
PATTERNS, PREDICTIONS, AND ACTIONS

A story about machine learning

Moritz Hardt and Benjamin Recht

Licensed under the Creative Commons BY-NC-ND 4.0 license.

Compiled on Tue 26 Oct 2021 03:09:42 PM PDT.
Latest version available at https://mlstory.org.

For Isaac, Leonora, and Quentin

Contents

1 Introduction 1
Ambitions of the 20th century . 2

Pattern classification . 4

Prediction and action . 8

Chapter notes . 9

2 Fundamentals of prediction 11
Modeling knowledge . 13

Prediction via optimization . 15

Types of errors and successes . 21

The Neyman-Pearson Lemma . 22

Decisions that discriminate . 26

Chapter notes . 31

3 Supervised learning 33
Sample versus population . 33

Supervised learning . 35

A first learning algorithm: The perceptron 37

Connection to empirical risk minimization 39

Formal guarantees for the perceptron 42

Chapter notes . 47

4 Representations and features 49
Measurement . 50

Quantization . 52

Template matching . 53

Summarization and histograms . 54

Nonlinear predictors . 55

Chapter notes . 67

5 Optimization 70
Optimization basics . 71

iv

Gradient descent . 73

Applications to empirical risk minimization 76

Insights from quadratic functions . 77

Stochastic gradient descent . 80

Analysis of the stochastic gradient method 86

Implicit convexity . 89

Regularization . 92

Squared loss methods and other optimization tools 97

Chapter notes . 98

6 Generalization 100
Generalization gap . 100

Overparameterization: empirical phenomena 101

Theories of generalization . 106

Algorithmic stability . 110

Model complexity and uniform convergence 116

Generalization from algorithms . 120

Looking ahead . 125

Chapter notes . 126

7 Deep learning 127
Deep models and feature representation 128

Optimization of deep nets . 130

Vanishing gradients . 136

Generalization in deep learning . 139

Chapter notes . 143

8 Datasets 145
The scientific basis of machine learning benchmarks 146

A tour of datasets in different domains 148

Longevity of benchmarks . 158

Harms associated with data . 167

Toward better data practices . 172

Limits of data and prediction . 175

Chapter notes . 176

9 Causality 178
The limitations of observation . 179

Causal models . 181

Causal graphs . 186

Interventions and causal effects . 188

Confounding . 189

Experimentation, randomization, potential outcomes 192

v

Counterfactuals . 196

Chapter notes . 202

10 Causal inference in practice 204
Design and inference . 205

The observational basics: adjustment and controls 206

Reductions to model fitting . 208

Quasi-experiments . 211

Limitations of causal inference in practice 215

Chapter notes . 217

11 Sequential decision making and dynamic programming 218
From predictions to actions . 219

Dynamical systems . 219

Optimal sequential decision making 222

Dynamic programming . 223

Computation . 225

Partial observation and the separation heuristic 231

Chapter notes . 235

12 Reinforcement learning 236
Exploration-exploitation tradeoffs: Regret and PAC learning 237

When the model is unknown: Approximate dynamic programming247

Certainty equivalence is often optimal for reinforcement learning . 254

The limits of learning in feedback loops 261

Chapter notes . 266

13 Epilogue 268
Beyond pattern classification? . 271

14 Mathematical background 272
Common notation . 272

Multivariable calculus and linear algebra 272

Probability . 275

Conditional probability and Bayes’ Rule 277

Estimation . 279

vi

Preface

In its conception, our book is both an old take on something new and a new
take on something old.

Looking at it one way, we return to the roots with our emphasis on
pattern classification. We believe that the practice of machine learning today
is surprisingly similar to pattern classification of the 1960s, with a few
notable innovations from more recent decades.

This is not to understate recent progress. Like many, we are amazed
by the advances that have happened in recent years. Image recognition
has improved dramatically. Even small devices can now reliably recognize
speech. Natural language processing and machine translation have made
massive leaps forward. Machine learning has even been helpful in some
difficult scientific problems, such as protein folding.

However, we think that it would be a mistake not to recognize pattern
classification as a driving force behind these improvements. The ingenuity
behind many advances in machine learning so far lies not in a fundamen-
tal departure from pattern classification, but rather in finding new ways
to make problems amenable to the model fitting techniques of pattern
classification.

Consequently, the first few chapters of this book follow relatively closely
the excellent text “Pattern Classification and Scene Analysis” by Duda and
Hart, particularly, its first edition from 1973, which remains relevant today.
Indeed, Duda and Hart summarize the state of pattern classification in 1973,
and it bears a striking resemblance to the core of what we consider today
to be machine learning. We add new developments on representations,
optimization, and generalization, all of which remain topics of evolving,
active research.

Looking at it differently, our book departs in some considerable ways
from the way machine learning is commonly taught.

First, our text emphasizes the role that datasets play in machine learning.
A full chapter explores the histories, significance, and scientific basis of
machine learning benchmarks. Although ubiquitous and taken for granted
today, the datasets-as-benchmarks paradigm was a relatively recent devel-

vii

opment of the 1980s. Detailed consideration of datasets, the collection and
construction of data, as well as the training and testing paradigm, tend to
be lacking from theoretical courses on machine learning.

Second, the book includes a modern introduction to causality and the
practice of causal inference that lays to rest dated controversies in the field.
The introduction is self-contained, starts from first principles, and requires
no prior commitment intellectually or ideologically to the field of causality.
Our treatment of causality includes the conceptual foundations, as well
as some of the practical tools of causal inference increasingly applied in
numerous applications. It’s interesting to note that many recent causal
estimators reduce the problem of causal inference in clever ways to pattern
classification. Hence, this material fits quite well with the rest of the book.

Third, our book covers sequential and dynamic models thoroughly.
Though such material could easily fill a semester course on its own, we
wanted to provide the basic elements required to think about making deci-
sions in dynamic contexts. In particular, given so much recent interest in
reinforcement learning, we hope to provide a self-contained short introduc-
tion to the concepts underpinning this field. Our approach here follows
our approach to supervised learning: we focus on how we would make
decisions given a probabilistic model of our environment, and then turn to
how to take action when the model is unknown. Hence, we begin with a
focus on optimal sequential decision making and dynamic programming.
We describe some of the basic solution approaches to such problems, and
discuss some of the complications that arise as our measurement quality de-
teriorates. We then turn to making decisions when our models are unknown,
providing a survey of bandit optimization and reinforcement learning. Our
focus here is to again highlight the power of prediction. We show that
for most problems, pattern recognition can be seen as a complement to
feedback control, and we highlight how “certainty equivalent” decision
making—where we first use data to estimate a model and then use feedback
control acting as if this model were true—is optimal or near optimal in a
surprising number of scenarios.

Finally, we attempt to highlight in a few different places throughout the
potential harms, limitations, and social consequences of machine learning.
From its roots in World War II, machine learning has always been political.
Advances in artificial intelligence feed into a global industrial military
complex, and are funded by it. As useful as machine learning is for some
unequivocally positive applications such as assistive devices, it is also
used to great effect for tracking, surveillance, and warfare. Commercially
its most successful use cases to date are targeted advertising and digital
content recommendation, both of questionable value to society. Several
scholars have explained how the use of machine learning can perpetuate

viii

inequity through the ways that it can put additional burden on already
marginalized, oppressed, and disadvantaged communities. Narratives of
artificial intelligence also shape policy in several high stakes debates about
the replacement of human judgment in favor of statistical models in the
criminal justice system, health care, education, and social services.

There are some notable topics we left out. Some might find that the most
glaring omission is the lack of material on unsupervised learning. Indeed,
there has been a significant amount of work on unsupervised learning in
recent years. Thankfully, some of the most successful approaches to learning
without labels could be described as reductions to pattern recognition. For
example, researchers have found ingenious ways of procuring labels from
unlabeled data points, an approach called self supervision. We believe that
the contents of this book will prepare students interested in these topics
well.

The material we cover supports a one semester graduate introduction
to machine learning. We invite readers from all backgrounds. However,
mathematical maturity with probability, calculus, and linear algebra is
required. We provide a chapter on mathematical background for review.
Necessarily, this chapter cannot replace prerequesite coursework.

In writing this book, our goal was to balance mathematical rigor against
presenting insights we have found useful in the most direct way possible. In
contemporary learning theory important results often have short sketches,
yet making these arguments rigorous and precise may require dozens of
pages of technical calculations. Such proofs are critical to the community’s
scientific activities but often make important insights hard to access for
those not yet versed in the appropriate techniques. On the other hand,
many machine learning courses drop proofs altogether, thereby losing the
important foundational ideas that they contain. We aim to strike a balance,
including full details for as many arguments as possible, but frequently
referring readers to the relevant literature for full details.

ix

Acknowledgments

We are indebted to Alexander Rakhlin, who pointed us to the early general-
ization bound for the Perceptron algorithm. This result both in its substance
and historical position shaped our understanding of machine learning.
Kevin Jamieson was the first to point out to us the similarity between the
structure of our course and the text by Duda and Hart. Peter Bartlett pro-
vided many helpful pointers to the literature and historical context about
generalization theory. Jordan Ellenberg helped us improve the presentation
of algorithmic stability. Dimitri Bertsekas pointed us to an elegant proof of
the Neyman-Pearson Lemma. We are grateful to Rediet Abebe and Ludwig
Schmidt for discussions relating to the chapter on datasets. We also are
grateful to David Aha, Thomas Dietterich, Michael I. Jordan, Pat Langley,
John Platt, and Csaba Szepesvari for giving us additional context about the
state of machine learning in the 1980s. Finally, we are indebted to Boaz
Barak, David Blei, Adam Klivans, Csaba Szepesvari, and Chris Wiggins for
detailed feedback and suggestions on an early draft of this text. We’re also
grateful to Chris Wiggins for pointing us to Highleyman’s data.

We thank all students of UC Berkeley’s CS 281a in the Fall of 2019, 2020,
and 2021, who worked through various iterations of the material in this
book. Special thanks to our graduate student instructors Mihaela Curmei,
Sarah Dean, Frances Ding, Sara Fridovich-Keil, Wenshuo Guo, Chloe Hsu,
Meena Jagadeesan, John Miller, Robert Netzorg, Juan C. Perdomo, and
Vickie Ye, who spotted and corrected many mistakes we made.

x

1
Introduction

“Reflections on life and death of those who in Breslau lived and died” is
the title of a manuscript that Protestant pastor Caspar Neumann sent to
mathematician Gottfried Wilhelm Leibniz in the late 17th century. Neumann
had spent years keeping track of births and deaths in his Polish hometown
now called Wrocław. Unlike sprawling cities like London or Paris, Breslau
had a rather small and stable population with limited migration in and out.
The parishes in town took due record of the newly born and deceased.

Neumann’s goal was to find patterns in the occurrence of births and
deaths. He thereby sought to dispel a persisting superstition that ascribed
critical importance to certain climacteric years of age. Some believed it was
age 63, others held it was either the 49th or the 81st year, that particularly
critical events threatened to end the journey of life. Neumann recognized
that his data defied the existence of such climacteric years.

Leibniz must have informed the Royal Society of Neumann’s work. In
turn, the Society invited Neumann in 1691 to provide the Society with
the data he had collected. It was through the Royal Society that British
astronomer Edmund Halley became aware of Neumann’s work. A friend
of Isaac Newton’s, Halley had spent years predicting the trajectories of
celestial bodies, but not those of human lives.

After a few weeks of processing the raw data through smoothing and
interpolation, it was in the Spring of 1693 that Halley arrived at what
became known as Halley’s life table.

At the outset, Halley’s table displayed for each year of age, the number
of people of that age alive in Breslau at the time. Halley estimated that a
total of approximately 34000 people were alive, of which approximately
1000 were between the ages zero and one, 855 were between age one and
two, and so forth.

Halley saw multiple applications of his table. One of them was to
estimate the proportion of men in a population that could bear arms. To
estimate this proportion he computed the number of people between age 18

1

Figure 1: Halley’s life table

and 56, and divided by two. The result suggested that 26% of the population
were men neither too old nor too young to go to war.

At the same time, King William III of England needed to raise money
for his country’s continued involvement in the Nine Years War raging from
1688 to 1697. In 1692, William turned to a financial innovation imported
from Holland, the public sale of life annuities. A life annuity is a financial
product that pays out a predetermined annual amount of money while the
purchaser of the annuity is alive. The king had offered annuities at fourteen
times the annual payout, a price too low for the young and too high for the
old.

Halley recognized that his table could be used to estimate the odds that
a person of a certain age would die within the next year. Based on this
observation, he described a formula for pricing an annuity that, expressed
in modern language, computes the sum of expected discounted payouts
over the course of a person’s life starting from their current age.

Ambitions of the 20th century

Halley had stumbled upon the fact that prediction requires no physics.
Unknown outcomes, be they future or unobserved, often follow patterns
found in past observations. This empirical law would become the basis of
consequential decision making for centuries to come.

On the heels of Halley and his contemporaries, the 18th century saw
the steady growth of the life insurance industry. The industrial revolution
fueled other forms of insurance sold to a population seeking safety in

2

tumultuous times. Corporations and governments developed risk models of
increasing complexity with varying degrees of rigor. Actuarial science and
financial risk assessment became major fields of study built on the empirical
law.

Modern statistics and decision theory emerged in the late 19th and early
20th century. Statisticians recognized that the scope of the empirical law
extended far beyond insurance pricing, that it could be a method for both
scientific discovery and decision making writ large.

Emboldened by advances in probability theory, statisticians modeled
populations as probability distributions. Attention turned to what a scien-
tist could say about a population by looking at a random draw from its
probability distribution. From this perspective, it made sense to study how
to decide between one of two plausible probability models for a population
in light of available data. The resulting concepts, such as true positive and
false positive, as well as the resulting technical repertoire, are in broad use
today as the basis of hypothesis testing and binary classification.

As statistics flourished, two other developments around the middle of the
20th century turned out to be transformational. The works of Turing, Gödel,
and von Neumann, alongside dramatic improvements in hardware, marked
the beginning of the computing revolution. Computer science emerged as a
scientific discipline. General purpose programmable computers promised a
new era of automation with untold possibilities.

World War II spending fueled massive research and development pro-
grams on radar, electronics, and servomechanisms. Established in 1940, the
United States National Defense Research Committee, included a division
devoted to control systems. The division developed a broad range of control
systems, including gun directors, target predictors, and radar-controlled
devices. The agency also funded theoretical work by mathematician Norbert
Wiener, including plans for an ambitious anti-aircraft missile system that
used statistical methods for predicting the motion of enemy aircraft.

In 1948, Wiener released his influential book Cybernetics at the same
time as Shannon released A Mathematical Theory of Communication. Both
proposed theories of information and communication, but their goals were
different. Wiener’s ambition was to create a new science, called cybernetics,
that unified communications and control in one conceptual framework.
Wiener believed that there was a close analogy between the human nervous
system and digital computers. He argued that the principles of control,
communication, and feedback could be a way not only to create mind-
like machines, but to understand the interaction of machines and humans.
Wiener even went so far as to posit that the dynamics of entire social systems
and civilizations could be understood and steered through the organizing
principles of cybernetics.

