginx-

volume/_data",	"Name":	"nginx-volume",	"Options":	{},

								"Scope":	"local"

}

]

This	command	is	useful	if	you	want	to	copy/move/take	a	backup	of	a	volume.
The	mountpoint	property	lists	the	location	on	the	Docker	host	where	the	file
containing	the	data	of	the	volume	is	saved.

List	Volumes
The	list	volume	command	shows	all	the	volumes	present	on	the	host.	The
usage	is	shown	here:

docker	volume	ls

Prune	Volumes
The	prune	volume	command	removes	all	unused	local	volumes.	The	usage	is
shown	here:

docker	volume	prune	<--force>

Docker	considers	volumes	not	used	by	at	least	one	container	as	unused.	Since
unused	volumes	can	end	up	consuming	a	considerable	amount	of	disk	space,	it’s
not	a	bad	idea	to	run	the	prune	command	at	regular	intervals,	especially	on
local	development	machines.	When	you	use	the	--force	flag	option,	it	will
not	ask	for	confirmation	when	the	command	is	run.

Remove	Volumes
The	remove	volume	command	removes	volumes	whose	names	are	provided
as	parameters.	The	usage	is	shown	here:

docker	volume	rm	<name>

In	case	of	the	volume	created	here,	the	command	would	be:

docker	volume	rm	nginx-volume

Docker	will	not	remove	a	volume	that	is	in	use	and	will	return	an	error.	For
instance,	we	might	try	to	delete	the	volume	nginx-volume,	which	is	attached
to	the	container.

Note 	Even	if	the	container	stops,	Docker	will	consider	the	volume	to	be	in
use.

docker	volume	rm	nginx-volume

Error	response	from	daemon:	unable	to	remove	volume:

remove	nginx-volume:	volume	is	in	use	-

[6074757a5afafd74aec6d18a5b4948013639ddfef39507dac5d08

50d56edbd82]

The	long	piece	of	identifier	is	the	ID	of	the	container	associated	with	the
volume.	If	the	volume	is	associated	with	multiple	containers,	all	the	container
IDs	will	be	listed.	More	details	about	the	associated	container	can	be	found	by
using	docker	inspect	command:

docker	inspect

6074757a5afafd74aec6d18a5b4948013639ddfef39507dac5d085

0d56edbd82

Using	Volumes	When	Starting	a	Container
The	syntax	for	using	a	volume	when	starting	a	container	is	nearly	the	same	as
using	a	bind	host.	Let’s	run	the	following	command:

docker	run	-it	--name	volume-test	--mount

target=/data-volume	ubuntu	bash	docker	run	-it	--name

volume-test	-v:/data-volume

volume-test	-v:/data-volume

When	compared	to	bind	mount	command,	using	the	--mount	flag,	we	skip
the	type	and	source	option.	When	using	the	-v	flag,	we	skip	the	host
directory	to	bind	to	(since	the	source/host	directory	is	maintained	by	Docker).

Let’s	examine	the	created	container:

docker	inspect	volume-test	|	jq	.[0].Mounts	[

{

				"Type":	"volume",

				"Name":

"5fe950de3ac2b428873cb0af6281f3fb3817af933fbad32070b1a

3101be4927f",	"Source":

"varlib/docker/volumes/5fe950de3ac2b428873cb0af6281f3f

b3817af933fbad32070b1a3101be4927f/_data",

"Destination":	"/data-volume",	"Driver":	"local",

				"Mode":	"z",

				"RW":	true,

				"Propagation":	""

}

]

Looking	at	the	mounts	section,	we	can	conclude	that	Docker	has	created	a	new
volume	with	an	autogenerated	name	of
"5fe950de3ac2b428873cb0af6281f3fb3817af933fbad32070b1a3101be4927f"

with	the	data	file	for	this	saved	in	Docker’s	data	directory,
"varlib/docker/volumes/5fe950de3ac2b428873cb0af6281f3fb3817af933fbad32070b1a3101be4927f/_data"

and	mounted	to	the	/data-volume	directory	of	the	container.
Working	with	autogenerated	volume	names	gets	tedious	fast,	so	we	can

generate	a	volume	ahead	of	time	and	provide	this	name	to	Docker	when	running
a	container.	We	can	do	this	by	using	the	docker	volume	command	to	create
the	volume:

docker	volume	create	volume-test

We	can	also	use	docker	volume	inspect	to	examine	the	volume’s

properties:

docker	volume	inspect	volume-test	[

{

								"CreatedAt":	"2018-04-15T12:58:32Z",	"Driver":

"local",

								"Labels":	{},

								"Mountpoint":	"varlib/docker/volumes/volume-

test/_data",	"Name":	"volume-test",	"Options":	{},

								"Scope":	"local"

}

]

We	can	now	refer	to	this	volume	when	creating/running	a	container.	Note	the
extra	source=	flag	with	the	--mount	flag	and	the	parameter	after	-v	flag.
These	indicate	the	volume	name	to	which	the	container	has	to	be	attached.

docker	run	-it	--name	volume-test	--mount

source=volume-test,target=/data-volume	ubuntu	bash

docker	run	-it	--name	volume-test	-v:volume-

test:/data-volume

Let’s	try	to	create	the	same	file	as	earlier.	From	the	terminal	within	the
container,	type	the	following:

echo	"This	is	a	file	created	from	container	having

kernel	`uname	-r`"	>	docker_kernel_info.txt

We’ll	stop	and	remove	the	container:

docker	stop	volume-test

docker	rm	volume-test

In	the	absence	of	volumes,	when	the	container	was	removed,	its	writable	layer
would	have	gotten	removed	as	well.	Let’s	see	what	happens	when	we	launch	a
new	container	with	the	volume	attached.	Remember	that	this	is	not	a	bind
mount,	so	we	are	not	forwarding	explicitly	any	of	the	Docker	host	directories.

mount,	so	we	are	not	forwarding	explicitly	any	of	the	Docker	host	directories.

docker	run	-it	--name	volume-test	--mount

source=volume-test,target=/data-volume	ubuntu	bash

docker	run	-it	--name	volume-test	-v:volume-

test:/data-volume

Now	we	examine	the	contents	of	the	/data-volume	directory	of	the
container:

cd	/data-volume/

ls

docker-kernel-info.txt

Now	we	examine	the	contents	of	docker-kernel-info.txt:

cat	docker_kernel_info.txt

This	is	a	file	created	from	container	having	kernel

4.9.87-linuxkit-aufs.

However,	with	volumes,	we	are	directing	Docker	to	store	the	data	in	a	volume
file	that	is	managed	by	Docker	itself.	When	we	launch	a	new	container,
providing	the	volume	name	along	with	the	run	command	attaches	the	volume	to
the	container,	making	previously	saved	data	available	to	the	newly	launched
container.

VOLUME	Instruction	in	Dockerfile
The	VOLUME	instruction	marks	the	path	mentioned	succeeding	the	instruction	as
an	externally	stored	data	volume,	managed	by	Docker.	The	syntax	is	as	follows:

VOLUME	["/data-volume"]

The	paths	mentioned	after	the	instruction	can	be	a	JSON	array	or	an	array	of
paths	separated	by	spaces.

Note 	The	VOLUME	instruction	in	a	Dockerfile	doesn’t	support	named
volumes	and,	as	a	result,	when	the	container	is	run,	the	volume	name	will	be
an	autogenerated	name.

Docker	Volume	Exercises
You’ve	learned	a	fair	bit	about	volumes,	so	let’s	get	some	hands-on	experience

You’ve	learned	a	fair	bit	about	volumes,	so	let’s	get	some	hands-on	experience
creating	and	attaching	volumes	to	containers.

Building	And	Running	An	nginx	Container	With	Volumes	And	Bind
Mounts
In	this	exercise,	we	build	an	nginx	Docker	image	with	a	Docker	volume
attached,	which	contains	a	custom	nginx	configuration.	Toward	the	second
part	of	the	exercise,	we	will	attach	a	bind	mount	and	a	volume	containing	a
static	web	page	and	a	custom	nginx	configuration.	The	intent	of	the	exercise
is	help	the	readers	understand	how	to	leverage	volumes	and	bind	mounts	to
make	local	development	easy.

Tip The	source	code	and	Dockerfile	associated	with	this	is	available
as	docker-volume-bind-mount.zip.	Ensure	you	extract	the
contents	of	the	ZIP	file	and	run	the	commands	in	the	directory	to	which
they	were	extracted.

We	can	start	with	the	Dockerfile,	as	shown	here.
Dockerfile	Listing

FROM	nginx:alpine

COPY	default.conf	etcnginx/conf.d

VOLUME	["varlib"]

EXPOSE	80

This	Dockerfile	takes	a	base	nginx	image,	overwrites	the
default.conf	nginx	configuration	file	with	our	custom
default.conf	nginx	configuration	file,	and	declares	varlib	as	a
volume.	We	can	build	this	by	using	this	command:

docker	build	-t	sathyabhat:nginx-volume.

Sending	build	context	to	Docker	daemon	3.616MB

Step	1/4	:	FROM	nginx:alpine	--->	91ce6206f9d8

Step	2/4	:	COPY	default.conf	etcnginx/conf.d	--->

Using	cache

	--->	d131f1bbdeae

Step	3/4	:	VOLUME	["varlib"]

	--->	Running	in	fa7d936e3456

Removing	intermediate	container	fa7d936e3456

	--->	0c94600d506d

Step	4/4	:	EXPOSE	80

	--->	Running	in	3e42c1c3558a	Removing	intermediate

container	3e42c1c3558a	--->	3ea0e5dafe64

Successfully	built	3ea0e5dafe64

Successfully	tagged	sathyabhat:nginx-volume

Before	we	run	this	image,	let’s	look	at	our	custom	nginx	default.conf
contents:

server	{

				listen							80;

				server_name		localhost;

				location	/	{

								root			srvwww/starter;	index		index.html

index.htm;	}

				access_log		varlog/nginx/access.log;

access_log		varlog/nginx/error.log;

				error_page			500	502	503	504		/50x.html;	location

=	/50x.html	{

								root			usrshare/nginx/html;	}

}

The	nginx	config	is	a	simple	config.	It	tells	nginx	to	serve	a	default	file
called	index.htm	in	srvwww/starter.

Let’s	run	the	Docker	container.	Since	nginx	is	listening	to	port	80,	we	need
to	tell	Docker	to	publish	the	ports	using	the	-p	flag:

docker	run	-d	--name	nginx-volume		-p	8080:80

sathyabhat:nginx-volume

Note	that	we	are	publishing	from	the	Docker	host’s	port	8080	to	port	80	of	the

container.	Let’s	try	to	load	the	web	page	by	navigating	to
http://localhost:8080.	See	Figure	5-1.

Figure	5-1 	The	404	error	indicates	when	a	source	directory	is	not	mounted

However,	when	we	load	the	website,	we	see	a	HTTP	404	-	Page	Not
Found.	This	is	because	in	the	nginx	config	file,	we	directed	nginx	to	server
index.html.	However,	we	have	not	copied	the	index.html	file	to	the
container,	neither	have	we	mounted	the	location	of	the	index.html	to	the
container	as	a	bind	mount.	As	a	result,	nginx	cannot	find	the	index.html
file.

We	can	correct	this	by	copying	the	website	files	to	the	container	as	we	did	in
the	previous	chapter.	In	this	chapter,	we	will	leverage	the	bind	mount	feature	we
learned	about	earlier	and	mount	the	entire	directory	containing	the	sources.	All
that	is	needed	is	to	use	pass	the	bind	mount	flag	that	we	learned	about	earlier.