3

The zeitgeist that animated cybernetics also drove ambitions to create
artificial neural networks, capable of carrying out basic cognitive tasks.
Cognitive concepts such as learning and intelligence had entered research
conversations about computing machines and with it came the quest for
machines that learn from experience.

The 1940s were a decade of active research on artificial neural networks,
often called connectionism. A 1943 paper by McCulloch and Pitts formal-
ized artificial neurons and provided theoretical results about the universality
of artificial neural networks as computing devices. A 1949 book by Don-
ald Hebb pursued the central idea that neural networks might learn by
constructing internal representations of concepts.

Pattern classification

Around the mid 1950s, it seemed that progress on connectionism had
started to slow and would have perhaps tapered off had psychologist Frank
Rosenblatt not made a striking discovery.

Rosenblatt had devised a machine for image classification. Equipped
with 400 photosensors the machine could read an image composed of 20 by
20 pixels and sort it into one of two possible classes. Mathematically, the
Perceptron computes a linear function of its input pixels. If the value of
the linear function applied to the input image is positive, the Perceptron
decides that its input belongs to class 1, otherwise class -1. What made
the Perceptron so successful was the way it could learn from examples.
Whenever it misclassified an image, it would adjust the coefficients of its
linear function via a local correction.

Rosenblatt observed in experiments what would soon be a theorem. If a
sequence of images could at all be perfectly classified by a linear function,
the Perceptron would only make so many mistakes on the sequence before
it correctly classified all images it encountered.

Rosenblatt developed the Perceptron in 1957 and continued to publish
on the topic in the years that followed. The Perceptron project was funded
by the US Office of Naval Research, who jointly announced the project with
Rosenblatt in a press conference in 1958, that led to the New York Times to
exclaim:

The Navy revealed the embryo of an electronic computer that it
expects will be able to walk, talk, see, write, reproduce itself and
be conscious of its existence.1

This development sparked significant interest in perceptrons and rein-
vigorated neural networks research throughout the 1960s. By all accounts,

4

the research in the decade that followed Rosenblatt’s work had essentially
all the ingredients of what is now called machine learning, specifically,
supervised learning.

Practitioners experimented with a range of different features and model
architectures, moving from linear functions to Perceptrons with multiple
layers, the equivalent of today’s deep neural networks. A range of variations
to the optimization method and different ways of propagating errors came
and went.

Theory followed closely behind. Not long after the invention came a
theorem, called mistake bound, that gave an upper bound on the number
of mistakes the Perceptron would make in the worst case on any sequence
of labeled data points that can be fit perfectly with a linear separator.

Today, we recognize the Perceptron as an instance of the stochastic
gradient method applied to a suitable objective function. The stochastic
gradient method remains the optimization workhorse of modern machine
learning applications.

Shortly after the well-known mistake bound came a lesser known the-
orem. The result showed that when the Perceptron succeeded in fitting
training data, it would also succeed in classifying unseen examples correctly
provided that these were drawn from the same distribution as the training
data. We call this generalization: Finding rules consistent with available data
that apply to instances we have yet to encounter.

By the late 1960s, these ideas from perceptrons had solidified into a
broader subject called pattern recognition that knew most of the concepts
we consider core to machine learning today. In 1939, Wald formalized the
basic problem of classification as one of optimal decision making when
the data is generated by a known probabilistic model. Researchers soon
realized that pattern classification could be achieved using data alone to
guide prediction methods such as perceptrons, nearest neighbor classifiers,
or density estimators. The connections with mathematical optimization
including gradient descent and linear programming also took shape during
the 1960s.

Pattern classification—today more popularly known as supervised
learning—built on statistical tradition in how it formalized the idea of
generalization. We assume observations come from a fixed data generat-
ing process, such as, samples drawn from a fixed distribution. In a first
optimization step, called training, we fit a model to a set of data points
labeled by class membership. In a second step, called testing, we judge
the model by how well it performs on newly generated data from the very
same process.

This notion of generalization as performance on fresh data can seem
mundane. After all, it simply requires the classifier to do, in a sense, more of

5

the same. We require consistent success on the same data generating process
as encountered during training. Yet the seemingly simple question of what
theory underwrites the generalization ability of a model has occupied the
machine learning research community for decades.

Pattern classification, once again

Machine learning as a field, however, is not a straightforward evolution
of the pattern recognition of the 1960s, at least not culturally and not
historically.

After a decade of perceptrons research, a group of influential researchers,
including McCarthy, Minsky, Newell, and Simon put forward a research
program by the name of artificial intelligence. The goal was to create human-
like intelligence in a machine. Although the goal itself was in many ways
not far from the ambitions of connectionists, the group around McCarthy
fancied entirely different formal techniques. Rejecting the numerical pattern
fitting of the connectionist era, the proponents of this new discipline saw
the future in symbolic and logical manipulation of knowledge represented
in formal languages.

Artificial intelligence became the dominant academic discipline to deal
with cognitive capacities of machines within the computer science commu-
nity. Pattern recognition and neural networks research continued, albeit
largely outside artificial intelligence. Indeed, journals on pattern recognition
flourished during the 1970s.

During this time, artificial intelligence research led to a revolution in
expert systems, logic and rule based models that had significant industrial
impact. Expert systems were hard coded and left little room for adapt-
ing to new information. AI researchers interested in such adaptation and
improvement—learning, if you will—formed their own subcommunity, be-
ginning in 1981 with the first International Workshop on Machine Learning.
The early work from this community reflects the logic-based research that
dominated artificial intelligence at the time; the papers read as if of a dif-
ferent field than what we now recognize as machine learning research. It
was not until the late 1980s that machine learning began to look more like
pattern recognition, once again.

Personal computers had made their way from research labs into home
offices across wealthy nations. Internet access, if slow, made email a popular
form of communication among researchers. File transfer over the internet
allowed researchers to share code and datasets more easily.

Machine learning researchers recognized that in order for the discipline
to thrive it needed a way to more rigorously evaluate progress on concrete
tasks. Whereas in the 1950s it had seemed miraculous enough if training

6

errors decreased over time on any non-trivial task, it was clear now that
machine learning needed better benchmarks.

In the late 1980s, the first widely used benchmarks emerged. Then grad-
uate student David Aha created the UCI machine learning repository that
made several datasets widely available via FTP. Aiming to better quantify
the performance of AI systems, the Defense Advanced Research Projects
Agency (DARPA) funded a research program on speech recognition that
led to the creation of the influential TIMIT speech recognition benchmark.

These benchmarks had the data split into two parts, one called training
data, one called testing data. This split elicits the promise that the learning
algorithm must only access the training data when it fits the model. The
testing data is reserved for evaluating the trained model. The research
community can then rank learning algorithms by how well the trained
models perform on the testing data.

Splitting data into training and testing sets was an old practice, but the
idea of reusing such datasets as benchmarks was novel and transformed
machine learning. The dataset-as-benchmark paradigm caught on and became
core to applied machine learning research for decades to come. Indeed,
machine learning benchmarks were at the center of the most recent wave
of progress on deep learning. Chief among them was ImageNet, a large
repository of images, labeled by nouns of objects displayed in the images. A
subset of roughly 1 million images belonging to 1000 different object classes
was the basis of the ImageNet Large Scale Visual Recognition Challenge.
Organized from 2010 until 2017, the competition became a striking showcase
for performance of deep learning methods for image classification.

Increases in computing power and volume of available data were a key
driving factor for progress in the field. But machine learning benchmarks
did more than to provide data. Benchmarks gave researchers a way to
compare results, share ideas, and organize communities. They implicitly
specified a problem description and a minimal interface contract for code.
Benchmarks also became a means of knowledge transfer between industry
and academia.

The most recent wave of machine learning as pattern classification was
so successful, in fact, that it became the new artificial intelligence in the
public narrative of popular media. The technology reached entirely new
levels of commercial significance with companies competing fiercely over
advances in the space.

This new artificial intelligence had done away with the symbolic rea-
soning of the McCarthy era. Instead, the central drivers of progress were
widely regarded as growing datasets, increasing compute resources, and
more benchmarks along with publicly available code to start from. Are
those then the only ingredients needed to secure the sustained success of

7

machine learning in the real world?

Prediction and action

Unknown outcomes often follow patterns found in past observations. But
what do we do with the patterns we find and the predictions we make? Like
Halley proposing his life table for annuity pricing, predictions only become
useful when they are acted upon. But going from patterns and predictions
to successful actions is a delicate task. How can we even anticipate the
effect of a hypothetical action when our actions now influence the data we
observe and value we accrue in the future?

One way to determine the effect of an action is experimentation: try it
out and see what happens. But there’s a lot more we can do if we can model
the situation more carefully. A model of the environment specifies how an
action changes the state of the world, and how in turn this state results in a
gain or loss of utility. We include some aspects of the environment explicitly
as variables in our model. Others we declare exogenous and model as noise
in our system.

The solution of how to take such models and turn them into plans of
actions that maximize expected utility is a mathematical achievement of the
20th century. By and large, such problems can be solved by dynamic program-
ming. Initially formulated by Bellman in 1954, dynamic programming poses
optimization problems where at every time step, we observe data, take an
action, and pay a cost. By chaining these together in time, elaborate plans
can be made that remain optimal under considerable stochastic uncertainty.
These ideas revolutionized aerospace in the 1960s, and are still deployed
in infrastructure planning, supply chain management, and the landing of
SpaceX rockets. Dynamic programming remains one of the most important
algorithmic building blocks in the computer science toolkit.

Planning actions under uncertainty has also always been core to artificial
intelligence research, though initial proposals for sequential decision making
in AI were more inspired by neuroscience than operations research. In 1950-
era AI, the main motivating concept was one of reinforcement learning, which
posited that one should encourage taking actions that were successful in the
past. This reinforcement strategy led to impressive game-playing algorithms
like Samuel’s Checkers Agent circa 1959. Surprisingly, it wasn’t until
the 1990s that researchers realized that reinforcement learning methods
were approximation schemes for dynamic programming. Powered by
this connection, a mix of researchers from AI and operations research
applied neural nets and function approximation to simplify the approximate
solution of dynamic programming problems. The subsequent 30 years have

8

led to impressive advances in reinforcement learning and approximate
dynamic programming techniques for playing games, such as Go, and in
powering dexterous manipulation in robotic systems.

Central to the reinforcement learning paradigm is understanding how
to balance learning about an environment and acting on it. This balance
is a non-trivial problem even in the case where actions do not lead to a
change in state. In the context of machine learning, experimentation in the
form of taking an action and observing its effect often goes by the name
exploration. Exploration reveals the payoff of an action, but it comes at the
expense of not taking an action that we already knew had a decent payoff.
Thus, there is an inherent tradeoff between exploration and exploitation of
previous actions. Though in theory, the optimal balance can be computed by
dynamic programming, it is more common to employ techniques from bandit
optimization that are simple and effective strategies to balance exploration
and exploitation.

Not limited to experimentation, causality is a comprehensive concep-
tual framework to reason about the effect of actions. Causal inference,
in principle, allows us to estimate the effect of hypothetical actions from
observational data. A growing technical repertoire of causal inference is
taking various sciences by storm as witnessed in epidemiology, political
science, policy, climate, and development economics.

There are good reasons that many see causality as a promising avenue
for making machine learning methods more robust and reliable. Current
state-of-the-art predictive models remain surprisingly fragile to changes
in the data. Even small natural variations in a data-generating process
can significantly deteriorate performance. There is hope that tools from
causality could lead to machine learning methods that perform better under
changing conditions.

However, causal inference is no panacea. There are no causal insights
without making substantive judgments about the problem that are not
verifiable from data alone. The reliance on hard earned substantive domain
knowledge stands in contrast with the nature of recent advances in machine
learning that largely did without—and that was the point.

Chapter notes

Halley’s life table has been studied and discussed extensively; for an entry
point, see recent articles by Bellhouse2 and Ciecka,3 or the article by Pearson
and Pearson.4

Halley was not the first to create a life table. In fact, what Halley created
is more accurately called a population table. Instead, John Grount deserves

9

credit for the first life table in 1662 based on mortality records from London.
Considered to be the founder of demography and an early epidemiologist,
Grount’s work was in many ways more detailed than Halley’s fleeting
engagement with Breslau’s population. However, to Grount’s disadvantage
the mortality records released in London at the time did not include the age
of the deceased, thus complicating the work significantly.

Mathematician de Moivre picked up Halley’s life table in 1725 and
sharpened the mathematical rigor of Halley’s idea. A few years earlier, de
Moivre had published the first textbook on probability theory called “The
Doctrine of Chances: A Method of Calculating the Probability of Events in
Play”. Although de Moivre lacked the notion of a probability distribution,
his book introduced an expression resembling the normal distribution as
an approximation to the Binomial distribution, what was in effect the first
central limit theorem. The time of Halley coincides with the emergence of
probability. Hacking’s book provides much additional context, particularly
relevant are Chapter 12 and 13.5

For the history of feedback, control, and computing before cybernetics,
see the excellent text by Mindell.6 For more on the cybernetics era itself,
see the books by Kline7 and Heims.8 See Beninger9 for how the concepts of
control and communication and the technology from that era lead to the
modern information society.

The prologue from the 1988 edition of Perceptrons by Minsky and Papert
presents a helpful historical perspective. The recent 2017 reprint of the same
book contains additional context and commentary in a foreword by Léon
Bottou.

Much of the first International Workshop on Machine Learning was
compiled in an edited volume, which summarizes the motivations and
perspectives that seeded the field.10 Langley’s article provides helpful
context on the state of evaluation in machine learning in the 1980s and
how the desire for better metrics led to a renewed emphasis on pattern
recognition.11 Similar calls for better evaluation motivated the speech
transcription program at DARPA, leading to the TIMIT dataset, arguably
the first machine learning benchmark dataset.12, 13, 14

It is worth noting that the Parallel Distributed Processing Research Group
led by Rummelhart and McLeland actively worked on neural networks dur-
ing the 1980s and made extensive use of the rediscovered back-propagation
algorithm, an efficient algorithm for computing partial derivatives of a
circuit.15

A recent article by Jordan provides an insightful perspective on how the
field came about and what challenges it still faces.16

10

2
Fundamentals of prediction

Prediction is the art and science of leveraging patterns found in natural and
social processes to conjecture about uncertain events. We use the word
prediction broadly to refer to statements about things we don’t know for
sure yet, including but not limited to the outcome of future events.

Machine learning is to a large extent the study of algorithmic prediction.
Before we can dive into machine learning, we should familiarize ourselves
with prediction. Starting from first principles, we will motivate the goals of
prediction before building up to a statistical theory of prediction.

We can formalize the goal of prediction problems by assuming a popu-
lation of N instances with a variety of attributes. We associate with each
instance two variables, denoted X and Y. The goal of prediction is to
conjecture a plausible value for Y after observing X alone. But when is a
prediction good? For that, we must quantify some notion of the quality of
prediction and aim to optimize that quantity.

To start, suppose that for each variable X we make a deterministic
prediction f (X) by means of some prediction function f . A natural goal is
to find a function f that makes the fewest number of incorrect predictions,
where f (X) 6= Y, across the population. We can think of this function as a
computer program that reads X as input and outputs a prediction f (X) that
we hope matches the value Y. For a fixed prediction function, f , we can
sum up all of the errors made on the population. Dividing by the size of
the population, we observe the average (or mean) error rate of the function.

Minimizing errors

Let’s understand how we can find a prediction function that makes as few
errors as possible on a given population in the case of binary prediction,
where the variable Y has only two values.

Consider a population of Abalone, a type of marine snail with colorful
shells featuring a varying number of rings. Our goal is to predict the sex,

11

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
Number of rings

0

100

200
N

um
be

r
of

in
st

an
ce

s

Abalone sea snails

male

female

Figure 2: Predicting the sex of Abalone sea snails

male or female, of the Abalone from the number of rings on the shell.
We can tabulate the population of Abalone by counting for each possible
number of rings, the number of male and female instances in the population.

From this way of presenting the population, it is not hard to compute
the predictor that makes the fewest mistakes. For each value on the X-axis,
we predict “female” if the number of female instances with this X-value is
larger than the number of male instances. Otherwise, we predict “male” for
the given X-value. For example, there’s a majority of male Abalone with
seven rings on the shell. Hence, it makes sense to predict “male” when we
see seven rings on a shell. Scrutinizing the figure a bit further, we can see
that the best possible predictor is a threshold function that returns “male”
whenever the number of rings is at most 8, and “female” whenever the
number of rings is greater or equal to 9.

The number of mistakes our predictor makes is still significant. After
all, most counts are pretty close to each other. But it’s better than random
guessing. It uses whatever there is that we can say from the number of
rings about the sex of an Abalone snail, which is just not much.

What we constructed here is called the minimum error rule. It generalizes
to multiple attributes. If we had measured not only the number of rings,
but also the length of the shell, we would repeat the analogous counting
exercise over the two-dimensional space of all possible values of the two
attributes.

The minimum error rule is intuitive and simple, but computing the
rule exactly requires examining the entire population. Tracking down
every instance of a population is not only intractable. It also defeats the

12

purpose of prediction in almost any practical scenario. If we had a way
of enumerating the X and Y value of all instances in a population, the
prediction problem would be solved. Given an instance X we could simply
look up the corresponding value of Y from our records.

What’s missing so far is a way of doing prediction that does not require
us to enumerate the entire population of interest.

Modeling knowledge

Fundamentally, what makes prediction without enumeration possible is
knowledge about the population. Human beings organize and represent
knowledge in different ways. In this chapter, we will explore in depth the
consequences of one particular way to represent populations, specifically,
as probability distributions.

The assumption we make is that we have knowledge of a probability
distribution p(x, y) over pairs of X and Y values. We assume that this
distribution conceptualizes the “typical instance” in a population. If we
were to select an instance uniformly at random from the population, what
relations between its attributes might we expect? We expect that a uniform
sample from our population would be the same as a sample from p(x, y).
We call such a distribution a statistical model or simply model of a population.
The word model emphasizes that the distribution isn’t the population itself.
It is, in a sense, a sketch of a population that we use to make predictions.

Let’s revisit our Abalone example in probabilistic form. Assume we
know the distribution of the number of rings of male and female Abalone,
as illustrated in the figure.

Both follow a skewed normal distribution described by three parameters
each, a location, a scale, and a skew parameter. Knowing the distribution is
to assume that we know these parameters. Although the specific numbers
won’t matter for our example, let’s spell them out for concreteness. The
distribution for male Abalone has location 7.4, scale 4.48, and skew 3.12,
whereas the distribution for female Abalone has location 7.63, scale 4.67,
and skew 4.34. To complete the specification of the joint distribution over X
and Y, we need to determine the relative proportion of males and females.
Assume for this example that male and female Abalone are equally likely.

Representing the population this way, it makes sense to predict “male”
whenever the probability density for male Abalone is larger than that for
female Abalone. By inspecting the plot we can see that the density is
higher for male snails up until 8 rings at which point it is larger for female
instances. We can see that the predictor we derive from this representation
is the same threshold rule that we had before.

13

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
Number of rings

0.00

0.05

0.10

0.15

Pr
ob

ab
ili

ty
de

ns
it

y

Abalone sea snails

male

female

Figure 3: Representing Abalone population as a distribution

We arrived at the same result without the need to enumerate and count
all possible instances in the population. Instead, we recovered the minimum
error rule from knowing only 7 parameters, three for each conditional
distribution, and one for the balance of the two classes.

Modeling populations as probability distributions is an important step
in making prediction algorithmic. It allows us to represent populations
succinctly, and gives us the means to make predictions about instances we
haven’t encountered.

Subsequent chapters extend these fundamentals of prediction to the
case where we don’t know the exact probability distribution, but only have
a random sample drawn from the distribution. It is tempting to think
about machine learning as being all about that, namely what we do with
a sample of data drawn from a distribution. However, as we learn in this
chapter, many fundamentally important questions arise even if we have full
knowledge of the population.

Prediction from statistical models

Let’s proceed to formalize prediction assuming we have full knowledge of
a statistical model of the population. Our first goal is to formally develop
the minimum error rule in greater generality.

We begin with binary prediction where we suppose Y has two alternative
values, 0 and 1. Given some measured information X, our goal is to
conjecture whether Y equals zero or one.

Throughout we assume that X and Y are random variables drawn from

14

a joint probability distribution. It is convenient both mathematically and
conceptually to specify the joint distribution as follows. We assume that Y
has a priori (or prior) probabilities:

p0 = P[Y = 0] , p1 = P[Y = 1]

That is, the we assume we know the proportion of instances with Y = 1
and Y = 0 in the population. We’ll always model available information
as being a random vector X with support in Rd. Its distribution depends
on whether Y is equal to zero or one. In other words, there are two
different statistical models for the data, one for each value of Y. These
models are the conditional probability densities of X given a value y for Y,
denoted p(x | Y = y). This density function is often called a generative model
or likelihood function for each scenario.

Example: signal versus noise

For a simple example with more mathematical formalism, suppose that
when Y = 0 we observe a scalar X = ω where ω is unit-variance, zero
mean Gaussian noise ω ∼ N (0, 1). Recall that the Gaussian distribution of

mean µ and variance σ2 is given by the density 1
σ
√

2π
e−

1
2(

x−µ
σ)

2

.
Suppose when Y = 1, we would observe X = s + ω for some scalar s.

That is, the conditional densities are

p(x | Y = 0) = N (0, 1) ,
p(x | Y = 1) = N (s, 1) .

The larger the shift s is, the easier it is to predict whether Y = 0 or Y = 1.
For example, suppose s = 10 and we observed X = 11. If we had Y = 0, the
probability that the observation is greater than 10 is on the order of 10−23,
and hence we’d likely think we’re in the alternative scenario where Y = 1.
However, if s were very close to zero, distinguishing between the two
alternatives is rather challenging. We can think of a small difference s that
we’re trying to detect as a needle in a haystack.

Prediction via optimization

Our core approach to all statistical decision making will be to formulate an
appropriate optimization problem for which the decision rule is the optimal
solution. That is, we will optimize over algorithms, searching for functions
that map data to decisions and predictions. We will define an appropriate
notion of the cost associated to each decision, and attempt to construct

15

−5.0 −2.5 0.0 2.5 5.0

0.0

0.1

0.2

0.3

0.4
Overlapping gaussians

H0

H1

−10 −5 0 5 10

0.0

0.1

0.2

0.3

0.4
Well-separated gaussians

H0

H1

Figure 4: Illustration of shifted Gaussians

decision rules that minimize the expected value of this cost. As we will see,
choosing this optimization framework has many immediate consequences.

Predictors and labels

A predictor is a function Ŷ(x) that maps an input x to a prediction ŷ = Ŷ(x).
The prediction ŷ is also called a label for the point x. The target variable Y
can be both real valued or discrete. When Y is a discrete random variable,
each different value it can take on is called a class of the prediction problem.

To ease notation, we take the liberty to write Ŷ as a shorthand for the
random variable Ŷ(X) that we get by applying the prediction function Ŷ to
the random variable X.

The most common case we consider through the book is binary predic-
tion, where we have two classes, 0 and 1. Sometimes it’s mathematically
convenient to instead work with the numbers −1 and 1 for the two classes.

In most cases we consider, labels are scalars that are either discrete
or real-valued. Sometimes it also makes sense to consider vector-valued
predictions and target variables.

The creation and encoding of suitable labels for a prediction problem
is an important step in applying machine learning to real world problems.
We will return to it multiple times.

Loss functions and risk

The final ingredient in our formal setup is a loss function which generalizes
the notion of an error that we defined as a mismatch between prediction
and target value.

16

A loss function takes two inputs, ŷ and y, and returns a real num-
ber loss(ŷ, y) that we interpret as a quantified loss for predicting ŷ when
the target is y. A loss could be negative in which case we think of it as a
reward.

A prediction error corresponds to the loss function loss(ŷ, y) = 1{ŷ 6= y}
that indicates disagreement between its two inputs. Loss functions give us
modeling flexibility that will become crucial as we apply this formal setup
throughout this book.

An important notion is the expected loss of a predictor taken over a
population. This construct is called risk.

Definition 1. We define the risk associated with Ŷ to be

R[Ŷ] := E[loss(Ŷ(X), Y)] .

Here, the expectation is taken jointly over X and Y.

Now that we defined risk, our goal is to determine which decision rule
minimizes risk. Let’s get a sense for how we might go about this.

In order to minimize risk, theoretically speaking, we need to solve an
infinite dimensional optimization problem over binary-valued functions. That
is, for every x, we need to find a binary assignment. Fortunately, the infinite
dimension here turns out to not be a problem analytically once we make
use of the law of iterated expectation.

Lemma 1. We claim that the optimal predictor is given by

Ŷ(x) = 1

{
P[Y = 1 | X = x] ≥ loss(1, 0)− loss(0, 0)

loss(0, 1)− loss(1, 1) P[Y = 0 | X = x]
}

.

This rule corresponds to the intuitive rule we derived when thinking
about how to make predictions over the population. For a fixed value of
the data X = x, we compare the frequency of which Y = 1 occurs to which
Y = 0 occurs. If this frequency exceeds some threshold that is defined by
our loss function, then we set Ŷ(x) = 1. Otherwise, we set Ŷ(x) = 0.

Proof. To see why this is rule is optimal, we make use of the law of iterated
expectation:

E[loss(Ŷ(X), Y)] = E

[
E

[
loss(Ŷ(X), Y) | X

]]
.

Here, the outer expectation is over a random draw of X and the inner
expectation samples Y conditional on X. Since there are no constraints on
the predictor Ŷ, we can minimize the expression by minimizing the inner
expectation independently for each possible setting that X can assume.

17

Indeed, for a fixed value x, we can expand the expected loss for each of
the two possible predictions:

E[loss(0, Y) | X = x] = loss(0, 0)P[Y = 0 | X = x] + loss(0, 1)P[Y = 1 | X = x]
E[loss(1, Y) | X = x] = loss(1, 0)P[Y = 0 | X = x] + loss(1, 1)P[Y = 1 | X = x] .

The optimal assignment for this x is to set Ŷ(x) = 1 whenever the sec-
ond expression is smaller than the first. Writing out this inequality and
rearranging gives us the rule specified in the lemma.

Probabilities of the form P[Y = y | X = x], as they appeared in the
lemma, are called posterior probability.

We can relate them to the likelihood function via Bayes rule:

P[Y = y | X = x] =
p(x | Y = y)py

p(x)
,

where p(x) is a density function for the marginal distribution of X.
When we use posterior probabilities, we can rewrite the optimal predic-

tor as

Ŷ(x) = 1

{
p(x | Y = 1)
p(x | Y = 0)

≥ p0(loss(1, 0)− loss(0, 0))
p1(loss(0, 1)− loss(1, 1))

}
.

This rule is an example of a likelihood ratio test.

Definition 2. The likelihood ratio is the ratio of the likelihood functions:

L(x) :=
p(x | Y = 1)
p(x | Y = 0)

A likelihood ratio test (LRT) is a predictor of the form

Ŷ(x) = 1{L(x) ≥ η}

for some scalar threshold η > 0.

If we denote the optimal threshold value

η =
p0(loss(1, 0)− loss(0, 0))
p1(loss(0, 1)− loss(1, 1))

, (1)

then the predictor that minimizes the risk is the likelihood ratio test

Ŷ(x) = 1{L(x) ≥ η} .

18

A LRT naturally partitions the sample space in two regions:

X0 = {x ∈ X : L(x) ≤ η}
X1 = {x ∈ X : L(x) > η} .

The sample space X then becomes the disjoint union of X0 and X1. Since
we only need to identify which set x belongs to, we can use any function
h : X → R which gives rise to the same threshold rule. As long as h(x) ≤
t whenever L(x) ≤ η and vice versa, these functions give rise to the
same partition into X0 and X1. So, for example, if g is any monotonically
increasing function, then the predictor

Ŷg(x) = 1{g(L(x)) ≥ g(η)}

is equivalent to using Ŷ(x). In particular, it’s popular to use the logarithmic
predictor

Ŷlog(x) = 1{log p(x | Y = 1)− log p(x | Y = 0) ≥ log(η)} ,

as it is often more convenient or numerically stable to work with logarithms
of likelihoods.

This discussion shows that there are an infinite number of functions which
give rise to the same binary predictor. Hence, we don’t need to know the
conditional densities exactly and can still compute the optimal predictor.
For example, suppose the true partitioning of the real line under an LRT is

X0 = {x : x ≥ 0} and X1 = {x : x < 0} .

Setting the threshold to t = 0, the functions h(x) = x or h(x) = x3 give the
same predictor, as does any odd function which is positive on the right half
line.

Example: needle in a haystack revisited

Let’s return to our needle in a haystack example with

p(X | Y = 0) = N (0, 1) ,
p(X | Y = 1) = N (s, 1) ,

and assume that the prior probability of Y = 1 is very small, say, p1 = 10−6.
Suppose that if we declare Ŷ = 0, we do not pay a cost. If we declare Ŷ = 1
but are wrong, we incur a cost of 100. But if we guess Ŷ = 1 and it
is actually true that Y = 1, we actually gain a reward of 1, 000, 000. That
is loss(0, 0) = 0, loss(0, 1) = 0, loss(1, 0) = 100, and loss(1, 1) = −1, 000, 000 .

19

What is the LRT for this problem? Here, it’s considerably easier to work
with logarithms:

log(η) = log
(
(1− 10−6) · 100

10−6 · 106

)
≈ 4.61

Now,

log p(x | Y = 1)− log p(x | Y = 0) = −1
2
(x− s)2 +

1
2

x2 = sx− 1
2

s2

Hence, the optimal predictor is to declare

Ŷ = 1
{

sx > 1
2 s2 + log(η)

}
.

The optimal rule here is linear. Moreover, the rule divides the space into
two open intervals. While the entire real line lies in the union of these two
intervals, it is exceptionally unlikely to ever see an x larger than |s|+ 5.
Hence, even if our predictor were incorrect in these regions, the risk would
still be nearly optimal as these terms have almost no bearing on our expected
risk!

Maximum a posteriori and maximum likelihood

A folk theorem of statistical decision theory states that essentially all optimal
rules are equivalent to likelihood ratio tests. While this isn’t always true,
many important prediction rules end up being equivalent to LRTs. Shortly,
we’ll see an optimization problem that speaks to the power of LRTs. But
before that, we can already show that the well known maximum likelihood
and maximum a posteriori predictors are both LRTs.