The	Dockerfile	remains	the	same.	The	Docker	run	command	is	shown	here:

docker	run	-d	--name	nginx-volume-bind	-v

"$(pwd)"/:srvwww		-p	8080:80	sathyabhat:nginx-volume

Confirm	that	the	container	is	running:

CONTAINER

ID		IMAGE																				COMMAND										CREATED	

						STATUS							PORTS																NAMES

54c857ca065b		sathyabhat:nginx-volume		"nginx	-g

'daemon	of..."6	minutes	ago	Up	6	minutes	0.0.0.0:8080-

>80/tcp	hopeful_meitner

Confirm	that	the	volumes	and	mounts	are	correct:

[

{

				"Type":	"bind",

				"Source":	"homesathyabhat/docker-volume-bind-

mount",	"Destination":	"srvwww",	"Mode":	"",

				"RW":	true,

				"Propagation":	"rprivate"

		},

{

				"Type":	"volume",

				"Name":

"190709bbaca54fd0dd8e18dac533e41094522281d65ca55718d2e

b309e37ff20",	"Source":

"varlib/docker/volumes/190709bbaca54fd0dd8e18dac533e41

094522281d65ca55718d2eb309e37ff20/_data",

"Destination":	"varlib",	"Driver":	"local",

				"Mode":	"",

				"RW":	true,

				"Propagation":	""

}

]

Now	navigate	to	the	same	URL	again.	If	the	mounts	section	looks	fine,	then
you	should	see	the	page	shown	in	Figure	5-2.

Figure	5-2 	nginx	serving	the	web	page	successfully

Success!

Adding	Volumes	To	Our	Project
In	the	previous	chapters’	exercises,	we	wrote	a	Dockerfile	for	our	project.
However,	as	you	might	have	noticed,	killing	the	container	would	reset	the
state	and	we	need	to	customize	our	bot	all	over	again.

For	this	exercise,	we	will	be	working	on	a	slightly	modified	codebase	that
has	support	for	saving	the	preferences	to	a	SQLite	DB.	We	would	use	Docker
Volumes	to	persist	the	database	across	containers.

Let’s	modify	the	existing	Dockerfile.

Tip The	source	code	and	Dockerfile	associated	with	this	are
available	as	docker-subreddit-fetcher-volume.zip.

Dockerfile	Listing

FROM	python:3-alpine

COPY	*	appssubredditfetcher/

WORKDIR	appssubredditfetcher/

VOLUME	["appssubredditfetcher"]

RUN	["pip",	"install",	"-r",	"requirements.txt"]

RUN	["python",	"one_time.py"]

ENV	NBT_ACCESS_TOKEN=<token>

CMD	["python",	"newsbot.py"]

Take	care	to	replace	<token>	with	the	token	generated	from	the	earlier
chapter.	Let’s	build	the	image.	Note	the	extra	RUN	step,	which	runs
one_time.py.	This	script	creates	the	necessary	database	and	tables
required	for	our	application.	Another	notable	change	is	the	addition	of	the
VOLUME	instruction.	As	we	learned	earlier,	this	is	to	tell	Docker	to	mark	the
directory	specified	to	be	managed	as	a	volume,	even	if	we	did	not	specify	the
required	volume	name	in	the	docker	run	command.	Let’s	build	the	image.

docker	build	--no-cache	-t

sathyabhat:subreddit_fetcher_volume.

Sending	build	context	to	Docker	daemon		54.27kB

Step	1/7	:	FROM	python:3-alpine	--->	4fcaf5fb5f2b

Step	2/7	:	COPY	*	appssubredditfetcher/

	--->	5e14e2d2bcfe

Step	3/7	:	WORKDIR	appssubredditfetcher/

Removing	intermediate	container	e1c430858221

	--->	5e3ba7458662

Step	4/7	:	RUN	["pip",	"install",	"-r",

"requirements.txt"]

	--->	Running	in	8b8cf1497005

Collecting	praw	(from	-r	requirements.txt	(line

1))	Downloading	[...]

Building	wheels	for	collected	packages:	peewee

Running	setup.py	bdist_wheel	for	peewee:	started

Running	setup.py	bdist_wheel	for	peewee:	finished

with	status	'done'

		Stored	in	directory:

root.cache/pip/wheels/66/73/41/cdf4aaa004d0449c3b2d5

6c0e58ff43760ef71b80b38fcee2f	Successfully	built

peewee

Installing	collected	packages:	chardet,	idna,

urllib3,	certifi,	requests,	prawcore,	update-

checker,	praw,	peewee	Successfully	installed

certifi-2018.4.16	chardet-3.0.4	idna-2.6	peewee-

2.10.2	praw-5.4.0	prawcore-0.14.0	requests-2.18.4

update-checker-0.16	urllib3-1.22

Removing	intermediate	container	8b8cf1497005

	--->	44d125f83421

Step	5/7	:	RUN	["python",	"one_time.py"]

	--->	Running	in	b61182b29479

Removing	intermediate	container	b61182b29479

	--->	52d93f651f5a

Step	6/7	:	ENV

NBT_ACCESS_TOKEN="495637361:AAHIhiDTX1UeX17KJy0-

FsMZEqEtCFYfcP8"

	--->	Running	in	fb1d9e67680e	Removing

intermediate	container	fb1d9e67680e	--->

7ae9191753f9

Step	7/7	:	CMD	["python",	"newsbot.py"]

	--->	Running	in	c23845327155

Removing	intermediate	container	c23845327155

	--->	d3baeb1e7191

Successfully	built	d3baeb1e7191

Successfully	tagged

sathyabhat:subreddit_fetcher_volume

Let’s	run	our	project.	Note	that	we	will	provide	the	volume	name	via	the
-v	flag.

docker	run	--name	subreddit_fetcher_volume	-v

subreddit_fetcher:appssubredditfetcher

sathyabhat:subreddit_fetcher_volume

This	run	command	creates	a	new	container	known	as
subreddit_fetcher_volume	with	an	attached	volume	known	as
subreddit_fetcher	mounted	on	to	the	appssubredditfetcher
directory	from	the	sathyabhat:subreddit_fetcher_volume

image.
We	should	be	seeing	the	logs	like	so:

INFO:	newconn	-	Starting	new	HTTPS	connection	(1):

api.telegram.org	INFO:	newconn	-	Starting	new	HTTPS

connection	(1):	api.telegram.org	INFO:	get_updates	-

received	response:	{u'ok':	True,	u'result':	[]}

INFO:	newconn	-	Starting	new	HTTPS	connection	(1):

api.telegram.org	INFO:	get_updates	-	received

response:	{u'ok':	True,	u'result':	[]}

INFO:	newconn	-	Starting	new	HTTPS	connection	(1):

api.telegram.org	INFO:	get_updates	-	received

response:	{u'ok':	True,	u'result':	[]}

Let’s	try	setting	a	subreddit	from	which	the	bot	should	fetch	the	data,	say
python.	To	do	this,	from	telegram,	find	the	bot	and	type	/source	Python.

The	logs	from	the	application	should	confirm	the	receipt	of	the	command:

INFO:	-	handle_incoming_messages	-	Chat	text

received:/source	python	INFO:	-

handle_incoming_messages	-	Sources	set	for	nnn	to

python	INFO:	-	handle_incoming_messages	-	nnn	INFO:	-

post_message	-	posting	Sources	set	as	python!	to	nnn

The	Telegram	Messenger	window	should	look	like	Figure	5-3.

Figure	5-3 	Acknowledgement	of	subreddit	source

Let’s	fetch	some	content.	To	do	this,	type	/fetch	into	the	bot	window.	The
application	should	respond	with	a	loading	message	and	another	chat	with	the

contents,	as	shown	in	Figure	5-4.

Figure	5-4 	The	bot	fetching	contents	from	subreddit

We	will	test	for	data	persistency	by	stopping	the	bot,	removing	the	container,
and	creating	a	new	container.	To	do	this,	first	stop	the	bot	by	pressing	Ctrl.	Next,
remove	the	container	by	typing	the	following:

docker	container	rm	subreddit_fetcher_volume

Create	a	new	container	by	typing	the	same	command	we	used	previously	to
launch	the	container:

docker	run	--name	subreddit_fetcher_volume	-v

subreddit_fetcher:appssubredditfetcher

sathyabhat:subreddit_fetcher_volume

Now,	in	Telegram	chat	window,	type	/fetch	again.	Since	the	subreddit	source
has	been	saved	to	the	database,	we	should	see	the	content	from	the	previously
configured	subreddit.

If	you	see	the	content	again,	the	Docker	volume	setup	is	working	correctly
(see	Figure	5-5).	Congrats!	You	have	successfully	set	up	data	persistence	for	this
project.

Figure	5-5 	The	bot	fetching	contents	from	subreddit	after	removing	and	starting	a	new	container

Summary
In	this	chapter,	you	learned	about	why	data	persistence	is	a	problem	in
containers	and	the	different	strategies	Docker	offers	for	managing	data
persistence	in	containers.	You	also	did	a	deep	dive	into	configuring	volumes	and
how	they	differ	from	bind	mounts.	Finally,	you	went	through	some	hands-on
exercises	on	how	to	work	with	bind	mounts	and	volumes,	and	you	added

exercises	on	how	to	work	with	bind	mounts	and	volumes,	and	you	added
volumes	support	for	the	Newsbot	project.	In	the	next	chapter,	you	learn	more
about	Docker	networking	and	learn	how	and	why	the	containers	cannot	connect
to	each	other.

(1)

©	Sathyajith	Bhat	2018
Sathyajith	Bhat,	Practical	Docker	with	Python
https://doi.org/10.1007/978-1-4842-3784-7_6

6.	Understanding	Docker	Networks
Sathyajith	Bhat1	

Bangalore,	Karnataka,	India

	

In	the	previous	chapters,	we	learned	about	Docker	and	its	associated
terminologies,	took	a	deeper	look	into	how	we	can	build	Docker	images	using
the	Dockerfile,	and	learned	about	how	we	can	persist	data	generated	by
containers.

In	this	chapter,	we	look	at	networking	in	Docker	and	how	containers	can	talk
to	each	other	with	the	help	of	Docker’s	networking	features.

Why	Do	We	Need	Container	Networking?
Traditionally,	most	compute	solutions	are	thought	of	as	single-purpose	solutions.
It	is	not	often	we	come	across	a	single	host	(or	a	Virtual	Machine)	hosting
multiple	workloads,	especially	production	workloads.	With	containers,	the
scenario	changes.	With	lightweight	containers	and	the	presence	of	advanced
orchestration	platforms	such	as	Kubernetes	or	DC/OS,	it	is	very	common	to	have
multiple	containers	of	different	workloads	running	on	the	same	host	with
different	instances	of	the	application	distributed	across	multiple	hosts.	In	such
cases,	container	networking	helps	in	allowing	(or	limiting)	cross	container	talk.
To	facilitate	Docker,	it	also	comes	with	different	modes	of	networks.

Tip 	Docker’s	networking	subsystem	is	implemented	by	pluggable	drivers.
Docker	comes	with	four	drivers	out	of	the	box,	with	more	and	more	drivers
being	available	from	Docker	Store.	It	is	available	at
https://store.docker.com/search?

category=network&q=&type=plugin	.

https://doi.org/10.1007/978-1-4842-3784-7_6
https://store.docker.com/search%253Fcategory=network%2526q=%2526type=plugin

It	is	important	to	note	that	all	of	Docker’s	networking	modes	are	achieved	via
Software	Defined	Networking	(SDN).	Specifically,	on	Linux	systems,	Docker
modifies	iptables	rules	to	provide	the	required	level	of	access/isolation.

Default	Docker	Network	Drivers
With	a	standard	install	of	Docker,	the	following	network	drivers	are	available:

bridge
host
overlay
macvlan
none

Bridge	Network
A	bridge	network	is	a	user-defined	network	that	allows	for	all	containers
connected	on	the	same	network	to	communicate.	The	benefit	is	that	the
containers	on	the	same	bridge	network	are	able	to	connect,	discover,	and	talk	to
each	other,	while	those	not	on	the	same	bridge	cannot	communicate	directly	with
each	other.	Bridge	networks	are	useful	when	we	have	containers	running	on	the
same	host	that	need	to	talk	to	each	other.	If	the	containers	that	need	to
communicate	are	on	different	Docker	hosts,	the	overlay	network	would	be
needed.

When	Docker	is	installed	and	started,	a	default	bridge	network	is	created	and
newly	started	containers	connect	to	it.	However,	it	is	always	better	if	you	create
a	bridge	network	yourself.	The	reasons	for	this	are	outlined	here:

Better	isolation	across	containers.	As	you	have	learned,	containers	on	the
same	bridge	network	are	discoverable	and	can	talk	to	each	other.	They
automatically	expose	all	ports	to	each	other	and	no	ports	are	exposed	to	the
outside	world.	Having	a	separate	user-defined	bridged	network	for	each
application	provides	better	isolation	between	containers	of	different
applications.
Easy	name	resolution	across	containers.	For	services	joining	the	same	bridged
network,	containers	can	connect	to	each	other	by	name.	For	containers	on	the
default	bridged	network,	the	only	way	for	containers	to	connect	to	each	other
is	via	IP	addresses	or	by	using	the	--link	flag,	which	has	been	deprecated.
Easy	attachment/detachment	of	containers	on	user-defined	networks.	For
containers	on	the	default	network,	the	only	way	to	detach	them	is	to	stop	the
running	container	and	recreate	it	on	the	new	network.

Host	Network
As	the	name	suggests,	with	a	host	network,	a	container	is	attached	to	the	Docker
host.	This	means	that	any	traffic	coming	to	the	host	is	routed	to	the	container.
Since	all	of	containers’	ports	are	directly	attached	to	the	host,	in	this	mode,	the
concept	of	publishing	ports	doesn’t	make	sense.	Host	mode	is	perfect	if	we	have
only	one	container	running	on	the	Docker	host.

Overlay	Network
The	overlay	network	creates	a	network	spanning	multiple	docker	hosts.	It’s
called	an	overlay	because	it	overlays	the	existing	host	network,	allowing
containers	connected	to	the	overlay	network	to	communicate	across	multiple
posts.	Overlay	networks	are	an	advanced	topic	and	are	primarily	used	when	a
cluster	of	Docker	hosts	is	set	up	in	Swarm	mode.	Overlay	networks	also	let	you
encrypt	the	application	data	traffic	across	the	overlay	network.

Macvlan	Networks
Macvlan	networks	are	a	fairly	recent	introduction	to	the	Docker	networking
stack.	Macvlan	networks	leverage	the	Linux	kernel’s	ability	to	assign	multiple
logical	addresses	based	on	MAC	to	a	single	physical	interface.	This	means	that
you	can	assign	a	MAC	address	to	a	container’s	virtual	network	interface,	making
it	appear	as	if	the	container	has	a	physical	network	interface	connected	to	the
network.	This	introduces	unique	opportunities,	especially	for	legacy	applications
that	expect	a	physical	interface	to	be	present	and	connected	to	the	physical
network.

Macvlan	networks	have	an	additional	dependency	on	the	Network	Interface
Card	(NIC)	to	support	what	is	known	as	promiscuous	mode.	This	is	a	special
mode	that	allows	for	a	NIC	to	receive	all	traffic	and	direct	it	to	a	controller,
instead	of	receiving	only	the	traffic	that	the	NIC	expects	to	receive.

None	Networking
As	the	name	suggests,	none	networking	is	where	the	container	isn’t	connected	to
any	network	interface	and	does	not	receive	any	network	traffic.	In	this
networking	mode,	only	the	loopback	interface	is	created,	allowing	the	container
to	talk	to	itself,	but	not	to	the	outside	world	or	with	the	other	containers.

Working	with	Docker	Networks
Now	that	you	understand	conceptually	what	the	different	network	modes	are,	it’s
time	to	try	some	hands-on	exercises.	For	simplicity’s	sake,	we	will	not	be

looking	at	overlay	and	Macvlan	networks.	Much	like	the	other	subsystems,
Docker	comes	with	a	subcommand	for	handling	Docker	networks.	To	get
started,	try	the	following	command:

docker	network

You	should	see	an	explanation	of	which	options	are	available:

docker	network

Usage:	docker	network	COMMAND

Manage	networks

Options:

Commands:

		connect					Connect	a	container	to	a	network

		create						Create	a	network

		disconnect		Disconnect	a	container	from	a	network

		inspect					Display	detailed	information	on	one

or	more	networks

		ls										List	networks

		prune							Remove	all	unused	networks

		rm										Remove	one	or	more	networks

Let’s	look	at	which	networks	are	available.	To	do	this,	type	the	following:

docker	network	ls

At	the	minimum,	you	should	see	these:

docker	network	ls

NETWORK

ID								NAME																	DRIVER												SCOPE

c540708fd14e						bridge															bridge						

						local

45af7af75e0c						host																	host								

						local

d30afbec4d6b						none																	null								

						local

Each	of	these	corresponds	to	the	three	types	of	networks—the	bridge,	the
host,	and	the	none	type.	You	can	examine	the	details	of	the	network	by	typing
the	following:

docker	network	inspect	<network	id	or	name>

For	instance:

docker	network	inspect	bridge

[

{

								"Name":	"bridge",

								"Id":

"c540708fd14e77106ebe2582685da1cb1a0f6f0cd097fee6d3d9a

6266334f20b",

								"Created":	"2018-04-

17T13:10:43.002552762Z",

								"Scope":	"local",

								"Driver":	"bridge",

								"EnableIPv6":	false,

								"IPAM":	{

												"Driver":	"default",

												"Options":	null,

												"Config":	[

{

																				"Subnet":	"172.17.0.0/16",

																				"Gateway":	"172.17.0.1"

}

]

								},

								"Internal":	false,

								"Attachable":	false,

								"Ingress":	false,

								"ConfigFrom":	{

												"Network":	""

								},

								"ConfigOnly":	false,

								"Containers":	{},

								"Options":	{

												"com.docker.network.bridge.default_brid

ge":	"true",

												"com.docker.network.bridge.enable_icc":

"true",

												"com.docker.network.bridge.enable_ip_ma

squerade":	"true",

												"com.docker.network.bridge.host_binding

_ipv4":	"0.0.0.0",

												"com.docker.network.bridge.name":

"docker0",

												"com.docker.network.driver.mtu":	"1500"

								},

								"Labels":	{}

}

]

Among	other	things,	you	can	see	that:

This	bridge	is	the	default.
IPv6	is	disabled	for	this	bridge.
The	subnet	is	a	172.17.0.0/16,	meaning	that	up	to	65,536	containers	can	be
attached	to	this	network	(this	is	derived	from	the	CIDR	block	of	/16).
The	bridge	has	IP	masquerading	enabled,	which	means	that	the	outside	world
will	not	be	able	to	see	the	container’s	private	IP	and	it	will	appear	that	the
requests	are	coming	from	the	Docker	host.
The	host	binding	is	0.0.0.0,	which	means	that	the	bridge	is	bound	to	all
interfaces	on	the	host.

By	contrast,	if	you	inspect	the	none	network:

docker	network	inspect	none

[

{

								"Name":	"none",

								"Id":

"d30afbec4d6bafde5e0c1f8ca8f7dd6294bd8d7766a9184909188

f1a00444fb5",

								"Created":	"2017-05-

10T10:37:04.125762206Z",

								"Scope":	"local",

								"Driver":	"null",

								"EnableIPv6":	false,

								"IPAM":	{

												"Driver":	"default",

												"Options":	null,

												"Config":	[]

								},

								"Internal":	false,

								"Attachable":	false,

								"Ingress":	false,

								"ConfigFrom":	{

												"Network":	""

								},

								"ConfigOnly":	false,

								"Containers":	{},

								"Options":	{},

								"Labels":	{}

}

]

The	driver	null	indicates	that	no	networking	will	be	handled	for	this.

Bridge	Networks
Before	we	work	on	creating	a	bridge	network,	let’s	create	a	MySQL	and
Adminer	container	on	the	default	bridge	network.

Adminer	container	on	the	default	bridge	network.
To	create	the	MySQL	container,	use	this	command:

docker	run	-d	--name	mysql	-p	3306:3306	-e

MYSQL_ROOT_PASSWORD=dontusethisinprod	mysql

Since	you	are	starting	in	detached	mode	(as	specified	by	the	-d	flag),	follow
the	logs	until	you	are	certain	the	container	is	up.

docker	logs	-f	mysql

The	result	should	be	along	the	lines	of	the	following:

Initializing	database

[...]

Database	initialized

[...]

MySQL	init	process	in	progress...

[...]

MySQL	init	process	done.	Ready	for	start-up.

[...]

[Note]	mysqld:	ready	for	connections.

Version:	'5.7.18'		socket:

'varrun/mysqld/mysqld.sock'		port:	3306		MySQL

Community	Server	(GPL)

[...]

If	you	see	the	last	set	of	lines,	the	MySQL	database	container	is	ready.	Let’s
create	the	Adminer	container:

docker	run	-d	--name	adminer	-p	8080:8080	adminer

Following	the	logs	of	Adminer:

docker	logs	-f	adminer

PHP	7.2.4	Development	Server	started

That	means	Adminer	is	ready.	Let’s	look	at	the	two	containers.	Specifically,
the	networking	aspects	of	them.

docker	inspect	mysql	|	jq	.

[0].NetworkSettings.Networks

{

		"bridge":	{

				"IPAMConfig":	null,

				"Links":	null,

				"Aliases":	null,

				"NetworkID":

"96d1b157fb39968514ffef88a07a9204242c992361236853066ba

9f390bbf22c",

				"EndpointID":

"3b7566eb0e04a6510be1848e06f51a8329ad6db1eb06011932790

c39764978bc",

				"Gateway":	"172.17.0.1",

				"IPAddress":	"172.17.0.3",

				"IPPrefixLen":	16,

				"IPv6Gateway":	"",

				"GlobalIPv6Address":	"",

				"GlobalIPv6PrefixLen":	0,

				"MacAddress":	"02:42:ac:11:00:03",

				"DriverOpts":	null

}

}

You	now	know	that	the	MySQL	container	has	been	assigned	an	IP	address	of
172.17.0.2	on	the	default	bridge	network.	Now	examine	the	Adminer	container:

docker	inspect	adminer	|	jq	.

[0].NetworkSettings.Networks

{

{

		"bridge":	{

				"IPAMConfig":	null,

				"Links":	null,

				"Aliases":	null,

				"NetworkID":

"96d1b157fb39968514ffef88a07a9204242c992361236853066ba

9f390bbf22c",

				"EndpointID":

"bf862e4decc41838c22d251597750f203ed6de2bcb7d69bd69d4a

1af7ddd17b3",

				"Gateway":	"172.17.0.1",

				"IPAddress":	"172.17.0.2",

				"IPPrefixLen":	16,

				"IPv6Gateway":	"",

				"GlobalIPv6Address":	"",

				"GlobalIPv6PrefixLen":	0,

				"MacAddress":	"02:42:ac:11:00:02",

				"DriverOpts":	null

}

}

The	Adminer	container	is	associated	with	IP	address	of	172.17.0.3	within	the
bridge	network.	However,	since	both	containers	are	bound	to	the	host	IP	of
0.0.0.0	and	translated	to	all	interfaces	of	the	Docker	host,	you	should	be	able	to
connect	to	either	by	its	port.

However,	as	you	learned,	the	default	bridge	network	does	not	perform	DNS
resolution	by	the	service	name,	and	neither	does	it	let	us	connect	via	the
container’s	service	name—only	via	IPs.	To	demonstrate	this,	try	to	connect	to
the	database	via	Adminer.	Navigate	to	http://locolhost:8080.

Enter	the	server	as	mysql	and	try	to	log	in.	You’ll	notice	that	the	login	will
fail,	as	shown	in	Figure	6-1.

Figure	6-1 	Connection	to	named	host	fails

Try	to	log	in	again.	This	time	in	the	server	box,	enter	the	IP	address	of	the
MySQL	container,	as	shown	in	Figure	6-2.