The expected error of a predictor is the expected number of times
we declare Ŷ = 0 (resp. Ŷ = 1) when Ŷ = 1 (resp. Ŷ = 0) is
true. Minimizing the error is equivalent to minimizing the risk with
cost loss(0, 0) = loss(1, 1) = 0, loss(1, 0) = loss(0, 1) = 1. The optimum
predictor is hence a likelihood ratio test. In particular,

Ŷ(x) = 1
{
L(x) ≥ p0

p1

}
.

Using Bayes rule, one can see that this rule is equivalent to

Ŷ(x) = arg max
y∈{0,1}

P[Y = y | X = x] .

Recall that the expression P[Y = y | X = x] is called the posterior probabil-
ity of Y = y given X = x. And this rule is hence referred to as the maximum
a posteriori (MAP) rule.

20

As we discussed above, the expression p(x | Y = y) is called the likelihood
of the point x given the class Y = y. A maximum likelihood rule would set

Ŷ(x) = arg max
y

p(x | Y = y) .

This is completely equivalent to the LRT when p0 = p1 and the costs
are loss(0, 0) = loss(1, 1) = 0, loss(1, 0) = loss(0, 1) = 1. Hence, the maxi-
mum likelihood rule is equivalent to the MAP rule with a uniform prior on
the labels.

That both of these popular rules ended up reducing to LRTs is no
accident. In what follows, we will show that LRTs are almost always the
optimal solution of optimization-driven decision theory.

Types of errors and successes

Let Ŷ(x) denote any predictor mapping into {0, 1}. Binary predictions can
be right or wrong in four different ways summarized by the confusion table.

Table 1: Confusion table

Y = 0 Y = 1

Ŷ = 0 true negative false negative
Ŷ = 1 false positive true positive

Taking expected values over the populations give us four corresponding
rates that are characteristics of a predictor.

1. True Positive Rate: TPR = P[Ŷ(X) = 1 | Y = 1]. Also known as
power, sensitivity, probability of detection, or recall.

2. False Negative Rate: FNR = 1− TPR. Also known as type II error or
probability of missed detection.

3. False Positive Rate: FPR = P[Ŷ(X) = 1 | Y = 0]. Also known as size
or type I error or probability of false alarm.

4. True Negative Rate TNR = 1 − FPR, the probability of declaring
Ŷ = 0 given Y = 0. This is also known as specificity.

There are other quantities that are also of interest in statistics and
machine learning:

1. Precision: P[Y = 1 | Ŷ(X) = 1]. This is equal to (p1TPR)/(p0FPR +
p1TPR).

21

2. F1-score: F1 is the harmonic mean of precision and recall. We can
write this as

F1 =
2TPR

1 + TPR + p0
p1

FPR

3. False discovery rate: False discovery rate (FDR) is equal to the ex-
pected ratio of the number of false positives to the total number of
positives.

In the case where both labels are equally likely, precision, F1, and FDR
are also only functions of FPR and TPR. However, these quantities explicitly
account for class imbalances: when there is a significant skew between p0
and p1, such measures are often preferred.

TPR and FPR are competing objectives. We’d like TPR as large as
possible and FPR as small as possible.

We can think of risk minimization as optimizing a balance between TPR
and FPR:

R[Ŷ] := E[loss(Ŷ(X), Y)] = αFPR− βTPR + γ ,

where α and β are nonnegative and γ is some constant. For all such α, β,
and γ, the risk-minimizing predictor is an LRT.

Other cost functions might try to balance TPR versus FPR in other ways.
Which pairs of (FPR, TPR) are achievable?

ROC curves

True and false positive rate lead to another fundamental notion, called the
the receiver operating characteristic (ROC) curve.

The ROC curve is a property of the joint distribution (X, Y) and shows
for every possible value α = [0, 1] the best possible true positive rate that
we can hope to achieve with any predictor that has false positive rate α.
As a result the ROC curve is a curve in the FPR-TPR plane. It traces
out the maximal TPR for any given FPR. Clearly the ROC curve contains
values (0, 0) and (1, 1), which are achieved by constant predictors that either
reject or accept all inputs.

We will now show, in a celebrated result by Neyman and Pearson, that
the ROC curve is given by varying the threshold in the likelihood ratio test
from negative to positive infinity.

The Neyman-Pearson Lemma

The Neyman-Pearson Lemma, a fundamental lemma of decision theory,
will be an important tool for us to establish three important facts. First, it

22

0.0 0.5 1.0
False positive rate

0.0

0.5

1.0

Tr
ue

po
si

ti
ve

ra
te

ROC curve

Figure 5: Example of an ROC curve

will be a useful tool for understanding the geometric properties of ROC
curves. Second, it will demonstrate another important instance where an
optimal predictor is a likelihood ratio test. Third, it introduces the notion of
probabilistic predictors.

Suppose we want to maximize true positive rate subject to an upper
bound on the false positive rate. That is, we aim to solve the optimization
problem:

maximize TPR
subject to FPR ≤ α

Let’s optimize over probabilistic predictors. A probabilistic predictor Q
returns 1 with probability Q(x) and 0 with probability 1−Q(x). With such
rules, we can rewrite our optimization problem as:

maximizeQ E[Q(X) | Y = 1]
subject to E[Q(X) | Y = 0] ≤ α

∀x : Q(x) ∈ [0, 1]

Lemma 2. Neyman-Pearson Lemma. Suppose the likelihood functions p(x|y)
are continuous. Then the optimal probabilistic predictor that maximizes TPR with
an upper bound on FPR is a deterministic likelihood ratio test.

Even in this constrained setup, allowing for more powerful probabilistic
rules, we can’t escape likelihood ratio tests. The Neyman-Pearson Lemma
has many interesting consequences in its own right that we will discuss
momentarily. But first, let’s see why the lemma is true.

23

The key insight is that for any LRT, we can find a loss function for which
it is optimal. We will prove the lemma by constructing such a problem, and
using the associated condition of optimality.

Proof. Let η be the threshold for an LRT such that the predictor

Qη(x) = 1{L(x) > η}

has FPR = α. Such an LRT exists because we assumed our likelihoods were
continuous. Let β denote the TPR of Qη.

We claim that Qη is optimal for the risk minimization problem corre-
sponding to the loss function

loss(1, 0) = ηp1
p0

, loss(0, 1) = 1, loss(1, 1) = 0, loss(0, 0) = 0 .

Indeed, recalling Equation 1, the risk minimizer for this loss function
corresponds to a likelihood ratio test with threshold value

p0(loss(1, 0)− loss(0, 0))
p1(loss(0, 1)− loss(1, 1))

=
p0loss(1, 0)
p1loss(0, 1)

= η .

Moreover, under this loss function, the risk of a predictor Q equals

R[Q] = p0FPR(Q)loss(1, 0) + p1(1− TPR(Q))loss(0, 1)
= p1ηFPR(Q) + p1(1− TPR(Q)) .

Now let Q be any other predictor with FPR(Q) ≤ α. We have by the
optimality of Qη that

p1ηα + p1(1− β) ≤ p1ηFPR(Q) + p1(1− TPR(Q))

≤ p1ηα + p1(1− TPR(Q)) ,

which implies TPR(Q) ≤ β. This in turn means that Qη maximizes TPR for
all rules with FPR ≤ α, proving the lemma.

Properties of ROC curves

A specific randomized predictor that is useful for analysis combines two
other rules. Suppose predictor one yields (FPR(1), TPR(1)) and the second
rule achieves (FPR(2), TPR(2)). If we flip a biased coin and use rule one with
probability p and rule 2 with probability 1− p, then this yields a random-
ized predictor with (FPR, TPR) = (pFPR(1) + (1− p)FPR(2), pTPR(1) + (1−
p)TPR(2)). Using this rule lets us prove several properties of ROC curves.

24

Proposition 1. The points (0, 0) and (1, 1) are on the ROC curve.

Proof. This proposition follows because the point (0, 0) is achieved when the
threshold η = ∞ in the likelihood ratio test, corresponding to the constant 0
predictor. The point (1, 1) is achieved when η = 0, corresponding to the
constant 1 predictor.

The Neyman-Pearson Lemma gives us a few more useful properties.

Proposition 2. The ROC must lie above the main diagonal.

Proof. To see why this proposition is true, fix some α > 0. Using a ran-
domized rule, we can achieve a predictor with TPR = FPR = α. But the
Neyman-Pearson LRT with FPR constrained to be less than or equal to α
achieves true positive rate greater than or equal to the randomized rule.

Proposition 3. The ROC curve is concave.

Proof. Suppose (FPR(η1), TPR(η1)) and (FPR(η2), TPR(η2)) are achievable.
Then

(tFPR(η1) + (1− t)FPR(η2), tTPR(η1) + (1− t)TPR(η2))

is achievable by a randomized test. Fixing FPR ≤ tFPR(η1) + (1 −
t)FPR(η2), we see that the optimal Neyman-Pearson LRT achieves TPR ≥
TPR(η1) + (1− t)TPR(η2).

Example: the needle one more time

Consider again the needle in a haystack example, where p(x | Y = 0) =
N (0, σ2) and p(x | Y = 1) = N (s, σ2) with s a positive scalar. The optimal

predictor is to declare Ŷ = 1 when X is greater than γ := s
2 +

σ2 log η
s . Hence

we have

TPR =
∫ ∞

γ
p(x | Y = 1)dx = 1

2 erfc
(

γ− s√
2σ

)
FPR =

∫ ∞

γ
p(x | Y = 0)dx = 1

2 erfc
(

γ√
2σ

)
.

For fixed s and σ, the ROC curve (FPR(γ), TPR(γ)) only depends on
the signal to noise ratio (SNR), s/σ. For small SNR, the ROC curve is close to
the FPR = TPR line. For large SNR, TPR approaches 1 for all values of FPR.

25

0.0 0.2 0.4 0.6 0.8 1.0
FPR

0.0

0.2

0.4

0.6

0.8

1.0

TP
R SNR = 0.25

SNR = 0.5
SNR = 1
SNR = 2
SNR = 4

Figure 6: The ROC curves for various signal to noise ratios in the needle in
the haystack problem.

Area under the ROC curve

Oftentimes in information retrieval and machine learning, the term ROC
curve is overloaded to describe the achievable FPR-TPR pairs that we get
by varying the threshold t in any predictor Ŷ(x) = 1{R(x) > t}. Note such
curves must lie below the ROC curves that are traced out by the optimal
likelihood ratio test, but may approximate the true ROC curves in many
cases.

A popular summary statistic for evaluating the quality of a decision
function is the area under its associated ROC curve. This is commonly
abbreviated as AUC. In the ROC curve plotted in the previous section, as
the SNR increases, the AUC increases. However, AUC does not tell the
entire story. Here we plot two ROC curves with the same AUC.

If we constrain FPR to be less than 10%, for the blue curve, TPR can be
as high as 80% whereas it can only reach 50% for the red. AUC should
be always viewed skeptically: the shape of an ROC curve is always more
informative than any individual number.

Decisions that discriminate

The purpose of prediction is almost always decision making. We build
predictors to guide our decision making by acting on our predictions. Many

26

0.0 0.2 0.4 0.6 0.8 1.0
FPR

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

Figure 7: Two ROC curves with the same AUC. Note that if we constrain
FPR to be less than 10%, for the blue curve, TPR can be as high as 80%
whereas it can only reach 50% for the red.

decisions entail a life changing event for the individual. The decision could
grant access to a major opportunity, such as college admission, or deny
access to a vital resource, such as a social benefit.

Binary decision rules always draw a boundary between one group in
the population and its complement. Some are labeled accept, others are
labeled reject. When decisions have serious consequences for the individual,
however, this decision boundary is not just a technical artifact. Rather it has
moral and legal significance.

The decision maker often has access to data that encode an individual’s
status in socially salient groups relating to race, ethnicity, gender, religion,
or disability status. These and other categories that have been used as the
basis of adverse treatment, oppression, and denial of opportunity in the
past and in many cases to this day.

Some see formal or algorithmic decision making as a neutral mathemati-
cal tool. However, numerous scholars have shown how formal models can
perpetuate existing inequities and cause harm. In her book on this topic,
Ruha Benjamin warns of

the employment of new technologies that reflect and reproduce
existing inequities but that are promoted and perceived as more
objective or progressive than the discriminatory systems of a
previous era.17

27

Even though the problems of inequality and injustice are much broader
than one of formal decisions, we already encounter an important and
challenging facet within the narrow formal setup of this chapter. Specifically,
we are concerned with decision rules that discriminate in the sense of creating
an unjustified basis of differentiation between individuals.

A concrete example is helpful. Suppose we want to accept or reject
individuals for a job. Suppose we have a perfect estimate of the number of
hours an individual is going to work in the next 5 years. We decide that
this a reasonable measure of productivity and so we accept every applicant
where this number exceeds a certain threshold. On the face of it, our rule
might seem neutral. However, on closer reflection, we realize that this
decision rule systematically disadvantages individuals who are more likely
than others to make use of their parental leave employment benefit that
our hypothetical company offers. We are faced with a conundrum. On
the one hand, we trust our estimate of productivity. On the other hand,
we consider taking parental leave morally irrelevant to the decision we’re
making. It should not be a disadvantage to the applicant. After all that is
precisely the reason why the company is offering a parental leave benefit in
the first place.

The simple example shows that statistical accuracy alone is no safeguard
against discriminatory decisions. It also shows that ignoring sensitive at-
tributes is no safeguard either. So what then is discrimination and how can we
avoid it? This question has occupied scholars from numerous disciplines for
decades. There is no simple answer. Before we go into attempts to formalize
discrimination in our statistical decision making setting, it is helpful to take
a step back and reflect on what the law says.

Legal background in the United States

The legal frameworks governing decision making differ from country to
country, and from one domain to another. We take a glimpse at the situation
in the United States, bearing in mind that our description is incomplete and
does not transfer to other countries.

Discrimination is not a general concept. It is concerned with socially
salient categories that have served as the basis for unjustified and systemat-
ically adverse treatment in the past. United States law recognizes certain
protected categories including race, sex (which extends to sexual orientation),
religion, disability status, and place of birth.

Further, discrimination is a domain specific concept concerned with
important opportunities that affect people’s lives. Regulated domains
include credit (Equal Credit Opportunity Act), education (Civil Rights Act
of 1964; Education Amendments of 1972), employment (Civil Rights Act of

28

1964), housing (Fair Housing Act), and public accommodation (Civil Rights
Act of 1964). Particularly relevant to machine learning practitioners is the
fact that the scope of these regulations extends to marketing and advertising
within these domains. An ad for a credit card, for example, allocates access
to credit and would therefore fall into the credit domain.

There are different legal frameworks available to a plaintiff that brings
forward a case of discrimination. One is called disparate treatment, the other
is disparate impact. Both capture different forms of discrimination. Disparate
treatment is about purposeful consideration of group membership with the
intention of discrimination. Disparate impact is about unjustified harm,
possibly through indirect mechanisms. Whereas disparate treatment is
about procedural fairness, disparate impact is more about distributive justice.

It’s worth noting that anti-discrimination law does not reflect one over-
arching moral theory. Pieces of legislation often came in response to civil
rights movements, each hard fought through decades of activism.