Figure	6-2 	Trying	to	log	in	with	IP	address	of	the	container

When	you	try	to	log	in	now,	it	should	be	successful,	as	shown	in	Figure	6-3.

Figure	6-3 	Logging	in	with	the	IP	address	is	successful

While	entering	the	IP	is	an	acceptable	workaround	when	there	is	only	one
dependent	container,	many	current-day	applications	have	multiple	dependencies,
whereby	this	approach	breaks	down.

Creating	Named	Bridge	Networks
Let’s	create	a	database	network	and	try	to	connect	MySQL	and	the	Adminer
container	to	the	network.	We	can	create	a	bridge	network	by	typing	the
following	command:

docker	network	create	database	<network	name>

Docker	gives	you	more	options	in	terms	of	specifying	the	subnet	etc.,	but	for
the	most	part,	the	defaults	are	good.	Note	that	the	bridge	network	allows	you	to
create	only	a	single	subnet.

Now	create	a	network	called	database:

docker	network	create	database

docker	network	create	database

Let’s	inspect	the	created	network:

docker	network	inspect	database

[

{

								"Name":	"database",

								"Id":

"df8124f5f2e662959239592086bea0282e507a604554523b648e1

f9e23cbf18e",

								"Created":	"2018-04-27T10:29:52.0619506Z",

								"Scope":	"local",

								"Driver":	"bridge",

								"EnableIPv6":	false,

								"IPAM":	{

												"Driver":	"default",

												"Options":	{},

												"Config":	[

{

																				"Subnet":	"172.25.0.0/16",

																				"Gateway":	"172.25.0.1"

}

]

								},

								"Internal":	false,

								"Attachable":	false,

								"Ingress":	false,

								"ConfigFrom":	{

												"Network":	""

								},

								"ConfigOnly":	false,

								"Containers":	{},

								"Options":	{},

								"Labels":	{}

}

]

Note	that	the	created	network	has	a	subnet	of	172.25.0.0/16.	Let’s	stop	and
remove	the	existing	containers:

docker	stop	adminer

docker	rm	adminer

docker	stop	mysql

docker	rm	mysql

Now	launch	the	MySQL	container,	this	time	connected	to	the	database
network.	The	command	will	be	as	follows:

docker	run	-d	--network	database	--name	mysql	-p

3306:3306	-e	MYSQL_ROOT_PASSWORD=dontusethisinprod

mysql

Note	the	additional	--network	flag,	which	tells	Docker	what	network	it
should	attach	the	container	to.	Wait	for	bit	for	the	container	to	initialize.	We	can
also	check	the	logs	and	ensure	that	the	container	is	ready:

docker	logs	-f	mysql

The	result	should	be	along	the	lines	of	the	following:

Initializing	database

[...]

Database	initialized

[...]

MySQL	init	process	in	progress...

[...]

[...]

MySQL	init	process	done.	Ready	for	start	up.

[...]

[Note]	mysqld:	ready	for	connections.

Version:	'5.7.18'		socket:

'varrun/mysqld/mysqld.sock'		port:	3306		MySQL

Community	Server	(GPL)

[...]

Now	examine	the	container:

docker	inspect	mysql	|	jq	.

[0].NetworkSettings.Networks

{

		"database":	{

				"IPAMConfig":	null,

				"Links":	null,

				"Aliases":	[

						"e9508a98faf8"

],

				"NetworkID":

"df8124f5f2e662959239592086bea0282e507a604554523b648e1

f9e23cbf18e",

				"EndpointID":

"66db8ac356bad4b0c966a65987d1bda3a05d37435039c8c6a3f46

4c528f4e350",

				"Gateway":	"172.25.0.1",

				"IPAddress":	"172.25.0.2",

				"IPPrefixLen":	16,

				"IPv6Gateway":	"",

				"GlobalIPv6Address":	"",

				"GlobalIPv6PrefixLen":	0,

				"MacAddress":	"02:42:ac:19:00:02",

				"DriverOpts":	null

}

}

Notice	that	the	container	is	part	of	the	database	network.	We	can	confirm	this
by	inspecting	the	database	network	as	well.

docker	network	inspect	database	|	jq	.

[0].Containers

		"e9508a98faf8e4f1c55e04e1a4412ee79a1ac1e78e96552c

e4ee889d196eac23":	{

				"Name":	"mysql",

				"EndpointID":

"66db8ac356bad4b0c966a65987d1bda3a05d37435039c8c6a3f46

4c528f4e350",

				"MacAddress":	"02:42:ac:19:00:02",

				"IPv4Address":	"172.25.0.2/16",

				"IPv6Address":	""

}

Note	that	the	containers	key	in	the	database	network	now	has	the	MySQL
container.	Let’s	launch	the	Adminer	container	as	well.	Type	the	following
command:

docker	run	-d	--name	adminer	-p	8080:8080	adminer

Notice	that	we	omitted	the	--network	command.	This	means	Adminer
will	be	connected	to	the	default	bridge	network.

docker	inspect	adminer	|	jq	.

[0].NetworkSettings.Networks

{

		"bridge":	{

				"IPAMConfig":	null,

				"Links":	null,

				"Aliases":	null,

				"NetworkID":

"c540708fd14e77106ebe2582685da1cb1a0f6f0cd097fee6d3d9a

6266334f20b",

				"EndpointID":

"a4d1df412e61a4baeb63a821f71ea0cd5899ace5436234ef0bab6

88a5636dea7",

				"Gateway":	"172.17.0.1",

				"IPAddress":	"172.17.0.2",

				"IPPrefixLen":	16,

				"IPv6Gateway":	"",

				"GlobalIPv6Address":	"",

				"GlobalIPv6PrefixLen":	0,

				"MacAddress":	"02:42:ac:11:00:02",

				"DriverOpts":	null

}

Connecting	Containers	to	Named	Bridge	Networks
Docker	lets	us	connect	a	container	to	another	network	on	the	fly	very	easily.	To
do	this,	type	the	following	command:

dockr	network	connect	<network	name>	<container

name>

Since	you	need	to	connect	the	Adminer	container	to	the	database	network,
the	command	looks	as	so:

docker	network	connect	database	adminer

Let’s	inspect	the	Adminer	container	now:

docker	inspect	adminer	|	jq	.

[0].NetworkSettings.Networks

{

		"bridge":	{

				"IPAMConfig":	null,

				"Links":	null,

				"Aliases":	null,

				"NetworkID":

"c540708fd14e77106ebe2582685da1cb1a0f6f0cd097fee6d3d9a

6266334f20b",

				"EndpointID":

"a4d1df412e61a4baeb63a821f71ea0cd5899ace5436234ef0bab6

88a5636dea7",

				"Gateway":	"172.17.0.1",

				"IPAddress":	"172.17.0.2",

				"IPPrefixLen":	16,

				"IPv6Gateway":	"",

				"GlobalIPv6Address":	"",

				"GlobalIPv6PrefixLen":	0,

				"MacAddress":	"02:42:ac:11:00:02",

				"DriverOpts":	null

		},

		"database":	{

				"IPAMConfig":	{},

				"Links":	null,

				"Aliases":	[

						"9602c2384418"

],

				"NetworkID":

"df8124f5f2e662959239592086bea0282e507a604554523b648e1

f9e23cbf18e",

				"EndpointID":

"3e9591d59b31fe941ad39f8928898c2ad97230a7e1f07afff0b8d

f061ea1bfdb",

				"Gateway":	"172.25.0.1",

				"IPAddress":	"172.25.0.3",

				"IPPrefixLen":	16,

				"IPv6Gateway":	"",

				"GlobalIPv6Address":	"",

				"GlobalIPv6PrefixLen":	0,

				"MacAddress":	"02:42:ac:19:00:03",

				"DriverOpts":	null

}

}

Notice	that	the	Networks	key	has	two	networks—the	default	bridge
network	and	the	database	network	that	we	just	connected	to.	Since	the	container
doesn’t	need	to	be	connected	to	the	default	bridge	network,	let’s	disconnect	it.
To	do	this,	use	this	command:

docker	network	disconnect	<network	name>	<container

name>

In	this	case,	the	command	is	as	follows:

docker	network	disconnect	bridge	adminer

Examine	the	Adminer	container:

docker	inspect	adminer	|	jq	.

[0].NetworkSettings.Networks

{

		"database":	{

				"IPAMConfig":	{},

				"Links":	null,

				"Aliases":	[

						"9602c2384418"

],

				"NetworkID":

"df8124f5f2e662959239592086bea0282e507a604554523b648e1

f9e23cbf18e",

				"EndpointID":

"3e9591d59b31fe941ad39f8928898c2ad97230a7e1f07afff0b8d

f061ea1bfdb",

				"Gateway":	"172.25.0.1",

				"IPAddress":	"172.25.0.3",

				"IPPrefixLen":	16,

				"IPv6Gateway":	"",

				"GlobalIPv6Address":	"",

				"GlobalIPv6PrefixLen":	0,

				"MacAddress":	"02:42:ac:19:00:03",

				"DriverOpts":	null

}

}

}

The	bridge	network	is	no	longer	attached	to	the	Adminer	network.	Launch
Adminer	by	navigating	to	http://localhost:8080.

In	the	Server	field,	type	the	name	of	the	container	that	you	want	to	connect
to,	i.e.	the	database	container	named	mysql.	See	Figure	6-4.

Figure	6-4 	Connecting	to	a	container	via	named	host

Enter	the	details	and	click	on	Login.	The	login	screen	is	shown	in	Figure	6-5.

Figure	6-5 	Named	host	resolves	to	IP	and	connects	successfully

Thus,	user-defined	bridged	networks	make	connecting	services	very	easy
without	having	to	search	for	the	IP	addresses.	Docker	makes	it	easy	by	letting	us
connect	to	the	services	by	using	the	name	of	the	container	as	the	host.	Docker
handles	the	behind-the-scenes	translation	of	the	container	name	to	IP	address.

Host	Networks
As	you	learned	earlier,	in	host	network,	Docker	doesn’t	create	a	virtual	network
for	the	container.	Rather,	the	Docker	host’s	network	interface	is	bound	to	the
container.

Host	networks	are	excellent	when	we	have	only	one	container	running	on	the
host	and	we	don’t	need	any	bridge	networks	to	be	created	and	don’t	need
network	isolation.	Let’s	create	an	nginx	container	running	in	host	mode	to	see
how	we	can	run	it.

Earlier	you	saw	that	there	already	exists	a	network	called	host.	It’s	not	the
name	that	governs	whether	or	not	the	network	is	a	host	network,	it’s	the	driver.
We	noticed	that	the	host	network	has	a	host	driver,	and	hence	any	container
connected	to	the	host	network	will	run	in	host	network	mode.

To	start	the	container,	you	just	have	to	pass	the	parameter	--network
host.	Try	the	following	command	to	start	an	nginx	container	and	publish	port
80	of	the	container	to	the	host’s	8080	port.

docker	run	-d	--network	host	-p	8080:80

nginx:alpine

WARNING:	Published	ports	are	discarded	when	using

host	network	mode

Notice	that	Docker	warns	you	that	the	port	publishing	isn’t	being	used.	Since
the	container’s	ports	are	directly	bound	to	the	Docker	post,	the	concept	of	a
published	port	doesn’t	arise.	The	actual	command	should	be	as	follows:

docker	run	-d	--network	host	-p	8080:80

nginx:alpine

Docker	Networking	Exercises
You’ve	have	learned	a	fair	bit	about	Docker	networks,	so	it’s	time	to	get	some
hands-on	experience	creating	and	attaching	a	network	to	your	project.

Connecting	The	Mysql	Container	To	The	Project	Container
In	the	previous	chapter	exercises,	you	wrote	a	Dockerfile	for	this	project	and
built	the	container.	You	then	used	Docker	Volumes	to	persist	the	database
across	containers.	In	this	exercise,	you	will	modify	the	project	so	that	the
data,	instead	of	saving	to	a	SQLite	database,	persists	to	a	MySQL	database.

You	will	then	create	a	custom	bridge	network	to	connect	the	project
container	and	the	MySQL	container.