Unfortunately, these legal frameworks don’t give us a formal definition
that we could directly apply. In fact, there is some well-recognized tension
between the two doctrines.

Formal non-discrimination criteria

The idea of formal non-discrimination (or fairness) criteria goes back to
pioneering work of Anne Cleary and other researchers in the educational
testing community of the 1960s.18

The main idea is to introduce a discrete random variable A that encodes
membership status in one or multiple protected classes. Formally, this
random variable lives in the same probability space as the other covariates X,
the decision Ŷ = 1{R > t} in terms of a score R, and the outcome Y. The
random variable A might coincide with one of the features in X or correlate
strongly with some combination of them.

Broadly speaking, different statistical fairness criteria all equalize some
group-dependent statistical quantity across groups defined by the different
settings of A. For example, we could ask to equalize acceptance rates across
all groups. This corresponds to imposing the constraint for all groups a
and b:

P[Ŷ = 1 | A = a] = P[Ŷ = 1 | A = b]

Researchers have proposed dozens of different criteria, each trying to
capture different intuitions about what is fair. Simplifying the landscape of
fairness criteria, we can say that there are essentially three fundamentally
different ones of particular significance:

29

• Acceptance rate P[Ŷ = 1]
• Error rates P[Ŷ = 0 | Y = 1] and P[Ŷ = 1 | Y = 0]
• Outcome frequency given score value P[Y = 1 | R = r]

The meaning of the first two as a formal matter is clear given what we
already covered. The third criterion needs a bit more motivation. A useful
property of score functions is calibration which asserts that P[Y = 1 | R =
r] = r for all score values r. In words, we can interpret a score value r as the
propensity of positive outcomes among instances assigned the score value r.
What the third criterion says is closely related. We ask that the score values
have the same meaning in each group. That is, instances labeled r in one
group are equally likely to be positive instances as those scored r in any
other group.

The three criteria can be generalized and simplified using three different
conditional independence statements.

Table 2: Non-discrimination criteria

Independence Separation Sufficiency

R ⊥ A R ⊥ A | Y Y ⊥ A | R

Each of these applies not only to binary prediction, but any set of
random variables where the independence statement holds. It’s not hard to
see that independence implies equality of acceptance rates across groups.
Separation implies equality of error rates across groups. And sufficiency
implies that all groups have the same rate of positive outcomes given a
score value.19

Researchers have shown that any two of the three criteria are mutually
exclusive except in special cases. That means, generally speaking, imposing
one criterion forgoes the other two.20, 21

Although these formal criteria are easy to state and arguably natural in
the language of decision theory, their merit as measures of discrimination
has been subject of an ongoing debate.

Merits and limitations of a narrow statistical perspective

The tension between these criteria played out in a public debate around the
use of risk scores to predict recidivism in pre-trial detention decisions.

There’s a risk score, called COMPAS, used by many jurisdictions in the
United States to assess risk of recidivism in pre-trial bail decisions. Recidivism
refers to a person’s relapse into criminal behavior. In the United States, a
defendant may either be detained or released on bail prior to the trial in

30

court depending on various factors. Judges may detain defendants in part
based on this score.

Investigative journalists at ProPublica found that Black defendants face
a higher false positive rate, i.e., more Black defendants labeled high risk
end up not committing a crime upon release than among White defendants
labeled high risk.22 In other words, the COMPAS score fails the separation
criterion.

A company called Northpointe, which sells the proprietary COMPAS
risk model, pointed out in return that Black and White defendants have
equal recidivism rates given a particular score value. That is defendants
labeled, say, an ‘8’ for high risk would go on to recidivate at a roughly equal
rate in either group. Northpointe claimed that this property is desirable so
that a judge can interpret scores equally in both groups.23

The COMPAS debate illustrates both the merits and limitations of the
narrow framing of discrimination as a classification criterion.

On the hand, the error rate disparity gave ProPublica a tangible and con-
crete way to put pressure on Northpointe. The narrow framing of decision
making identifies the decision maker as responsible for their decisions. As
such, it can be used to interrogate and possibly intervene in the practices of
an entity.

On the other hand, decisions are always part of a broader system that
embeds structural patterns of discrimination. For example, a measure of
recidivism hinges crucially on existing policing patterns. Crime is only
found where policing activity happens. However, the allocation and severity
of police force itself has racial bias. Some scholars therefore find an emphasis
on statistical criteria rather than structural determinants of discrimination
to be limited.

Chapter notes

The theory we covered in this chapter is also called detection theory and
decision theory. Similarly, what we call a predictor throughout has various
different names, such as decision rule or classifier.

The elementary detection theory covered in this chapter has not changed
much at all since the 1950s and is essentially considered a “solved problem”.
Neyman and Pearson invented the likelihood ratio test24 and later proved
their lemma showing it to be optimal for maximizing true positive rates
while controlling false positive rates.25 Wald followed this work by invent-
ing general Bayes risk minimization in 1939.26 Wald’s ideas were widely
adopted during World War II for the purpose of interpreting RADAR sig-
nals which were often very noisy. Much work was done to improve RADAR

31

operations, and this led to the formalization that the output of a RADAR
system (the receiver) should be a likelihood ratio, and a decision should
be made based on an LRT. Our proof of Neyman-Pearson’s lemma came
later, and is due to Bertsekas and Tsitsiklis (See Section 9.3 of Introduction to
Probability27).

Our current theory of detection was fully developed by Peterson, Bird-
sall, and Fox in their report on optimal signal detectability.28 Peterson,
Birdsall, and Fox may have been the first to propose Receiver Operating
Characteristics as the means to characterize the performance of a detection
system, but these ideas were contemporaneously being applied to better
understand psychology and psychophysics as well.29

Statistical Signal Detection theory was adopted in the pattern recognition
community at a very early stage. Chow proposed using optimal detection
theory,30 and this led to a proposal by Highleyman to approximate the risk
by its sample average.31 This transition from population risk to “empirical”
risk gave rise to what we know today as machine learning.

Of course, how decisions and predictions are applied and interpreted
remains an active research topic. There is a large amount of literature now
on the topic of fairness and machine learning. For a general introduction
to the problem and dangers associated with algorithmic decision making
not limited to discrimination, see the books by Benjamin,17 Broussard,32

Eubanks,33 Noble,34 and O’Neil.35 The technical material in our section on
discrimination follows Chapter 2 in the textbook by Barocas, Hardt, and
Narayanan.19

The abalone example was derived from data available at the UCI Ma-
chine Learning Repository, which we will discuss in more detail in Chapter
8. We modified the data to ease exposition. The actual data does not have
an equal number of male and female instances, and the optimal predictor is
not exactly a threshold function.

32

3
Supervised learning

Previously, we talked about the fundamentals of prediction and statistical
modeling of populations. Our goal was, broadly speaking, to use available
information described by a random variable X to conjecture about an
unknown outcome Y.

In the important special case of a binary outcome Y, we saw that we can
write an optimal predictor Ŷ as a threshold of some function f :

Ŷ(x) = 1{ f (x) > t}

We saw that in many cases the optimal function is a ratio of two likelihood
functions.

This optimal predictor has a serious limitation in practice, however. To
be able to compute the prediction for a given input, we need to know a
probability density function for the positive instances in our problem and
also one for the negative instances. But we are often unable to construct or
unwilling to assume a particular density function.

As a thought experiment, attempt to imagine what a probability density
function over images labeled cat might look like. Coming up with such a
density function appears to be a formidable task, one that’s not intuitively
any easier than merely classifying whether an image contains a cat or not.

In this chapter, we transition from a purely mathematical characterization
of optimal predictors to an algorithmic framework. This framework has
two components. One is the idea of working with finite samples from a
population. The other is the theory of supervised learning and it tells us
how to use finite samples to build predictors algorithmically.

Sample versus population

Let’s take a step back to reflect on the interpretation of the pair of random
variables (X, Y) that we’ve worked with so far. We think of the random

33

variables (X, Y) as modeling a population of instances in our prediction
problem. From this pair of random variables, we can derive other random
variables such as a predictor Ŷ = 1{ f (X) > t}. All of these are random
variables in the same probability space. When we talk about, say, the true
positive rate of the predictor Ŷ, we therefore make a statement about the
joint distribution of (X, Y).

In almost all prediction problems, however, we do not have access to the
entire population of instances that we will encounter. Neither do we have a
probability model for the joint distribution of the random variables (X, Y).
The joint distribution is a theoretical construct that we can reason about, but
it doesn’t readily tell us what to do when we don’t have precise knowledge
of the joint distribution.

What knowledge then do we typically have about the underlying popu-
lation and how can we use it algorithmically to find good predictors? In
this chapter we will begin to answer both questions.

First we assume that from past experience we have observed n labeled
instances (x1, y1), ..., (xn, yn). We assume that each data point (xi, yi) is a
draw from the same underlying distribution (X, Y). Moreover, we will
often assume that the data points are drawn independently. This pair
of assumptions is often called the “i.i.d. assumption”, a shorthand for
independent and identically distributed.

To give an example, consider a population consisting of all currently
eligible voters in the United States and some of their features, such as, age,
income, state of residence etc. An i.i.d. sample from this population would
correspond to a repeated sampling process that selects a uniformly random
voter from the entire reference population.

Sampling is a difficult problem with numerous pitfalls that can strongly
affect the performance of statistical estimators and the validity of what we
learn from data. In the voting example, individuals might be unreachable
or decline to respond. Even defining a good population for the problem
we’re trying to solve is often tricky. Populations can change over time. They
may depend on a particular social context, geography, or may not be neatly
characterized by formal criteria. Task yourself with the idea of taking a
random sample of spoken sentences in the English language, for example,
and you will quickly run into these issues.

In this chapter, as is common in learning theory, we largely ignore these
important issues. We instead focus on the significant challenges that remain
even if we have a well-defined population and an unbiased sample from it.

34

Supervised learning

Supervised learning is the prevalent method for constructing predictors from
data. The essential idea is very simple. We assume we have labeled data,
in this context also called training examples, of the form (x1, y1), ..., (xn, yn),
where each example is a pair (xi, yi) of an instance xi and a corresponding
label yi. The notion of supervision refers to the availability of these labels.

Given such a collection of labeled data points, supervised learning
turns the task of finding a good predictor into an optimization problem
involving these data points. This optimization problem is called empirical
risk minimization.

Recall, in the last chapter we assumed full knowledge of the joint dis-
tribution of (X, Y) and analytically found predictors that minimize risk.
The risk is equal to the expected value of a loss function that quantifies
the cost of each possible prediction for a given true outcome. For binary
prediction problems, there are four possible pairs of labels corresponding
to true positives, false positives, true negatives, and false negatives. In this
case, the loss function boils down to specifying a cost to each of the four
possibilities.

More generally, a loss function is a function loss : Y × Y → R , where Y
is the set of values that Y can assume. Whereas previously we focused on
the predictor Ŷ as a random variable, in this chapter our focus shifts to the
functional form that the predictor has. By convention, we write Ŷ = f (X),
where f : X → Y is a function that maps from the sample space X into the
label space Y .

Although the random variable Ŷ and the function f are mathematically
not the same objects, we will call both a predictor and extend our risk
definition to apply the function as well:

R[f] = E [loss(f (X), Y)] .

The main new definition in this chapter is a finite sample analog of the risk,
called empirical risk.

Definition 3. Given a set of labeled data points S = ((x1, y1), ..., (xn, yn)), the
empirical risk of a predictor f : X → Y with respect to the sample S is defined as

RS[f] =
1
n

n

∑
i=1

loss(f (xi), yi) .

Rather than taking expectation over the population, the empirical risk
averages the loss function over a finite sample. Conceptually, we think of

35

the finite sample as something that is in our possession, e.g., stored on our
hard disk.

Empirical risk serves as a proxy for the risk. Whereas the risk R[f] is a
population quantity—that is, a property of the joint distribution (X, Y) and
our predictor f —the empirical risk is a sample quantity.

We can think of the empirical risk as the sample average estimator of
the risk. When samples are drawn i.i.d., the empirical risk is a random
variable that equals the sum of n independent random variables. If losses
are bounded, the central limit theorem therefore suggests that the empirical
risk approximates the risk for a fixed predictor f .

Regardless of the distribution of S, however, note that we can always
compute the empirical risk RS[f] entirely from the sample S and the predic-
tor f . Since empirical risk a quantity we can compute from samples alone, it
makes sense to turn it into an objective function that we can try to minimize
numerically.

Empirical risk minimization is the optimization problem of finding a
predictor in a given function family that minimizes the empirical risk.

Definition 4. Given a function class F ⊆ X → Y , empirical risk minimization
on a set of labeled data points S corresponds to the objective:

min
f∈F

RS[f]

A solution to the optimization problem is called empirical risk minimizer.

There is a tautology relating risk and empirical risk that is good to keep
in mind:

R[f] = RS[f] + (R[f]− RS[f])

Although mathematically trivial, the tautology reveals an important insight.
To minimize risk, we can first attempt to minimize empirical risk. If we
successfully find a predictor f that achieves small empirical risk RS[f],
we’re left worrying about the term R[f]− RS[f]. This term quantifies how
much the empirical risk of f underestimates its risk. We call this difference
generalization gap and it is of fundamental importance to machine learning.
Intuitively speaking, it tells us how well the performance of our predictor
transfers from seen examples (the training examples) to unseen examples (a
fresh example from the population) drawn from the same distribution. This
process is called generalization.

Generalization is not the only goal of supervised learning. A constant
predictor that always outputs 0 generalizes perfectly well, but is almost
always entirely useless. What we also need is that the predictor achieves
small empirical risk RS[f]. Making the empirical risk small is fundamentally
about optimization. As a consequence, a large part of supervised learning

36

deals with optimization. For us to be able to talk about optimization, we
need to commit to a representation of the function class F that appears in
the empirical risk minimization problem. The representation of the function
class, as well as the choice of a suitable loss function, determines whether
or not we can efficiently find an empirical risk minimizer.

To summarize, introducing empirical risk minimization directly leads to
three important questions that we will work through in turn.

• Representation: What is the class of functions F we should choose?
• Optimization: How can we efficiently solve the resulting optimization

problem?
• Generalization: Will the performance of predictor transfer gracefully

from seen training examples to unseen instances of our problem?

These three questions are intertwined. Machine learning is not so much
about studying these questions in isolation as it is about the often delicate
interplay between them. Our choice of representation influences both the
difficulty of optimization and our generalization performance. Improve-
ments in optimization may not help, or could even hurt, generalization.
Moreover, there are aspects of the problem that don’t neatly fall into only
one of these categories. The choice of the loss function, for example, affects
all of the three questions above.

There are important differences between the three questions. Results
in optimization, for example, tend to be independent of the statistical
assumptions about the data generating process. We will see a number of
different optimization methods that under certain circumstances find either
a global or local minimum of the empirical risk objective. In contrast, to
reason about generalization, we need some assumptions about the data
generating process. The most common one is the i.i.d.-assumption we
discussed earlier. We will also see several mathematical frameworks for
reasoning about the gap between risk and empirical risk.

Let’s start with a foundational example that illustrates these core con-
cepts and their interplay.