Let’s	modify	the	existing	Dockerfile.

Tip The	source	code	and	Dockerfile	associated	with	this	is	available
as	docker-subreddit-fetcher-network.zip.

Dockerfile	Listing

FROM	python:3-alpine

COPY	*	appssubredditfetcher/

WORKDIR	appssubredditfetcher/

VOLUME	["appssubredditfetcher"]

RUN	["pip",	"install",	"-r",	"requirements.txt"]

ENV	NBT_ACCESS_TOKEN=<token>

CMD	["python",	"newsbot.py"]

Take	care	to	replace	<token>	with	the	token	generated	from	the	earlier
chapter.	Let’s	build	the	image.	Note	the	extra	RUN	step,	which	runs
one_time.py.	This	script	creates	the	necessary	database	and	tables
required	for	our	application.	Another	notable	change	is	the	addition	of	the
VOLUME	instruction.	As	you	learned	earlier,	this	is	to	tell	Docker	to	mark	the
directory	specified	to	be	managed	as	a	volume,	even	if	you	did	not	specify	the
required	volume	name	in	the	docker	run	command.	Let’s	build	the	image.

docker	build	--no-cache	-t

sathyabhat:subreddit_fetcher_network	.

Sending	build	context	to	Docker	daemon			55.3kB

Step	1/7	:	FROM	python:3-alpine

	--->	4fcaf5fb5f2b

Step	2/7	:	COPY	*	appssubredditfetcher/

	--->	87315ae6c5b5

Step	3/7	:	WORKDIR	appssubredditfetcher/

Removing	intermediate	container	af83d09dac2c

	--->	647963890330

Step	4/7	:	VOLUME	["appssubredditfetcher"]

	--->	Running	in	fc801fb00429

Removing	intermediate	container	fc801fb00429

	--->	d734a17f968b

Step	5/7	:	RUN	["pip",	"install",	"-r",

"requirements.txt"]

	--->	Running	in	a5db3fab049d

Collecting	praw	(from	-r	requirements.txt	(line

1))

[....]

Successfully	built	peewee

Installing	collected	packages:	chardet,	urllib3,

idna,	certifi,	requests,	prawcore,	update-checker,

idna,	certifi,	requests,	prawcore,	update-checker,

praw,	peewee,	PyMySQL

Successfully	installed	PyMySQL-0.8.0	certifi-

2018.4.16	chardet-3.0.4	idna-2.6	peewee-2.10.2	praw-

5.4.0	prawcore-0.14.0	requests-2.18.4	update-

checker-0.16	urllib3-1.22

Removing	intermediate	container	a5db3fab049d

	--->	e5715fb6dda7

Step	6/7	:	ENV	NBT_ACCESS_TOKEN="<token"

	--->	Running	in	219e16ddea10

Removing	intermediate	container	219e16ddea10

	--->	ae8bd5570edd

Step	7/7	:	CMD	["python",	"newsbot.py"]

	--->	Running	in	c195a952708f

Removing	intermediate	container	c195a952708f

	--->	93cd7531c6b0

Successfully	built	93cd7531c6b0

Successfully	tagged

sathyabhat:subreddit_fetcher_network

Let’s	create	a	new	network	called	subreddit_fetcher	to	which	the
containers	will	be	connected.	To	do	this,	type	the	following:

docker	network	create	subreddit_fetcher

Now	create	the	required	volumes	for	the	app	and	the	database:

docker	volume	create	subreddit_fetcher_app

docker	volume	create	subreddit_fetcher_db

Let’s	bring	up	a	new	MySQL	container	and	connect	it	to	this	network.
Since	we’d	like	the	data	to	persist,	we	will	also	mount	the	MySQL	database
to	a	volume	called	subreddit_fetecher_db.	To	do	this,	type	the
following	command:

docker	run	-d	--name	mysql	--network

subreddit_fetcher	-v

subreddIt_fetcher_db:varlib/myql	-e

MYSQL_ROOT_PASSWORD=dontusethisinprod	mysql

Let’s	follow	the	logs	and	check	that	the	MySQL	database	is	up	and

Let’s	follow	the	logs	and	check	that	the	MySQL	database	is	up	and
running:

docker	logs	-f	subreddit_fetcher_db

Initializing	database

[...]

Database	initialized

[...]

MySQL	init	process	in	progress

[...]

MySQL	init	process	done.	Ready	for	start	up.

[...]

2018-04-27T12:41:15.295013Z	0	[Note]	mysqld:

ready	for	connections.

Version:	'5.7.18'		socket:

'varrun/mysqld/mysqld.sock'		port:	3306		MySQL

Community	Server	(GPL)

The	last	couple	of	lines	indicate	that	the	MySQL	database	is	up	and
running.

Now	let’s	bring	up	our	project	container	while	connecting	it	to	the
subreddit_fetcher	network	that	we	created.	To	do	this,	type	the
following:

docker	run	--name	subreddit_fetcher_app	--network

subreddit_fetcher	-v

subreddit_fetcher_app:appssubreddit_fetcher

sathyabhat:subreddit_fetcher_network

You	should	see	the	logs	like	so:

INFO:	<module>	-	Starting	up

INFO:	<module>	-	Waiting	for	60	seconds	for	db	to

come	up

come	up

INFO:	<module>	-	Checking	on	dbs

INFO:	get_updates	-	received	response:	{'ok':

True,	'result':	[]}

INFO:	get_updates	-	received	response:	{'ok':

True,	'result':	[]}

Since	you	created	a	new	volume,	the	sources	that	were	set	in	the	previous
chapter	are	not	available.

Let’s	set	the	subreddit	again	from	which	the	bot	should	fetch	the	data,	say
docker.	To	do	this,	from	Telegram,	find	the	bot	and	type	/source
docker.

The	logs	from	the	application	should	confirm	the	receipt	of	the	command:

INFO:	handle_incoming_messages	-	Chat	text

received:	/source	docker

INFO:	handle_incoming_messages	-	Sources	set	for

7342383	to	docker

INFO:	handle_incoming_messages	-	7342383

INFO:	post_message	-	posting	Sources	set	as

docker!	to	7342383

INFO:	get_updates	-	received	response:	{'ok':

True,	'result':	[]}

INFO:	get_updates	-	received	response:	{'ok':

True,	'result':	[]}

INFO:	get_updates	-	received	response:	{'ok':

True,	'result':	[]}

INFO:	get_updates	-	received	response:	{'ok':

True,	'result':	[]}

The	Telegram	window	should	look	like	the	one	shown	in	Figure	6-6.

Figure	6-6 	Acknowledgement	of	the	subreddit	source

Let’s	fetch	some	content.	To	do	this,	type	/fetch	in	the	bot	window.
The	application	should	respond	with	a	loading	message	and	another	chat	with
the	contents,	as	shown	in	Figure	6-7.

Figure	6-7 	The	bot	fetching	contents	from	subreddit

Let’s	confirm	that	the	bot	is	indeed	saving	the	sources	to	the	database.
We	will	bring	up	another	container,	Adminer,	which	is	a	web	UI	for

MySQL	database,	and	connect	it	to	the	subreddit_fetcher	network.	To
do	this,	open	a	new	Terminal	window	and	type	the	following	commands:

docker	run	--network=subreddit_fetcher	-p

8080:8080	adminer

You	should	see	the	logs	like	so:

PHP	7.2.4	Development	Server	started

Open	Adminer	by	navigating	to	http://localhost:8080.	See
Figure	6-8.

Figure	6-8 	Logging	into	the	linked	MySQL	container

Enter	the	server	as	mysql,	enter	the	credentials,	and	then	click	on	Login.
You	should	see	the	database	called	newsbot,	which	corresponds	to	the

MySQL	database	that	you	created.

Figure	6-9 	Successfully	connecting	to	the	project	database

Congrats!	You	have	successfully	created	a	network	and	connected	two
separate	containers	to	it!

Summary
In	this	chapter,	you	learned	about	the	basics	of	container	networking	and	the
different	modes	of	Docker	networking.	You	also	learned	how	to	create	and	work
with	custom	Docker	bridged	networks	and	got	insights	into	Docker	host
networks.	Finally,	you	performed	some	hands-on	exercises	on	creating	a
separate	database	container	(using	MySQL)	and	learned	how	to	connect	the
database	container	to	the	Newsbot	project.	In	the	next	chapter,	we	will	cover
Docker	Compose	and	discuss	how	easy	Docker	Compose	makes	it	to	run
multiple,	dependent	containers.

(1)

©	Sathyajith	Bhat	2018
Sathyajith	Bhat,	Practical	Docker	with	Python
https://doi.org/10.1007/978-1-4842-3784-7_7

7.	Understanding	Docker	Compose
Sathyajith	Bhat1	

Bangalore,	Karnataka,	India

	

In	the	previous	chapters,	you	learned	about	Docker	and	its	associated
terminology,	took	a	deeper	look	into	how	to	build	Docker	images	using	the
Dockerfile,	learned	how	to	persist	data	generated	by	containers,	and	linked
various	running	containers	with	the	help	of	Docker’s	network	features.

In	this	chapter,	we	look	at	Docker	Compose,	which	is	a	tool	for	running
multi-container	applications,	bringing	up	various	linked,	dependent	containers,
and	more—all	with	help	of	just	one	config	file	and	a	command.

Overview	of	Docker	Compose
As	software	gets	more	complicated	and	as	we	move	toward	the	microservices
architecture,	the	number	of	components	that	need	to	be	deployed	increases
considerably	as	well.	While	microservices	might	help	in	keeping	the	overall
system	fluid	by	encouraging	loosely	coupled	services,	from	an	operations	point
of	view,	things	get	more	complicated.	This	is	especially	challenging	when	you
have	dependent	applications—for	instance,	for	a	web	application	to	start
working	correctly,	it	would	need	its	database	to	be	working	before	the	web	tier
can	start	responding	to	requests.

Docker	makes	it	easy	to	tie	each	microservice	to	a	container,	and	Docker
Compose	makes	orchestration	of	all	of	these	containers	very	easy.	Without
Docker	Compose,	our	container	orchestration	steps	would	involve	building	the
various	images,	creating	the	required	networks,	and	then	running	the	application
by	a	series	of	Docker	run	commands	in	the	necessary	order.	As	and	when	the
number	of	containers	increases	and	as	the	deployment	targets	increase,	running
these	steps	manually	becomes	infeasible	and	we	need	to	go	toward	automation.

From	a	local	development	point	of	view,	bringing	up	multiple,	linked

https://doi.org/10.1007/978-1-4842-3784-7_7

From	a	local	development	point	of	view,	bringing	up	multiple,	linked
services	manually	gets	very	tedious	and	painful.	Docker	Compose	simplifies	this
a	lot.	By	just	providing	a	YAML	file	describing	the	containers	required	and	the
relation	between	the	containers,	Docker	Compose	lets	us	bring	up	all	the
containers	with	a	single	command.

It’s	not	just	about	bringing	up	the	containers;	Docker	Compose	lets	you	do
the	following	as	well:

Build,	stop,	and	start	the	containers	associated	with	the	application
Tail	the	logs	of	the	running	containers,	saving	us	the	trouble	of	having	to	open
multiple	terminal	sessions	for	each	container
View	the	status	of	each	container

Docker	Compose	helps	you	enable	continuous	integration.	By	providing
multiple,	disposable,	reproducible	environments,	Docker	compose	lets	you	run
integration	tests	in	isolation,	allowing	for	a	clean-room	approach	to	the
automated	test	cases.	This	enables	you	to	run	the	tests,	validate	the	results,	and
then	tear	down	the	environment	cleanly.