A first learning algorithm: The perceptron

As we discussed in the introduction, in 1958 the New York Times reported
the Office of Naval Research claiming the perceptron algorithm36 would
“be able to walk, talk, see, write, reproduce itself and be conscious of its
existence.” Let’s now dive into this algorithm that seemed to have such
unbounded potential.

37

w
〈w, x〉 > 0

〈w, x〉 < 0

Figure 8: Illustration of a linear separator

Toward introducing this algorithm, let’s assume we’re in a binary pre-
diction problem with labels in {−1, 1} for notational convenience. The
perceptron algorithm aims to find a linear separator of the data, that is, a hy-
perplane specified by coefficients w ∈ Rd that so that all positive examples
lie on one side of the hyperplane and all negative ones on the other.

Formally, we can express this as yi〈w, xi〉 > 0. In other words, the
linear function f (x) = 〈w, x〉 agrees in sign with the labels on all training
instances (xi, yi). In fact, the perceptron algorithm will give us a bit more.
Specifically, we require that the sign agreement has some margin yi〈w, xi〉 ≥
1. That is, when y = 1, the linear function must take on a value of at least 1
and when y = −1, the linear function must be at most −1. Once we find
such a linear function, our prediction Ŷ(x) on a data point x is Ŷ(x) = 1
if 〈w, x〉 ≥ 0 and Ŷ(x) = −1 otherwise.

The algorithm goes about finding a linear separator w incrementally in
a sequence of update steps.

Perceptron

• Start from the initial solution w0 = 0
• At each step t = 0, 1, 2, ...:

– Select a random index i ∈ {1, ..., n}
– Case 1: If yi〈wt, xi〉 < 1, put

wt+1 = wt + yixi

– Case 2: Otherwise put wt+1 = wt.

Case 1 corresponds to what’s called a margin mistake. The sign of the

38

w

x−x
w w

w− x

Figure 9: Illustration of the perceptron update. Left: One misclassified
example x. Right: After update.

linear function may not disagree with the label, but it doesn’t have the
required margin that we asked for.

When an update occurs, we have

〈wt+1, xi〉 = 〈wt, xi〉+ yi‖xi‖2 .

In this sense, the algorithm is nudging the hyperplane to be less wrong
on example xi. However, in doing so it could introduce errors on other
examples. It is not yet clear that the algorithm converges to a linear separator
when this is possible.

Connection to empirical risk minimization

Before we turn to the formal guarantees of the perceptron, it is instructive
to see how to relate it to empirical risk minimization. In order to do so, it’s
helpful to introduce two hyperparameters to the algorithm by considering the
alternative update rule:

wt+1 = γwt + ηyixi

Here η is a positive scalar called a learning rate and γ ∈ [0, 1] is called the
forgetting rate.

First, it’s clear from the description that we’re looking for a linear
separator. Hence, our function class is the set of linear functions fw(x) =
〈w, x〉, where w ∈ Rd. We will sometimes call the vector w the weight vector
or vector of model parameters.

An optimization method that picks a random example at each step and
makes a local improvement to the model parameters is the stochastic gradient
method. This method will figure prominently in our chapter on optimization

39

−2 0 2 4
ŷy

0

1

2

3
Hinge loss

Figure 10: Hinge loss

as it is the workhorse of many machine learning applications today. The
local improvement the method picks at each step is given by a local linear
approximation of the loss function around the current model parameters.
This linear approximation can be written neatly in terms of the vector of
first derivatives, called gradient, of the loss function with respect to the
current model parameters.

The formal update rule reads

wt+1 = wt − η∇wt loss(fwt(xi), yi)

Here, the example (xi, yi) is randomly chosen and the expression
∇wt loss(fwt(xi), yi) is the gradient of the loss function with respect to the
model parameters wt on the example (xi, yi). We will typically drop the
vector wt from the subscript of the gradient when it’s clear from the context.
The scalar η > 0 is a step size parameter that we will discuss more carefully
later. For now, think of it as a small constant.

It turns out that we can connect this update rule with the perceptron
algorithm by choosing a suitable loss function. Consider the loss function

loss(〈w, x〉, y) = max {1− y〈w, x〉, 0} .

This loss function is called hinge loss. Note that its gradient is −yx
when y〈w, x〉 < 1 and 0 when y〈w, x〉 > 1.

The gradient of the hinge loss is not defined when y〈w, x〉 = 1. In
other words, the loss function is not differentiable everywhere. This is why
technically speaking the stochastic gradient method operates with what is

40

called a subgradient. The mathematical theory of subgradient optimization
rigorously justifies calling the gradient 0 when y〈w, x〉 = 1. We will ignore
this technicality throughout the book.

We can see that the hinge loss gives us part of the update rule in the
perceptron algorithm. The other part comes from adding a weight penalty
λ
2 ‖w‖2 to the loss function that discourages the weights from growing out
of bounds. This weight penalty is called `2-regularization, weight decay, or
Tikhonov regularization depending on which field you work in. The purpose
of regularization is to promote generalization. We will therefore return
to regularization in detail when we discuss generalization in more depth.
For now, note that the margin constraint we introduced is inconsequential
unless we penalize large vectors. Without the weight penalty we could
simply scale up any linear separator until it separates the points with the
desired margin.

Putting the two loss functions together, we get the `2-regularized empir-
ical risk minimization problem for the hinge loss:

1
n

n

∑
i=1

max {1− yi〈w, xi〉, 0}+ λ

2
‖w‖2

2

The perceptron algorithm corresponds to solving this empirical risk objective
with the stochastic gradient method. The constant η, which we dubbed
the learning rate, is the step size of the stochastic gradient methods. The
forgetting rate constant γ is equal to (1− ηλ). The optimization problem is
also known as support vector machine and we will return to it later on.

A word about surrogate losses

When the goal was to maximize the accuracy of a predictor, we mathemat-
ically solved the risk minimization problem with respect to the zero-one
loss

loss(ŷ, y) = 1{ŷ 6= y}
that gives us penalty 1 if our label is incorrect, and penalty 0 if our predicted
label ŷ matches the true label y. We saw that the optimal predictor in this
case was a maximum a posteriori rule, where we selected the label with higher
posterior probability.

Why don’t we directly solve empirical risk minimization with respect to
the zero-one loss? The reason is that the empirical risk with the zero-one loss
is computationally difficult to optimize directly. In fact, this optimization
problem is NP-hard even for linear prediction rules.37 To get a better sense
of the difficulty, convince yourself that the stochastic gradient method,

41

−2 0 2 4
ŷy

0

1

2

3

4
Hinge

−2 0 2 4
ŷy

0

1

2

3

4
Logistic

−2 0 2 4
ŷy

0

1

2

3

4
Squared

Figure 11: Hinge, squared, logistic loss compared with the zero-one loss.

for example, fails entirely on the zero-one loss objective. Of course, the
stochastic gradient method is not the only learning algorithm.

The hinge loss therefore serves as a surrogate loss for the zero-one loss.
We hope that by optimizing the hinge loss, we end up optimizing the zero-
one loss as well. The hinge loss is not the only reasonable choice. There
are numerous loss functions that approximate the zero-one loss in different
ways.

• The hinge loss is max{1− yŷ, 0} and support vector machine refers to
empirical risk minimization with the hinge loss and `2-regularization.
This is what the perceptron is optimizing.

• The squared loss is given by 1
2(y− ŷ)2. Linear least squares regression

corresponds to empirical risk minimization with the squared loss.
• The logistic loss is − log(σ(ŷ)) when y = 1 and − log(1− σ(ŷ)) when

y = −1, where σ(z) = 1/(1 + exp(−z)) is the logistic function. Lo-
gistic regression corresponds to empirical risk minimization with the
logistic loss and linear functions.

Sometimes we can theoretically relate empirical risk minimization under
a surrogate loss to the zero-one loss. In general, however, these loss functions
are used heuristically and practitioners evaluate performance by trial-and-
error.

Formal guarantees for the perceptron

We saw that the perceptron corresponds to finding a linear predictor using
the stochastic gradient method. What we haven’t seen yet is a proof that the
perceptron method works and under what conditions. Recall that there are

42

two questions we need to address. The first is why the perceptron method
successfully fits the training data, a question about optimization. The second
is why the solution should also correctly classify unseen examples drawn
from the same distribution, a question about generalization. We will address
each in turn with results from the 1960s. Even though the analysis here is
over 50 years old, it has all of the essential parts of more recent theoretical
arguments in machine learning.

Mistake bound

To see why we perform well on the training data, we use a mistake bound
due to Novikoff.38 The bound shows that if there exists a linear separator
of the training data, then the perceptron will find it quickly provided that
the margin of the separating hyperplane isn’t too small.

Margin is a simple way to evaluate how well a predictor separates data.
Any vector w ∈ Rd defines a hyperplane Hw = {x : wTx = 0}. Suppose
that the hyperplane Hw corresponding to the vector w perfectly separates
the data in S. Then we define the margin of such a vector w as the smallest
distance of our data points to this hyperplane:

γ(S, w) = min
1≤i≤n

dist(xi,Hw) .

Here,

dist(x,Hw) = min{‖x− x′‖ : x′ ∈ Hw} =
|〈x, w〉|
‖w‖ .

Overloading terminology, we define the margin of a dataset to be the
maximum margin achievable by any predictor w:

γ(S) = max
‖w‖=1

γ(S, w) .

We will now show that when a dataset has a large margin, the perceptron
algorithm will find a separating hyperplane quickly.

Let’s consider the simplest form of the perceptron algorithm. We ini-
tialize the algorithm with w0 = 0. The algorithm proceeds by selecting
a random index it at step t checking whether yit w

T
t xit < 1. We call this

condition a margin mistake, i.e., the prediction wT
t xit is either wrong or

too close to the hyperplane. If a margin mistake occurs, the perceptron
performs the update

wt+1 = wt + yit xit .

That is, we rejigger the hyperplane to be more aligned with the signed
direction of the mistake. If no margin mistake occurs, then wt+1 = wt.

43

To analyze the perceptron we need one additional definition. Define the
diameter of a data S to be

D(S) = max
(x,y)∈S

‖x‖ .

We can now summarize a worst case analysis of the perceptron algorithm
with the following theorem.

Theorem 1. The perceptron algorithm makes at most (2 + D(S)2)γ(S)−2 margin
mistakes on any sequence of examples S that can be perfectly classified by a linear
separator.

Proof. The main idea behind the proof of this theorem is that since w only
changes when you make a mistake, we can upper bound and lower bound w
at each time a mistake is made, and then, by comparing these two bounds,
compute an inequality on the total number of mistakes.

To find an upper bound, suppose that at step t the algorithm makes a
margin mistake. We then have the inequality:

‖wt+1‖2 = ‖wt + yit xit‖2

= ‖wt‖2 + 2yit〈wt, xit〉+ ‖xit‖2

≤ ‖wt‖2 + 2 + D(S)2 .

The final inequality uses the fact that yit〈wt, xit〉 < 1. Now, let mt denote
the total number of mistakes made by the perceptron in the first t iterations.
Summing up the above inequality over all the mistakes we make and using
the fact that ‖w0‖ = 0, we get our upper bound on the norm of wt:

‖wt‖ ≤
√

mt(2 + D(S)2) .

Working toward a lower bound on the norm of wt, we will use the
following argument. Let w be any unit vector that correctly classifies all
points in S. If we make a mistake at iteration t, we have

〈w, wt+1 − wt〉 = 〈w, yit xit〉 =
|〈w, xit〉|
‖w‖ ≥ γ(S, w) .

Note that the second equality here holds because w correctly classifies the
point (xit , yit). This is where we use that the data are linearly separable.
The inequality follows from the definition of margin.

Now, let w? denote the hyperplane that achieves the maximum mar-
gin γ(S). Instantiating the previous argument with w?, we find that

‖wt‖ ≥ 〈w?, wt〉 =
t

∑
k=1

wT
? (wk − wk−1) ≥ mtγ(S) ,

44

where the equality follows from a telescoping sum argument.
This yields the desired lower bound on the norm of wt. Combined with

the upper bound we already derived, it follows that the total number of
mistakes has the bound

mt ≤
2 + D(S)2

γ(S)2 .

The proof we saw has some ingredients we’ll encounter again. Telescop-
ing sums, for example, are a powerful trick used throughout the analysis of
optimization algorithms. A telescoping sum lets us understand the behavior
of the final iterate by decomposing it into the incremental updates of the
individual iterations.

The mistake bound does not depend on the dimension of the data. This
is appealing since the requirement of linear separability and high margin,
intuitively speaking, become less taxing the larger the dimension is.

An interesting consequence of this theorem is that if we run the percep-
tron repeatedly over the same dataset, we will eventually end up with a
separating hyperplane. To see this, imagine repeatedly running over the
dataset until no mistake occurred on a full pass over the data. The mistake
bound gives a bound on the number of passes required before the algorithm
terminates.

From mistake bounds to generalization

The previous analysis shows that the perceptron finds a good predictor on
the training data. What can we say about new data that we have not yet
seen?

To talk about generalization, we need to make a statistical assumption
about the data generating process. Specifically we assume that the data
points in the training set S = {(x1, y1) . . . , (xn, yn)} where each drawn i.i.d.
from a fixed underlying distribution D with the labels taking values {−1, 1}
and each xi ∈ Rd.

We know that the perceptron finds a good linear predictor for the
training data (if it exists). What we now show is that this predictor also
works on new data drawn from the same distribution.

To analyze what happens on new data, we will employ a powerful
stability argument. Put simply, an algorithm is stable if the effect of removing
or replacing a single data point is small. We will do a deep dive on stability
in our chapter on generalization, but we will have a first encounter with the
idea here.

The perceptron is stable because it makes a bounded number of mistakes.
If we remove a data point where no mistake is made, the model doesn’t
change at all. In fact, it’s as if we had never seen the data point. This lets us

45

relate the performance on seen examples to the performance on examples
in the training data on which the algorithm never updated.

Vapnik and Chervonenkis presented the following stability argument in
their classic text from 1974, though the original argument is likely a decade
older.39 Their main idea was to leverage our assumption that the data are
i.i.d., so we can swap the roles of training and test examples in the analysis.

Theorem 2. Let Sn denote a training set of n i.i.d. samples from a distribution D
that we assume has a perfect linear separator. Let w(S) be the output of the
perceptron on a dataset S after running until the hyperplane makes no more margin
mistakes on S. Let Z = (X, Y) be an additional independent sample from D. Then,
the probability of making a margin mistake on (X, Y) satisfies the upper bound

P[Yw(Sn)
TX < 1] ≤ 1

n + 1ESn+1

[
2 + D(Sn+1)

2

γ(Sn+1)2

]
.

Proof. First note that

P[YwTX < 1] = E[1{YwTX < 1}] .

Let Sn = (Z1, ..., Zn) and with Zk = (Xk, Yk) and put Zn+1 = Z = (X, Y).
Note that these n + 1 random variables are i.i.d. draws from D. As a purely
analytical device, consider the “leave-one-out set”

S−k = {Z1, . . . , Zk−1, Zk+1, ..., Zn+1} .

Since the data are drawn i.i.d., running the algorithm on S−k and evaluating
it on Zk = (Xk, Yk) is equivalent to running the algorithm on Sn and
evaluating it on Zn+1. These all correspond to the same random experiment
and differ only in naming. In particular, we have

P[Yw(Sn)
TX < 1] =

1
n + 1

n+1

∑
k=1

E[1{Ykw(S−k)TXk < 1}] .