Installing	Docker	Compose
On	Mac	and	Windows,	Docker	Compose	is	installed	as	part	of	the	standard
Docker	install	and	doesn’t	require	any	additional	steps	to	get	started.
On	Linux	systems,	you	can	download	Docker	Compose	binary	from	its
GitHub	Release	page.	Alternatively,	you	can	run	the	following	curl
command	to	download	the	correct	binary.

sudo	curl	-L

https://github.com/docker/compose/releases/download/

1.21.0/dockercompose-$(uname	-s)-$(uname	-m)	-o

usrlocal/bin/dockercompose

Note Ensure	the	version	number	in	this	command	matches	the	latest
version	of	Docker	Compose	on	the	GitHub	Releases	page.	Otherwise,	you
will	end	up	with	an	outdated	version.

Once	the	binary	has	been	downloaded,	change	the	permissions	so	that	it	can
be	executed	using	the	following	command:

sudo	chmod	+x	usrlocal/bin/dockercompose

If	the	file	was	downloaded	manually,	take	care	to	coptey	the	downloaded	file

https://github.com/docker/compose/releases

to	the	usrlocal/bin	directory	before	running	the	command.	To	confirm	that
the	install	was	successful	and	is	working	correctly,	run	the	following	command:

dockercompose	version

The	result	should	be	versions	of	Docker	Compose,	something	similar	to	the
following:

dockercompose	version	1.20.1,	build	5d8c71b

docker-py	version:	3.1.4

CPython	version:	3.6.4

OpenSSL	version:	OpenSSL	1.0.2n	7	Dec	2017

Docker	Compose	Basics
Unlike	the	Dockerfile,	which	is	a	set	of	instructions	to	the	Docker	engine	about
how	to	build	the	Docker	image,	the	Compose	file	is	a	YAML	configuration	file
that	defines	the	services,	networks,	and	volumes	that	are	required	for	the
application	to	be	started.	Docker	expects	the	compose	file	to	be	present	in	the
same	path	into	which	the	dockercompose	command	is	invoked	having	a	file
name	of	dockercompose.yaml	(or	dockercompose.yml).	This	can	be
overridden	by	using	the	-f	flag	followed	by	the	path	to	the	compose	filename.

Compose	File	Versioning
Although	the	compose	file	is	a	YAML	file,	Docker	uses	the	version	key	at	the
start	of	the	file	to	determine	which	features	of	the	Docker	Engine	are	supported.
Currently,	there	are	three	versions	of	the	Compose	file	format:

Version	1:	Version	1	is	considered	a	legacy	format.	If	a	Docker	Compose	file
doesn’t	have	a	version	key	at	the	start	of	the	YAML	file,	Docker	considers	it
to	be	version	1	format.
Version	2.x:	Version	2.x	identified	by	the	version:	2.x	key	at	the	start	of	the
YAML	file.
Version	3.x:	Version	3.x	identified	by	the	version:	2.x	key	at	the	start	of	the
YAML	file.

The	differences	between	the	three	major	versions	are	described	next.

Version	1
Docker	Compose	files	that	do	not	have	a	version	key	at	the	root	of	the	YAML
file	are	considered	to	be	Version	1	compose	files.	Version	1	will	be	deprecated
and	removed	in	a	future	version	of	Docker	Compose	and,	as	such,	we	do	not

and	removed	in	a	future	version	of	Docker	Compose	and,	as	such,	we	do	not
recommend	writing	Version	1	files.	Besides	the	deprecation,	Version	1	has	the
following	major	drawbacks:

Version	1	files	cannot	declare	named	services,	volumes,	or	build	arguments
Container	discovery	is	enabled	only	by	using	the	links	flag

Version	2
Docker	Compose	Version	2	files	has	a	version	key	with	value	2	or	2.x.	Version	2
introduces	a	few	changes	that	make	version	2	incompatible	with	previous
versions	of	Compose	files.	These	include:

All	services	must	be	present	under	the	services	key.
All	containers	are	located	on	an	application-specific	default	network	and	the
containers	can	be	discovered	by	the	hostname	specified	by	the	service	name.
Links	is	made	redundant.
The	depends_on	flag	is	introduced,	allowing	us	to	specify	dependent
containers	and	the	order	in	which	the	containers	are	brought	up.

Version	3
Docker	Compose	Version	3	is	the	current	major	version	of	Compose	having	a
version	key	with	value	3	or	3.x.	Version	3	removes	several	deprecated	options,
including	volume_driver,	volumes_from,	and	many	more.	Version	3
also	adds	a	deploy	key,	which	is	used	for	deployment	and	running	of	services
on	Docker	Swarm.

A	sample	reference	Compose	file	looks	like	the	following:

version:	'3'

services:

				database:

								image:	mysql

								environment:

												MYSQL_ROOT_PASSWORD:	dontusethisinprod

				webserver:

								image:	nginx:alpine

								ports:

												-	8080:80

								depends_on:

												-	cache

												-	database

				cache:

								image:	redis

Similar	to	the	Dockerfile,	the	Compose	file	is	very	readable	and	makes	it
easy	to	follow	along.	This	Compose	file	is	for	a	typical	web	application,	which
includes	a	web	server,	a	database	server,	and	a	caching	server.	The	Compose	file
declares	that	when	Docker	Compose	runs,	it	will	bring	up	three	services—the
webserver,	the	database	server,	and	the	caching	server.	The	web	server	depends
on	the	database	and	the	cache	service,	which	means	that	unless	the	database	and
the	cache	service	are	brought	up,	the	web	service	will	not	be	brought	up.	The
cache	and	the	database	keys	indicate	that	for	cache,	Docker	must	bring	up	the
Redis	image	and	the	MySQL	image	for	the	database.

To	bring	up	all	the	containers,	issue	the	following	command:

dockercompose	up

Once	the	command	is	issued,	Docker	will	bring	up	all	the	services	in	the
foreground	and	we	can	see	the	logs	as	shown	here:

dockercompose	up

Creating	network	"dockercomposebasic_default"	with

the	default	driver

Creating	dockercomposebasic_database_1	...	done

Creating	dockercomposebasic_cache_1				...	done

Creating	dockercomposebasic_webserver_1	...	done

Attaching	to	dockercomposebasic_cache_1,

dockercomposebasic_database_1,

dockercomposebasic_webserver_1

[...]

cache_1						|	#	Server	started,	Redis	version

3.2.9

cache_1						|	*	The	server	is	now	ready	to	accept

connections	on	port	6379

database_1			|	Initializing	database

database_1			|	Database	initialized

database_1			|	Initializing	certificates

[...]

database_1			|	[Note]	mysqld:	ready	for

connections.

database_1			|	Version:	'5.7.18'		socket:

'varrun/mysqld/mysqld.sock'		port:	3306		MySQL

Community	Server	(GPL)

Note	that	Docker	will	aggregate	the	STDOUT	of	each	container	and	will	be
streaming	them	when	they	run	in	the	foreground.	Note	that	even	though	our
Compose	file	has	the	definition	of	the	database	first,	the	webserver	second,	and
the	cache	as	the	last,	Docker	still	brings	up	the	caching	container	as	the	first	and
the	web	server	as	the	last	container.	This	is	because	we	defined	the
depends_on	key	for	the	webserver	as	following:

								depends_on:

												-	cache

												-	database

This	tells	Docker	to	bring	up	the	cache	and	the	database	containers	first
before	bringing	up	the	webserver.	Stopping	the	containers	is	as	simple	as	issuing
the	following	command:

dockercompose	stop

Stopping	dockercomposebasic_webserver_1	...	done

Stopping	dockercomposebasic_database_1		...	done

Stopping	dockercomposebasic_cache_1					...	done

To	resume	the	containers,	we	can	issue	the	following	command:

dockercompose	start

Starting	database		...	done

Starting	cache					...	done

Starting	webserver	...	done

To	view	the	logs	of	the	containers,	we	can	issue	the	following	command:

dockercompose	logs

Attaching	to	dockercomposebasic_webserver_1,

dockercomposebasic_database_1,

dockercomposebasic_database_1,

dockercomposebasic_cache_1

database_1			|	Initializing	database

By	default,	dockercompose	logs	will	only	show	a	snapshot	of	the	logs.	If
you	want	the	logs	to	be	streamed	continuously,	you	can	append	the	-f	or	--
follow	flag	to	tell	Docker	to	keep	streaming	the	logs.	Alternatively,	if	you
want	to	see	the	last	n	logs	from	each	container,	you	can	type:

dockercompose	logs	--tail=n

where	n	is	the	required	number	of	lines.
To	completely	tear	down	the	containers,	we	can	issue	the	following:

dockercompose	down

This	will	stop	all	containers	and	will	also	remove	the	associated	containers,
networks,	and	volumes	created	when	dockercompose	up	was	issued.

dockercompose	down

Stopping	dockercomposebasic_webserver_1	...	done

Stopping	dockercomposebasic_database_1		...	done

Stopping	dockercomposebasic_cache_1					...	done

Removing	dockercomposebasic_webserver_1	...	done

Removing	dockercomposebasic_database_1		...	done

Removing	dockercomposebasic_cache_1					...	done

Removing	network	dockercomposebasic_default

Docker	Compose	File	Reference
We	mentioned	earlier	that	the	Compose	file	is	a	YAML	file	for	configuration
that	Docker	uses	to	read	and	set	up	the	compose	job.	Let’s	look	at	what	the
different	keys	in	the	Docker	Compose	File	do.

Services
Services	is	the	first	root	key	of	the	Compose	YAML	and	is	the	configuration	of
the	container	that	needs	to	be	created.

build
The	build	key	contains	the	configuration	options	that	are	applied	at	build	time.
The	build	key	can	be	a	path	to	the	build	context	or	a	detailed	object	consisting

of	the	context	and	optional	Dockerfile	location.

services:

				app:

								build:	./app

services:

				app:

								build:

												context:	./app

												Dockerfile:	dockerfile-app

context
The	context	key	sets	the	context	of	the	build.	If	the	context	is	a	relative	path,
then	the	path	is	considered	relative	to	the	compose	file	location.

build:

												context:	./app

												Dockerfile:	dockerfile-app

image
If	the	image	tag	is	supplied	along	with	the	build	option,	Docker	will	build	the
image	and	name	and	tag	the	image	with	the	supplied	image	name	and	tag.

services:

				app:

								build:	./app

								image:	sathyabhat:app

environment/env_file
The	environment	key	sets	the	environment	variables	for	the	application,
while	env_file	provides	the	path	to	the	environment	file,	which	is	read
for	setting	the	environment	variables.	Both	environment	as	well	as
env_file	can	accept	a	single	file	or	multiple	files	as	an	array.	The	YAML
entry	is	as	follows:

version:	'3'

services:

				app:

								image:	mysql

								environment:

												PATH:	/home

												API_KEY:	thisisnotavalidkey

version:	'3'

services:

				app:

								image:	mysql

								env_file:	.env

version:	'3'

services:

				app:

								image:	mysql

								env_file:

												-	common.env

												-	app.env

												-	secrets.env

depends_on
This	key	is	used	to	set	the	dependency	requirements	across	various	services.
Consider	this	config:

version:	'3'

services:

				database:

								image:	mysql

				webserver:

								image:	nginx:alpine

								depends_on:

												-	cache

												-	database

				cache:

								image:	redis

When	dockercompose	up	is	issued,	Docker	will	bring	up	the	services	as
per	the	defined	dependency	order.	In	this	case,	Docker	will	bring	up	cache	and
database	services	before	bringing	up	the	webserver	service.