Indeed, we’re averaging quantities that are each identical to the left hand
side. But recall from our previous result that the perceptron makes at most

m =
2 + D((Z1, . . . , Zn+1))

2

γ((Z1, . . . , Zn+1))2

margin mistakes when run on the entire sequence (Z1, . . . , Zn+1).
Let i1, . . . , im denote the indices on which the algorithm makes a mistake
in any of its cycles over the data. If k 6∈ {i1, . . . , im}, the output of the
algorithm remains the same after we remove the k-th sample from the

46

sequence. It follows that such k satisfy Ykw(S−k)Xk ≥ 1 and therefore k
does not contribute to the summation above. The other terms can at most
contribute 1 to the summation. Hence,

n+1

∑
k=1

1{Ykw(S−k)TXk < 1} ≤ m ,

and by linearity of expectation, as we hoped to show,

P[Yw(Sn)
TX < 1] ≤ E[m]

n + 1
.

We can turn our mistake bounds into bounds on the empirical risk and
risk achieved by the perceptron algorithm by choosing the loss function
loss(〈w, x〉, y) = 1{〈w, x〉y < 1}. These bounds also imply bounds on the
(empirical) risk with respect to the zero-one loss, since the prediction error
is bounded by the number of margin mistakes.

Chapter notes

Rosenblatt developed the perceptron in 1957 and continued to publish on
the topic in the years that followed.40, 41 The perceptron project was funded
by the US Office of Naval Research (ONR), who jointly announced the
project with Rosenblatt in a press conference in 1958, that lead to the New
York Times article we quoted earlier. This development sparked significant
interest in perceptrons research throughout the 1960s.

The simple proof the mistake bound we saw is due to Novikoff.38 Block
is credited with a more complicated contemporaneous proof.42 Minsky and
Papert attribute a simple analysis of the convergence guarantees for the
perceptron to a 1961 paper by Papert.43

Following these developments Vapnik and Chervonenkis proved the
generalization bound for the perceptron method that we saw earlier, relying
on the kind of stability argument that we will return to in our chapter on
generalization. The proof of Theorem 2 is available in their 1974 book.39

Interestingly, by the 1970s, Vapnik and Chervonenkis must have abandoned
the stability argument in favor of the VC-dimension.

In 1969, Minksy and Papert published their influential book “Percep-
trons: An introduction to computational geometry”.44 Among other results,
it showed that perceptrons fundamentally could not learn certain concepts,
like, an XOR of its input bits. In modern language, linear predictors cannot
learn parity functions. The results remain relevant in the statistical learning
community and have been extended in numerous ways. On the other hand,

47

pragmatic researchers realized one could just add the XOR to the feature
vector and continue to use linear methods. We will discuss such feature
engineering in the next chapter.

The dominant narrative in the field has it that Minsky and Papert’s book
curbed enthusiasm for perceptron research and their multilayer extensions,
now better known as deep neural networks. In an updated edition of their
book from 1988, Minsky and Papert argue that work on perceptrons had
already slowed significantly by the time their book was published for a lack
of new results:

One popular version is that the publication of our book so
discouraged research on learning in network machines that a
promising line of research was interrupted. Our version is that
progress had already come to a virtual halt because of the lack
of adequate basic theories, [. . .].

On the other hand, the pattern recognition community had realized that
perceptrons were just one way to implement linear predictors. Highleyman
was arguably the first to propose empirical risk minimization and applied
this technique to optical character recognition.31 Active research in the 1960s
showed how to find linear rules using linear programming techniques.45

Work by Aizerman, Braverman and Rozonoer developed iterative methods
to fit nonlinear rules to data.46 All of this work was covered in depth in the
first edition of Duda and Hart, which appeared five years after Perceptrons.

It was at this point that the artificial intelligence community first split
from the pattern recognition community. While the artificial intelligence
community turned towards more symbolic techniques in 1970s, work on
statistical learning continued in Soviet and IEEE journals. The modern view
of empirical risk minimization, of which we began this chapter, came out of
this work and was codified by Vapnik and Chervonenkis in the 1970s.

It wasn’t until the 1980s that work on pattern recognition, and with it
the tools of the 1960s and earlier, took a stronger foothold in the machine
learning community again.11 We will continue this discussion in our chapter
on datasets and machine learning benchmarks, which were pivotal in the
return of pattern recognition to the forefront of machine learning research.

48

4
Representations and features

The starting point for prediction is the existence of a vector x from which
we can predict the value of y. In machine learning, each component of this
vector is called a feature. We would like to find a set of features that are
good for prediction. Where do features come from in the first place?

In much of machine learning, the feature vector x is considered to be
given. However, features are not handed down from first principles. They
had to be constructed somehow, often based on models that incorporate
assumptions, design choices, and human judgments. The construction
of features often follows human intuition and domain specific expertise.
Nonetheless, there are several principles and recurring practices we will
highlight in this chapter.

Feature representations must balance many demands. First, at a pop-
ulation level, they must admit decision boundaries with low error rates.
Second, we must be able to optimize the empirical risk efficiently given
then current set of features. Third, the choice of features also influences the
generalization ability of the resulting model.

There are a few core patterns in feature engineering that are used to meet
this set of requirements. First, there is the process of turning a measurement
into a vector on a computer, which is accomplished by quantization and
embedding. Second, in an attempt to focus on the most discriminative
directions, the binned vectors are sorted relative to their similarity to a set
of likely patterns through a process of template matching. Third, as a way
to introduce robustness to noise or reduce and standardize the dimension
of data, feature vectors are compressed into a low, fixed dimension via
histograms and counts. Finally, nonlinear liftings are used to enable predictors
to approximate complex, nonlinear decision boundaries. These processes
are often iterated, and often times the feature generation process itself is
tuned on the collected data.

49

Measurement

Before we go into specific techniques and tricks of trade, it’s important
to recognize the problem we’re dealing with in full generality. Broadly
speaking, the first step in any machine learning process is to numerically
represent objects in the real world and their relationships in a way that can
be processed by computers.

There is an entire scientific discipline, called measurement theory, de-
voted to this subject. The field of measurement theory distinguishes be-
tween a measurement procedure and the target construct that we wish to
measure.47, 48, 49 Physical temperature, for example, is a construct and a
thermometer is a measurement device. Mathematical ability is another
example of a construct; a math exam can be thought of as a procedure for
measuring this construct. While we take reliable measurement of certain
physical quantities for granted today, other measurement problems remain
difficult.

It is helpful to frame feature creation as measurement. All data stems
from some measurement process that embeds and operationalizes numerous
important choices.50 Measurement theory has developed a range of tech-
niques over the decades. In fact, many measurement procedures themselves
involve statistical models and approximations that blur the line between
what is a feature and what is a model. Practitioners of machine learning
should consult with experts on measurement within specific domains be-
fore creating ad-hoc measurement procedures. More often than not there is
much relevant scholarship on how to measure various constructs of interest.
When in doubt it’s best to choose constructs with an established theory.

Human subjects

The complexities of measurement are particularly apparent when our fea-
tures are about human subjects. Machine learning problems relating to
human subjects inevitably involve features that aim to quantify a person’s
traits, inclinations, abilities, and qualities. Researchers often try to get at
these constructs by designing surveys, tests, or questionnaires. However,
much data about humans is collected in an ad-hoc manner, lacking clear
measurement principles. This is especially true in a machine learning
context.

Featurization of human subjects can have serious consequences. Recall
the example of using prediction in the context of the criminal justice system.
The figure below shows sample questions that were used to create the
data that the COMPAS recidivism risk score is trained on. These questions
were designed using psychometric models to capture archetypes of people

50

Figure 12: Sample questions from the COMPAS questionnaire.

that might indicate future criminal behavior. Though COMPAS features
have been used to predict recidivism, they have been shown to be no more
predictive than using age, gender, and past criminal activity.51

Machine learning and data creation involving human subjects should be
ethically evaluated in the same manner as any other scientific investigation
with humans.

Depending on context, different ethical guidelines and regulations exist
that aim at protecting human research subjects. The 1979 Belmont Report
is one ethical framework, commonly applied in the United States. It rests
on the three principles of respect for persons, beneficence, and justice.
Individuals should be treated as autonomous agents. Harm should be
minimized, while benefits should be maximized. Inclusion and exclusion
should not unduly burden specific individuals, as well as marginalized and
vulnerable groups.

Universities typically require obtaining institutional approval and de-
tailed training before conducting human subject research. These rules apply
also when data is collected from and about humans online.

We advise any reader to familiarize themselves with all applicable rules
and regulations regarding human subject research at their institution.

51

Quantization

Signals in the real world are often continuous and we have to choose how
to discretize them for use in a machine learning pipeline. Broadly speaking,
such practices fall under the rubric of quantization. In many cases, our
goal is to quantize signals so that we can reconstruct them almost perfectly.
This is the case of high resolution photography, high fidelity analog-to-
digital conversion of audio, or perfect sequencing of proteins. In other
cases, we may want to only record skeletons of signals that are useful for
particular tasks. This is the case for almost all quantizations of human
beings. While we do not aim to do a thorough coverage of this subject,
we note quantization is an essential preprocessing step in any machine
learning pipeline. Improved quantization schemes may very well translate
into improved machine learning applications. Let us briefly explore a few
canonical examples and issues of quantization in contemporary data science.

Images

Consider the raw bitmap formatting of an image. A bitmap file is an array
indexed by three coordinates. Mathematically, this corresponds to a tensor
of order 3. The first two coordinates index space and the third indexes a
color channel. That is, xijk denotes the intensity at row i, column j, and
color channel k. This representation summarizes an image by dividing two
dimensional space into a regular grid, and then counting the quantity of
each of three primary colors at each grid location.

This pixel representation suffices to render an image on a computer
screen. However, it might not be useful for prediction. Images of the
same scene with different lighting or photographic processes might end up
being quite dissimilar in a pixel representation. Even small translations of
two images might be far apart from each other in a pixel representation.
Moreover, from the vantage point of linear classification, we could train a
linear predictor on any ordering of the pixels, but scrambling the pixels in an
image certainly makes it unrecognizable. We will describe transformations
that address such shortcomings of pixel representations in the sequel.

Text

Consider a corpus of n documents. These documents will typically have
varying length and vocabulary. To embed a document as a vector, we can
create a giant vector for every word in the document where each component
of the vector corresponds to one dictionary word. The dimension of the
vector is therefore the size of the dictionary. For each word that occurs in

52

the document we set the corresponding coordinate of the vector to 1. All
other coordinates corresponding to words not in the document we set to 0.

This is called a one-hot encoding of the words in the dictionary. The
one-hot encoding might seem both wasteful due to the high dimension
and lossy since we don’t encode the order of the words in the document.
Nonetheless, it turns out to be useful in a number of applications. Since
typically the language has more dictionary words than the length of the
document, the encoding maps a document to a very sparse vector. A corpus
of documents would map to a set of sparse vectors.

Template matching

While quantization can often suffice for prediction problems, we highlighted
above how this might be too fine a representation to encode when data
points are similar or dissimilar. Often times there are higher level patterns
that might be more representative for discriminative tasks. A popular way to
extract these patterns is template matching, where we extract the correlation
of a feature vector x with a known pattern v, called template.

At a high level, a template match creates a feature x′ from the feature x
by binning the correlation with a template. A simple example would be to
fix a template v and compute

x′ = max {vTx, 0} .

We now describe some more specific examples that are ubiquitous in pattern
classification.

Fourier, cosine, and wavelet transforms

One of the foundational patterns that we match to spatial or temporal data
is sinusoids. Consider a vector in Rd and the transformation with k-th
component

x′k = |vT
k x| .

Here the `-th component of vk is given by vk` = exp(2πik`/d). In this case
we are computing the magnitude of the Fourier transform of the feature vector.
This transformation measures the amount of oscillation in a vector. The
magnitude of the Fourier transform has the following powerful property:
Suppose z is a translated version of x so that

zk = x(k+s)mod d

53

for some shift s. Then one can check that for any vk,

|vT
k x| = |vT

k z| .

That is, the magnitude of the Fourier transform is translation invariant. There
are a variety of other transforms that fall into this category of capturing the
transformation invariant content of signals including cosine and wavelet
transforms.

Convolution

For spatial or temporal data, we often consider two data points to be
similar if we can translate one to align with another. For example, small
translations of digits are certainly the same digit. Similarly, two sound
utterances delayed by a few milliseconds are the same for most applications.
Convolutions are small templates that are translated over a feature figure
to count the number of occurrences of some pattern. The output of a
convolution will have the same spatial extent as the input, but will be a
“heat map” denoting the amount of correlation with the template at each
location in the vector. Multiple convolutions can be concatenated to add
discriminative power. For example, if one wants to design a system to
detect animals in images, one might design a template for heads, legs, and
tails, and then linear combinations of these appearances might indicate the
existence of an animal.

Summarization and histograms

Histograms summarize statistics about counts in data. These serve as a
method for both reducing the dimensionality of an input and removing
noise in the data. For instance, if a feature vector was the temperature in a
location over a year, this could be converted into a histogram of temperatures
which might better discriminate between locations. As another example,
we could downsample an image by making a histogram of the amount of
certain colors in local regions of the image.

Bag of words

We could summarize a piece of text by summing up the one-hot encoding
of each word that occurs in the text. The resulting vector would have entries
where each component is the number of times the associated word appears
in the document. This is a bag of words representation of the document.
A related representation that might take the structure of text better into

54

account might have a bag of words for every paragraph or some shorter-
length contiguous context.

Bag of words representations are surprisingly powerful. For example,
documents about sports tend to have a different vocabulary than documents
about fashion, and hence are far away from each other in such an embedding.
Since the number of unique words in any given document is much less than
all possible words, bag-of-words representations can be reasonably compact
and sparse. The representations of text as large-dimensional sparse vectors
can be deployed for predicting topics and sentiment.

Downsampling/pooling

Another way to summarize and reduce dimension is to locally average a
signal or image. This is called downsampling. For example, we could
break an image into 2x2 grids, and take the average or maximum value in
each grid. This would reduce the image size by a factor of 4, and would
summarize local variability in the image.

Nonlinear predictors

Once we have a feature vector x that we feel adequately compresses and
summarizes our data, the next step is building a prediction function f (x).
The simplest such predictors are linear functions of x, and linear functions
are quite powerful: all of the transformations we have thus far discussed
in this chapter often suffice to arrange data such that linear decision rules
have high accuracy.

However, we oftentimes desire further expressivity brought by more
complex decision rules. We now discuss many techniques that can be used
to build such nonlinear rules. Our emphasis will highlight how most of
these operations can be understood as embedding data in spaces where
linear separation is possible. That is: we seek a nonlinear transformation of
the feature vector so that linear prediction works well on the transformed
features.

Polynomials

Polynomials are simple and natural nonlinear predictors. Consider the
dataset in the figure below. Here the data clearly can’t be separated by a
linear function, but a quadratic function would suffice. Indeed, we’d just
use the rule that if (x1 − c1)

2 + (x2 − c2)
2 ≤ c3 then (x1, x2) would have

label y = 1. This rule is a quadratic function of (x1, x2).