Caution 	With	the	depends_on	key,	Docker	will	only	bring	up	the
services	in	the	defined	order.	Docker	will	not	wait	for	each	of	the	services	to
be	ready	and	then	bring	up	the	successive	service.

image
This	key	specifies	the	name	of	the	image	to	be	used	when	a	container	is	brought
up.	If	the	image	doesn’t	exist	locally,	Docker	will	attempt	to	pull	it	if	the	build
key	is	not	present.	If	the	build	key	is	present	in	the	Compose	file,	Docker	will
attempt	to	build	and	tag	the	image.

version:	'3'

services:

				database:

								image:	mysql

ports
This	key	specifies	the	ports	that	will	be	exposed	to	the	port.	While	providing	this
key,	we	can	specify	either	port—the	Docker	host	port	to	which	the	container	port
will	be	exposed	or	just	the	container	port,	in	which	case	a	random,	ephemeral
port	number	on	the	host	is	selected.

version:	'3'

services:

				database:

								image:	nginx

								ports:

												-	"8080:80"

version:	'3'

services:

				database:

								image:	nginx

								ports:

												-	"80"				

volumes
Volumes	is	available	as	a	top-level	key	as	well	as	suboption	available	to	a
service.	When	volumes	is	referred	to	as	a	top-level	key,	it	lets	us	provide	the
named	volumes	that	will	be	used	for	services	at	the	bottom.	The	configuration

named	volumes	that	will	be	used	for	services	at	the	bottom.	The	configuration
for	this	looks	like	the	following:

version:	'3'

services:

				database:

								image:	mysql

								environment:

												MYSQL_ROOT_PASSWORD:	dontusethisinprod

								volumes:

												-	"dbdata:varlib/mysql"

				webserver:

								image:	nginx:alpine

								depends_on:

												-	cache

												-	database

				cache:

								image:	redis

volumes:

				dbdata:

In	the	absence	of	the	top-level	volumes	key,	Docker	will	throw	an	error
when	creating	the	container.	Consider	the	following	configuration,	where	the
volumes	key	has	been	skipped:

version:	'3'

services:

				database:

								image:	mysql

								environment:

												MYSQL_ROOT_PASSWORD:	dontusethisinprod

								volumes:

												-	"dbdata:varlib/mysql"

				webserver:

								image:	nginx:alpine

								depends_on:

												-	cache

												-	database

				cache:

								image:	redis

Trying	to	bring	up	the	containers:

dockercompose	up

ERROR:	Named	volume	"db:varlib/mysql:rw"	is	used	in

service	"database"	but	no	declaration	was	found	in	the

volumes	section.

It	is	possible	to	use	bind	mounts	as	well—instead	of	referring	to	the	named
volume,	all	we	have	to	do	is	provide	the	path.	Consider	the	following
configuration:

version:	'3'

services:

				database:

								image:	mysql

								environment:

												MYSQL_ROOT_PASSWORD:	dontusethisinprod

								volumes:

												-	"./dbdir:varlib/mysql"

				webserver:

								image:	nginx:alpine

								depends_on:

												-	cache

												-	database

				cache:

								image:	redis

The	volume	key	has	value	of	"./dbdir:varlib/mysql",	which
means	Docker	will	mount	the	varlib/mysql	directory	of	the	container	to	the
dbdir	directory.	Relative	paths	are	considered	in	relation	to	the	directory	of	the
Compose	file.

Restart
The	restart	key	provides	the	restart	policy	for	the	container.	By	default,	the
restart	policy	is	set	to	"no",	which	means	Docker	will	not	restart	the	container,
no	matter	what.	The	following	restart	policies	are	available:

no:	Container	will	never	restart
always:	Container	will	always	restart	after	exit
on-failure:	Container	will	restart	if	it	exits	due	to	an	error
unless-stopped:	Container	will	always	restart	unless	exited	explicitly	or
if	the	Docker	daemon	is	stopped

Docker	Compose	CLI	Reference
The	dockercompose	command	comes	with	its	own	set	of	subcommands;	let’s
try	to	understand	them.

build
The	build	command	reads	the	Compose	file,	scans	for	build	keys,	and	then
proceeds	to	build	the	image	and	tag	the	image.	The	images	are	tagged	as
project_service.	If	the	Compose	file	doesn’t	have	a	build	key	then	Docker
will	skip	building	any	images.	The	usage	is	shown	here:

docker-compose	build	<options>	<service...>

If	the	service	name	is	provided,	Docker	will	proceed	to	build	the	image	for
just	that	service;	otherwise,	it	will	build	images	for	all	the	services.	Some	of	the
commonly	used	options	are	as	follows:

--compress:	Compresses	the	build	context

--no-cache	Ignore	the	build	cache	when	building	the

image

down
The	down	command	stops	the	containers	and	will	proceed	to	remove	the
containers,	volumes,	and	networks.	The	usage	is	shown	here:

dockercompose	down

exec
The	Compose	exec	command	is	equivalent	to	the	Docker	exec	command.	It
lets	you	run	ad	hoc	commands	on	any	of	the	containers.	The	usage	is	shown
here:

docker-compose	exec		<service>	<command>

logs
The	logs	command	displays	the	log	output	from	all	the	services.	The	usage	is
shown	here:

docker-compose	logs	<options>	<service>

By	default,	logs	will	only	show	the	last	logs	for	all	services.	You	can	show
logs	for	just	one	service	by	providing	the	service	name.	The	-f	option	follows
the	log	output.

stop
The	stop	command	stops	the	containers.	The	usage	is	shown	here:

dockercompose	stop

Docker	Volume	Exercises
You	learned	about	Docker	Compose	and	the	Compose	file,	so	let’s	get	some
hands-on	experience	building	multi-container	applications.

Building	And	Running	a	MYSQL	Database	Container	With	A	Web	UI
For	Managing	The	Database
In	this	exercise,	you	will	build	a	multi-container	application	consisting	of	a
container	for	the	MySQL	database	and	another	container	for	Adminer,	a
popular	Web	UI	for	MySQL.	Since	we	already	have	prebuilt	images	for
MySQL	and	Adminer,	we	won’t	have	to	build	them.

Tip The	dockercompose.yml	file	associated	with	this	is
available	as	dockercompose-adminer.zip.	Be	sure	to	extract	the
contents	of	the	ZIP	file	and	run	the	commands	in	the	directory	to	which
they	were	extracted.

We	can	start	with	the	Docker	Compose	file,	as	shown	here.
The	dockercompose.yaml	Listing

version:	'3'

services:

		mysql:

				image:	mysql

				environment:

								MYSQL_ROOT_PASSWORD:	dontusethisinprod

				ports:

								-	"3306:3306"

				volumes:

								-	"dbdata:varlib/mysql"

		adminer:

				image:	adminer

				ports:

								-	"8080:8080"

volumes:

				dbdata:

This	Compose	file	uses	everything	that	we	have	learned	in	this	book	in
one	concise	file.	At	the	start	of	the	Compose	file,	we	define	that	we	will	be
using	version	3	of	the	Compose	API.	Under	services,	we	define	two	services
—one	for	the	database	that	pulls	in	a	Docker	image	called	mysql.	When	the
container	is	created,	an	environment	variable	called
MYSQL_ROOT_PASSWORD	sets	the	root	password	for	the	database	and	port
3306	from	the	container	is	published	to	the	host.	The	data	of	the	MySQL
database	is	stored	in	a	volume	known	as	dbdata,	which	is	mounted	onto	the
directory	varlib/mysql	of	the	container.	This	is	where	MySQL	stores	the
data.	In	other	words,	any	data	saved	to	the	database	in	the	container	is
handled	by	the	volume	named	dbdata.

The	other	service,	called	Adminer,	pulls	in	a	Docker	image	called
Adminer	and	publishes	port	8080	from	the	container	to	the	host.

Let’s	validate	the	Compose	file	by	typing	the	following:

dockercompose	config

If	everything	is	okay,	Docker	will	print	the	Compose	file	as	it	as	parsed.	It
should	look	like	this:

services:

		adminer:

				image:	adminer

				ports:

				-	8080:8080/tcp

		mysql:

				environment:

						MYSQL_ROOT_PASSWORD:	dontusethisinprod

				image:	mysql

				ports:

				-	3306:3306/tcp

				volumes:

				-	dbdata:varlib/mysql:rw

version:	'3.0'

volumes:

		dbdata:	{}

Let’s	run	the	service	by	typing	the	following:

dockercompose	up

We	should	be	seeing	a	log	like	the	one	below

Creating	network	"dockercomposeadminer_default"

with	the	default	driver

Creating	volume	"dockercomposeadminer_dbdata"

with	default	driver

Creating	dockercomposeadminer_mysql_1			...	done

Creating	dockercomposeadminer_adminer_1	...	done

Attaching	to	dockercomposeadminer_adminer_1,

dockercomposeadminer_mysql_1

adminer_1		|	PHP	7.2.4	Development	Server	started

mysql_1				|	Initializing	database

[...]

mysql_1				|	Database	initialized

mysql_1				|	Initializing	certificates

[...]

mysql_1				|	MySQL	init	process	in	progress...

[...]

mysql_1				|	MySQL	init	process	done.	Ready	for

start	up.

[...]

mysql_1				|		[Note]	mysqld:	ready	for

connections.

mysql_1				|	Version:	'5.7.18'		socket:

'varrun/mysqld/mysqld.sock'		port:	3306		MySQL

Community	Server	(GPL)

This	tells	us	that	the	Adminer	UI	and	MySQL	database	is	ready.	Now	try
logging	in	by	navigating	to	http://localhost:8080,	as	shown	in
Figure	7-1.

Figure	7-1 	The	Adminer	login	page

We	should	be	seeing	the	screen	shown	in	Figure	7-1.	You’ll	notice	that
the	server	has	been	populated	with	db.	Since	Docker	Compose	creates	its
own	network	for	the	application,	the	hostname	for	each	container	is	the
service	name.	In	our	case,	the	MySQL	database	service	name	is	mysql	and
the	database	will	be	accessible	via	the	hostname	mysql.	Enter	the	username

as	root	and	the	password	as	the	one	entered	in	the
MYSQL_ROOT_PASSWORD	environment	variable.	See	Figure	7-2.

Figure	7-2 	Adminer	Login	details

If	the	details	are	correct,	you	will	see	the	page	shown	in	Figure	7-3.

Figure	7-3 	Database	details	available	once	logged	in

Converting	The	Project	To	Docker	Compose
In	the	previous	chapter’s	exercises,	you	wrote	a	Dockerfile	for	your	project.
Later,	you	added	volumes	and	the	data	was	persisted	to	SQLite.	In	this
exercise,	you	change	the	project	to	use	MySQL	instead	of	SQLite.

For	this	exercise,	you	will	be	working	on	a	slightly	modified	codebase,
which	has	support	for	saving	the	preferences	to	a	SQLite	DB.	We	would	use
Docker	Volumes	to	persist	the	database	across	containers.

Let’s	modify	the	existing	Docker	Compose	file

Tip The	source	code,	the	Dockerfile,	and	the	Docker	Compose	file
associated	with	this	are	available	as	subredditfetcher-
compose.zip.

The	dockercompose.yaml	Listing

version:	'3'

services:

services:

				app:

								build:	.

								depends_on:

												-	mysql

								restart:	"on-failure"

								volumes:

												-	"appdata:appssubredditfetcher"

				mysql:

								image:	mysql

								volumes:

												-	"dbdata:varlib/mysql"

								environment:

												-

MYSQL_ROOT_PASSWORD=dontusethisinprod

volumes:

				dbdata:

				appdata:

Expanding	on	our	MySQL	Docker	Compose	discussed	earlier,	we	add	our
application	details	to	the	service	section.	Since	our	application	requires	that
MySQL	needs	to	be	started	before	the	application,	we	add	the	depends_on
key.	Additionally,	we	mount	the	appdata	volume	declared	as	a	top-level
key	under	volumes	and	mount	it	to	the	appssubredditfetcher
directory	in	the	container.

We	also	add	a	restart	policy	to	restart	the	container	upon	failure.	Finally,
we	add	the	top-level	keys	for	the	volumes	declared	as	dbdata	and
appdata,	for	persisting	MySQL	and	the	application	data.

Let’s	verify	that	the	Compose	file	is	correct	and	valid:

dockercompose	config

services:

		adminer:

				image:	adminer

				ports:

				-	8080:8080/tcp

		app:

				build:

						context:

homesathyabhat/code/subreddit_fetcher_compose

				depends_on:

				-	mysql

				restart:	on-failure

				volumes:

				-	appdata:appssubredditfetcher:rw

		mysql:

				environment:

						MYSQL_ROOT_PASSWORD:	dontusethisinprod

				image:	mysql

				volumes:

				-	dbdata:varlib/mysql:rw

version:	'3.0'

volumes:

		appdata:	{}

		dbdata:	{}

Let’s	run	the	Compose	application:

dockercompose	up	--build

The	--build	flag	forces	Docker	to	rebuild	the	images	even	if	nothing
has	changed,	and	it	can	be	skipped.	We	should	see	a	result	like	so:

dockercompose	up	--build

Creating	network

"subredditfetchercompose_default"	with	the	default

driver

Creating	volume	"subredditfetchercompose_dbdata"

with	default	driver

Creating	volume	"subredditfetchercompose_appdata"

with	default	driver

Building	app

Step	1/7	:	FROM	python:3-alpine

	--->	4fcaf5fb5f2b

Step	2/7	:	COPY	*	appssubredditfetcher/

	--->	a1ae719d8b90

Step	3/7	:	WORKDIR	appssubredditfetcher/

Removing	intermediate	container	f6c4e85952ff

	--->	7702ecd8eec6

Step	4/7	:	VOLUME	["appssubredditfetcher"]

	--->	Running	in	69fedd2fffe5

Removing	intermediate	container	69fedd2fffe5

	--->	4ff33274be32

Step	5/7	:	RUN	["pip",	"install",	"-r",

"requirements.txt"]

	--->	Running	in	1060110739f6

[...]

Installing	collected	packages:	idna,	chardet,

urllib3,	certifi,	requests,	update-checker,

prawcore,	praw,	peewee,	PyMySQL

Successfully	installed	PyMySQL-0.8.0	certifi-

2018.4.16	chardet-3.0.4	idna-2.6	peewee-2.10.2	praw-

5.4.0	prawcore-0.14.0	requests-2.18.4	update-

checker-0.16	urllib3-1.22

You	are	using	pip	version	9.0.3,	however	version

10.0.1	is	available.

You	should	consider	upgrading	via	the	'pip

install	--upgrade	pip'	command.

Removing	intermediate	container	1060110739f6

	--->	307613a1e95e

Step	6/7	:	ENV

NBT_ACCESS_TOKEN="495637361:AAHIhiDTX1UeX17KJy0-

FsMZEqEtCFYfcP8"

	--->	Running	in	0ffaed2488b4

Removing	intermediate	container	0ffaed2488b4

	--->	9faabd11d518

Step	7/7	:	CMD	["python",	"newsbot.py"]

	--->	Running	in	c350455c6121

Removing	intermediate	container	c350455c6121

	--->	e876df59baf0

Successfully	built	e876df59baf0

Successfully	tagged

subredditfetchercompose_app:latest

Creating	subredditfetchercompose_mysql_1	...	done

Creating	subredditfetchercompose_app_1			...	done

Attaching	to	subredditfetchercompose_mysql_1,

Attaching	to	subredditfetchercompose_mysql_1,

subredditfetchercompose_app_1

mysql_1		|	Initializing	database

[...]

app_1				|	INFO:	<module>	-	Starting	up

app_1				|	INFO:	<module>	-	Waiting	for	60

seconds	for	db	to	come	up

[...]

mysql_1		|	Database	initialized

mysql_1		|	Initializing	certificates

[...]

mysql_1		|	Certificates	initialized

mysql_1		|	MySQL	init	process	in	progress...

[...]

mysql_1		|	[Note]	mysqld:	ready	for	connections.

mysql_1		|	Version:	'5.7.18'		socket:

'varrun/mysqld/mysqld.sock'		port:	0		MySQL

Community	Server	(GPL)

[...]

mysql_1		|	MySQL	init	process	done.	Ready	for

start	up.

[...]

mysql_1		|	[Note]	mysqld:	ready	for	connections.

mysql_1		|	Version:	'5.7.18'		socket:

'varrun/mysqld/mysqld.sock'		port:	3306		MySQL

Community	Server	(GPL)

[...]

app_1				|	INFO:	<module>	-	Checking	on	dbs

app_1				|	INFO:	get_updates	-	received	response:

{'ok':	True,	'result':	[]}

app_1				|	INFO:	get_updates	-	received	response:

{'ok':	True,	'result':	[]}

The	last	line	indicates	that	the	bot	is	working.	Let’s	try	setting	a	source
and	fetching	the	data	by	typing	/sources	docker	and	then	/fetch	into
the	telegram	bot.	If	all	goes	well,	you	should	see	a	result	similar	to	the	one
shown	in	Figure	7-4.

Figure	7-4 	Our	project,	the	subreddit	fetcher	bot	in	action

We	can	go	one	step	further	by	modifying	our	Compose	file	to	include	the
Adminer	service	so	that	we	have	a	Web	UI	to	check	that	the	contents	are
being	saved	to	the	database.	For	this,	modify	the	existing	Docker	Compose
file	to	include	the	Adminer	service,	as	shown	here:

version:	'3'

services:

				app:

								build:	.

								depends_on:

												-	mysql

								restart:	"on-failure"

								volumes:

												-	"appdata:appssubredditfetcher"

				mysql:

								image:	mysql

								volumes:

												-	"dbdata:varlib/mysql"

								environment:

												-

MYSQL_ROOT_PASSWORD=dontusethisinprod

				adminer:

								image:	adminer

								ports:

												-	"8080:8080"

volumes:

				dbdata:

				appdata:

Let’s	confirm	that	the	Compose	file	is	valid:

dockercompose	config

services:

		adminer:

				image:	adminer

				ports:

				-	8080:8080/tcp

		app:

				build:

						context:

homesathyabhat/code/subreddit_fetcher_compose

				depends_on:

				-	mysql

				restart:	on-failure

				volumes:

				-	appdata:appssubredditfetcher:rw

		mysql:

				environment:

						MYSQL_ROOT_PASSWORD:	dontusethisinprod

				image:	mysql

				volumes:

				-	dbdata:varlib/mysql:rw

version:	'3.0'

volumes:

		appdata:	{}

		dbdata:	{}

Let’s	tear	down	the	existing	Compose	and	bring	up	a	new	Compose
application.	Since	the	data	is	persisted	to	volumes,	we	shouldn’t	be	worried
about	data	loss.

dockercompose	down

Stopping	subredditfetchercompose_app_1			...	done

Stopping	subredditfetchercompose_mysql_1	...	done

Removing	subredditfetchercompose_app_1			...	done

Removing	subredditfetchercompose_mysql_1	...	done

Removing	network	subredditfetchercompose_default

Bring	up	the	service	again:

dockercompose	up

Creating	network

"subredditfetchercompose_default"	with	the	default

driver

Creating	subredditfetchercompose_adminer_1	...

done

Creating	subredditfetchercompose_mysql_1			...

done

Creating	subredditfetchercompose_app_1					...

done

Attaching	to	subredditfetchercompose_mysql_1,

subredditfetchercompose_adminer_1,

subredditfetchercompose_app_1

[...]

adminer_1		|	PHP	7.2.4	Development	Server	started

[...]

mysql_1				|	[Note]	mysqld:	ready	for

connections.

mysql_1				|	Version:	'5.7.18'		socket:

'varrun/mysqld/mysqld.sock'		port:	3306		MySQL

Community	Server	(GPL)

[...]

app_1						|	INFO:	<module>	-	Starting	up

app_1						|	INFO:	<module>	-	Waiting	for	60

seconds	for	db	to	come	up

app_1						|	INFO:	<module>	-	Checking	on	dbs

app_1						|	INFO:	get_updates	-	received

response:	{'ok':	True,	'result':	[]}

app_1						|	INFO:	get_updates	-	received

response:	{'ok':	True,	'result':	[]}

Now	navigate	to	Adminer	by	heading	to	http://localhost:8080
and	checking	for	the	data;	see	Figure	7-5.

Figure	7-5 	The	project,	running	with	data	saved	to	the	database

Success!	The	application	is	running	and	the	data	is	saved	to	the	database
despite	you	removing	and	recreating	the	containers.

Summary
In	this	chapter,	you	learned	about	Docker	Compose,	including	how	to	install	it
and	why	it	is	used.	You	also	did	a	deep	dive	into	the	Docker	Compose	file	and
the	CLI.	Finally,	you	ran	through	some	exercises	on	building	multi-containers
applications	with	Docker	Compose	and	learned	how	to	extend	the	Newsbot
project	to	a	multi-container	application	using	Docker	Compose,	adding	a	linked
database	and	a	Web	UI	to	edit	the	database.

Index
A
ADD	and	COPY	instructions

B
Bind	mounts
BotFather	creation	REST	API	test	tools	telegram’s	Bot	creation	interface
Bridge	network	Adminer	container	command	connecting	containers	container
via	named	host	detached	mode	IP	address	IP	and	connects	log	in	details	login
will	fail	MySQL	container	name	creation	outline	process	result
user-defined	network

C
cgroups
chroot
CMD	and	ENTRYPOINT	instructions
Compose
Adminer	login	page	basics
CLI	reference	build	command	down
exec
logs
stop

convertion	database	details	file	reference	ports
restart
services	volumes

file	versioning	format
Version	1
Version	2
Version	3

installation	MySQL	database	container	overview	subreddit	fetcher	bot
Containerization	cgroups	chroot
containers/virtual	machines	Docker	Inc.
FreeBSD	jails	LXC
OpenVZ
OverlayFS
problem	understanding

D
Data	persistence	data	loss	bind	mounts	features	strategies	tmpfs	mounts	volumes

Data	persistence	data	loss	bind	mounts	features	strategies	tmpfs	mounts	volumes
meaning

Dependencies
Docker	101
bind	mounts	and	volumes	compose	file	container	Docker	Engine	Dockerfile
hands-on	Docker	 See Hands-on	Docker	image
installation	layers
Linux
machine	MacOS
registries	Windows	installation

Docker	Engine	API
CLI
daemon

Docker	Store
Dockerfile	build	command	build	context	Dockerignore	guidelines	and
recommendations	hello	world	docker	image	instructions	ADD	and	COPY
instructions	CMD	and	ENTRYPOINT

ENV
EXPOSE
FROM
LABEL
RUN
VOLUME
WORKDIR

multi-stage	builds	project	review	requirements.txt	file	standard	build

E
Elastic	Block	Store	(EBS)
ENTRYPOINT
ENV	instruction
EXPOSE	instruction

F
File	reference	ports
restart	services	build
context
depends_on	environment/env_file	key	image	key	image	tag	volumes

File	versioning	Version	1
Version	2
Version	3

FreeBSD	jails

FreeBSD	jails
FROM	instruction

G
Gotchas

H,	I,	J,	K
Hands-On	Docker	commands	images
real-world	images

Host	networks	instruction	nginx	container
Hyper-V

L
LABEL	instruction
Linux

M
MacOS
Macvlan	networks
Multi-stage	builds

N
Networking	bridge
See Bridge	network	command	host
instruction	nginx	container	Macvlan	mysql	container	none

overlay	single	host/virtual	machine
Network	Interface	Card	(NIC)
Newsbot
dependencies	interaction	libraries	posts
response	running	scenarios	sending	messages	sources

nginx	container

O
OpenVZ
OverlayFS
Overlay	network

P,	Q
Promiscuous
Python	app	BotFather	Newsbot	 See Newsbot	Reddit
Telegram	Messenger

R

R
RUN	instruction

S
Shell	and	Exec	Form
Software	Defined	Networking	(SDN)

T,	U
Telegram	Messenger	one-time	password	signup	page
tmpfs	mounts

V
Virtual	machines
VOLUME	instruction
Volumes
advantages	container	Dockerfile	nginx	container	project	adding	subcommands
command
creation	inspect
list	volume	prune	volume	remove	volume

W,	X,	Y,	Z
WORKDIR	instructions

	Front Matter
	1. Introduction to Containerization
	2. Docker 101
	3. Building the Python App
	4. Understanding the Dockerfile
	5. Understanding Docker Volumes
	6. Understanding Docker Networks
	7. Understanding Docker Compose
	Back Matter