55

−1 0 1

−1.0

−0.5

0.0

0.5

1.0

Figure 13: A cartoon classification problem for polynomial classification.
Here, the blue dot denotes the center of the displayed circle.

To fit quadratic functions, we only need to fit the coefficients of the
function. Every quadratic function can be written as a sum of quadratic
monomials. This means that we can write quadratic function estimation as
fitting a linear function to the feature vector:

Φpoly
2 (x) =

[
1 x1 x2 x2

1 x1x2 x2
2
]T

Any quadratic function can be written as wTΦpoly
2 (x) for some w. The

map Φpoly
2 is a lifting function that transforms a set of features into a more

expressive set of features.
The features associated with the quadratic polynomial lifting function

have an intuitive interpretation as crossproducts of existing features. The
resulting prediction function is a linear combination of pairwise products
of features. Hence, these features capture co-occurrence and correlation of
a set of features.

The number of coefficients of a generic quadratic function in d dimen-
sions is (

d + 2
2

)
,

which grows quadratically with dimension. For general degree p polyno-
mials, we could construct a lifting function Φpoly

p (x) by listing all of the
monomials with degree at most p. Again, any polynomial of degree p can

56

be written as wTΦpoly
p (x) for some w. In this case, Φpoly

p (x) would have(
d + p

p

)
terms, growing roughly as dp. It shouldn’t be too surprising to see that as
the degree of the polynomial grows, increasingly complex behavior can be
approximated.

How many features do you need?

Our discussion of polynomials led with the motivation of creating nonlinear
decision boundaries. But we saw that we could also view polynomial
boundaries as taking an existing feature set and performing a nonlinear
transformation to embed that set in a higher dimensional space where we
could then search for a linear decision boundary. This is why we refer to
nonlinear feature maps as lifts.

Given expressive enough functions, we can always find a lift such that a
particular dataset can be mapped to any desired set of labels. How high of
a dimension is necessary? To gain insights into this question, let us stack
all of the data points x1, . . . , xn ∈ Rd into a matrix X with n rows and d
columns. The predictions across the entire dataset can now be written as

ŷ = Xw .

If the xi are linearly independent, then as long as d ≥ n, we can make
any vector of predictions y by finding a corresponding vector w. For the
sake of expressivity, the goal in feature design will be to find lifts into high
dimensional space such that our data matrix X has linearly independent
columns. This is one reason why machine learning practitioners lean
towards models with more parameters than data points. Models with more
parameters than data points are called overparameterized.

As we saw in the analysis of the perceptron, the key quantities that
governed the number of mistakes in the perceptron algorithm were the
maximum norm of xk and the norm of the optimal w. Importantly, the
dimension of the data played no role. Designing features where w has
controlled norm is a domain specific challenge, but has nothing to do with
dimension. As we will see in the remainder of this book, high dimensional
models have many advantages and few disadvantages in the context of
prediction problems.

Basis functions

Polynomials are an example of basis functions. More generally, we can
write prediction functions as linear combinations of B general nonlinear

57

functions {bk}:

f (x) =
B

∑
k=1

wkbk(x)

In this case, there is again a lifting function Φbasis(x) into B dimensions
where the kth component is equal to bk(x) and f (x) = wTΦbasis(x). There
are a variety of basis functions used in numerical analysis including trigono-
metric polynomials, spherical harmonics, and splines. The basis function
most suitable for a given task is often dictated by prior knowledge in the
particular application domain.

A particularly useful set in pattern classification are the radial basis
functions. A radial basis function has the form

bz(x) = φ(‖x− z‖)

where z ∈ Rd and φ : R→ R. Most commonly,

φ(t) = e−γt2

for some γ > 0. In this case, given z1, . . . , zk, our functions take the form

fk(x) =
k

∑
j=1

wje−γ‖x−zj‖2
.

Around each anchor point zk, we place a small Gaussian bump. Combin-
ing these bumps with different weights allows us to construct arbitrary
functions.

How to choose the zk? In low dimensions, zk could be placed on a regular
grid. But the number of bases would then need to scale exponentially with
dimension. In higher dimensions, there are several other possibilities. One
is to use the set of training data. This is well motivated by the theory of
reproducing kernels. Another option would be to pick the zk at random,
inducing random features. A third idea would be to search for the best zi.
This motivates our study of neural networks. As we will now see, all three of
these methods are powerful enough to approximate any desired function,
and they are intimately related to each other.

Kernels

One way around high dimensionality is to constrain the space of prediction
function to lie in a low dimensional subspace. Which subspace would be
useful? In the case of linear functions, there is a natural choice: the span of
the training data. By the fundamental theorem of linear algebra, any vector

58

0 2 4 6

−1.0

−0.5

0.0

0.5

1.0
sin(x)
approximation

Figure 14: Radial Basis Function approximation of sin(x). We plot the four
Gaussian bumps that sum to approximate the function.

in Rd can be written as sum of a vector in the span of the training data and
a vector orthogonal to all of the training data. That is,

w =
n

∑
i=1

αixi + v

where v is orthogonal to the xi. But if v is orthogonal to every training data
point, then in terms of prediction,

wTxi =
n

∑
j=1

αjxT
j xi .

That is, the v has no bearing on in-sample prediction whatsoever. Also
note that prediction is only a function of the dot products between the
training data points. In this section, we consider a family of prediction
functions built with such observations in mind: we will look at functions
that expressly let us compute dot products between liftings of points, noting
that our predictions will be linear combinations of such lifted dot products.

Let Φ(x) denote any lifting function. Then

k(x, z) := Φ(x)TΦ(z)

is called the kernel function associated with the feature map Φ. Such kernel
functions have the property that for any x1, . . . , xn, the matrix K with entries

Kij = k(xi, xj)

59

is positive semidefinite. This turns out to be the key property to define
kernel functions. We say a symmetric function k : Rd ×Rd → R is a kernel
function if it has this positive semidefiniteness property.

It is clear that positive combinations of kernel functions are kernel
functions, since this is also true for positive semidefinite matrices. It is also
true that if k1 and k2 are kernel functions, then so is k1k2. This follows
because the elementwise product of two positive semidefinite matrices is
positive semidefinite.

Using these rules, we see that the function

k(x, z) = (a + bxTz)p

where a, b ≥ 0, p a positive integer is a kernel function. Such kernels are
called a polynomial kernels. For every polynomial kernel, there exists an
associated lifting function Φ with each coordinate of Φ being a monomial
such that

k(x, z) = Φ(x)TΦ(z) .

As a simple example, consider the 1-dimensional case of a kernel

k(u, v) = (1 + uv)2 .

Then k(u, v) = Φ(u)TΦ(v) for

Φ(u) =

 1√
2u

u2

 .

We can generalize polynomial kernels to Taylor Series kernels. Suppose
that the one dimensional function h has a convergent Taylor series for
all t ∈ [−R, R]:

h(t) =
∞

∑
j=1

ajtj

where aj ≥ 0 for all j. Then the function

k(x, z) = h(〈x, z〉)

is a positive definite kernel. This follows because each term 〈x, z〉j is a
kernel, and we are taking a nonnegative combination of these polynomial
kernels. The feature space of this kernel is the span of the monomials of
degrees where the aj are nonzero.

Two example kernels of this form are the exponential kernel

k(x, z) = exp(γ〈x, z〉)

60

and the arcsine kernel
k(x, z) = sin−1(〈x, z〉) ,

which is a kernel for x, z on the unit sphere.
Another important kernel is the Gaussian kernel:

k(x, z) = exp (− γ
2 ‖x− z‖2) .

The Gaussian kernel can be thought of as first lifting data using the expo-
nential kernel then projecting onto the unit sphere in the lifted space.

We note that there are many kernels with the same feature space. Any
Taylor Series kernel with positive coefficients will have the same set of
features. The feature space associated Gaussian kernel is equivalent to the
span of radial basis functions. What distinguishes the kernels beyond the
features they represent? The key is to look at the norm. Suppose we want
to find a fit of the form

f (xj) = wTΦ(xj) for j = 1, 2, . . . , n .

In the case when Φ maps into a space with more dimensions than the num-
ber of data points we have acquired, there will be an infinite number of w
vectors that perfectly interpolate the data. As we saw in our introduction to
supervised learning, a convenient means to pick an interpolator is to choose
the one with smallest norm. Let’s see how the norm interacts with the form
of the kernel. Suppose our kernel is a Taylor series kernel

h(t) =
∞

∑
j=1

aj〈x, z〉j .

Then the smaller aj, the larger the corresponding wj should have to be.
Thus, the aj in the kernel expansion govern how readily we allow each
feature in a least-norm fit. If we consider the exponential kernel with
parameter γ, then aj =

1
j! γ

j. Hence, for large values of γ, only low degree
terms will be selected. As we decrease γ, we allow for higher degree terms
to enter the approximation. Higher degree terms tend to be more sensitive
to perturbations in the data than lower degree ones, so γ should be set as
large as possible while still providing desirable predictive performance.

The main appeal of working with kernel representations is they translate
into simple algorithms with bounded complexity. Since we restrict our
attention to functions in the span of the data, our functions take the form

f (x) =
(
∑i αiΦ(xi)

T
)

Φ(x) = ∑i αik(xi, x) .

61

We can thus pose all of our optimization problems in terms of the coeffi-
cients αi. This means that any particular problem will have at most n param-
eters to search for. Even the norm of f can be computed without ever ex-
plicitly computing the feature embedding. Recall that when f (x) = wTΦ(x)
with w = ∑i αiΦ(xi), we have

‖w‖2 =
∥∥∥∑i αiΦ(xi)

∥∥∥2
= αTKα ,

where K is the matrix with ijth entry k(xi, xj). As we will see in the optimiza-
tion chapter, such representations turn out to be optimal in most machine
learning problems. Functions learned by ERM methods on kernel spaces
are weighted sums of the similarity (dot product) between the training data
and the new data. When k is a Gaussian kernel, this relationship is even
more evident: The optimal solution is simply a radial basis function whose
anchor points are given by the training data points.

Neural networks

Though the name originates from the study of neuroscience, modern neural
nets arguably have little to do with the brain. Neural nets are mathematically
a composition of differentiable functions, typically alternating between
componentwise nonlinearities and linear maps. The simplest example of a
neural network would be

f (x) = wTσ(Ax + b)

Where w and b are vectors, A is a matrix, and σ is a componentwise
nonlinearity, applying the same nonlinear function to each component of
its input.

The typically used nonlinearities are not Gaussian bumps. Indeed, until
recently most neural nets used sigmoid nonlinearities where σ(t) is some func-
tion that is 0 at negative infinity, 1 at positive infinity, and strictly increasing.
Popular choices of such functions include σ(t) = tanh(t) or σ(t) = 1

exp(−t)+1 .
More recently, another nonlinearity became overwhelmingly popular, the
rectified linear unit or ReLU:

σ(t) = max {t, 0}

This simple nonlinearity is easy to implement and differentiate in hardware.
Though these nonlinearities are all different, they all generate similar

function spaces that can approximate each other. In fact, just as was the
case with kernel feature maps, neural networks are powerful enough to
approximate any continuous function if enough bases are used. A simple

62

−2 0 2
0.0

0.2

0.4

0.6

0.8

1.0
f(t) = max(t+c,0)/2c - max(t-c,0)/2c

Figure 15: Creating a step function from ReLUs. Here, c=1/4.

argument by Cybenko clarifies why only a bit of nonlinearity is needed for
universal approximation.52

Suppose that we can approximate the unit step function u(t) = 1{t > 0}
as a linear combination of shifts of σ(t). A sigmoidal function like tanh is
already such an approximation and tanh(αt) converges to the unit step as α
approaches ∞. For ReLU functions we have for any c > 0 that

1
2c

max {t + c, 0} − 1
2c

max {t− c, 0} =

0 t < −c
1 t > c
t+c
2c otherwise

.

It turns out that approximation of such step functions is all that is needed
for universal approximation.

To see why, suppose we have a nonzero function g that is not well-
approximated by a sum of the form

N

∑
i=1

wiσ(aT
i x + bi) .

This means that we must have a nonzero function f that lies outside the
span of sigmoids. We can take f to be the projection of g onto the orthogonal
complement of the span of the sigmoidal functions. This function f will
satisfy ∫

σ(aTx + b) f (x)dx = 0

for all vectors a and scalars b. In turn, since our nonlinearity can approxi-
mate step functions, this implies that for any a and any t0 and t1,∫

1{t0 ≤ aTx ≤ t1} f (x)dx = 0 .

63

We can approximate any continuous function as a sum of the indicator
function of intervals, which means∫

h(aTx) f (x)dx = 0

for any continuous function h and any vector a. Using h(t) = exp(it) proves
that the Fourier transform of f is equal to zero, and hence that f itself equals
zero. This is a contradiction.

The core of Cybenko’s argument is a reduction to approximation in one
dimension. From this perspective, it suffices to find a nonlinearity that
can well-approximate “bump functions” which are nearly equal to zero
outside a specified interval and are equal to 1 at the center of the interval.
This opens up a variety of potential nonlinearities for use as universal
approximators.

While elegant and simple, Cybenko’s argument does not tell us how
many terms we need in our approximation. More refined work on this topic
was pursued in the 1990s. Barron53 used a similar argument about step
functions combined with a powerful randomized analysis due to Maurey.54

Similar results were derived for sinusoids55 by Jones and ReLU networks56

by Breiman. All of these results showed that two-layer networks sufficed for
universal approximation, and quantified how the number of basis functions
required scaled with respect to the complexity of the approximated function.

Random features

Though the idea seems a bit absurd, a powerful means of choosing basis
function is by random selection. Suppose we have a parametric family
of basis functions b(x; ϑ). A random feature map chooses ϑ1, . . . , ϑD from
some distribution on ϑ, and use the feature map

Φrf(x) =

b(x; ϑ1)
b(x; ϑ2)

...
b(x; ϑD)

 .

The corresponding prediction functions are of the form

f (x) =
D

∑
k=1

wkb(x; ϑk)

which looks very much like a neural network. The main difference is a mat-
ter of emphasis: here we are stipulating that the parameters ϑk are random

64

variables, whereas in neural networks, ϑk would be considered parameters
to be determined by the particular function we aim to approximate.

Why might such a random set of functions work well to approximate
complex functional behavior? First, from the perspective of optimization, it
might not be too surprising that a random set of nonlinear basis functions
will be linearly independent. Hence, if we choose enough of them, we
should be able to fit any set of desired labels.

Second, random feature maps are closely connected with kernel spaces.
The connections were initially drawn out in work by Rahimi and Recht.57, 58

Any random feature map generates an empirical kernel, Φrf(x)TΦrf(z). The
expected value of this kernel can be associated with some Reproducing
Kernel Hilbert Space.

E[1
D Φrf(x)TΦrf(z)] = E

[
1
D

D

∑
k=1

b(x; ϑk)b(z; ϑk)

]
= E[b(x; ϑ1)b(z; ϑ1)]

=
∫

p(ϑ)b(x; ϑ)b(z; ϑ)dϑ

In expectation, the random feature map yields a kernel given by the final
integral expressions. There are many interesting kernels that can be written
as such an integral. In particular, the Gaussian kernel would arise if

p(ϑ) = N (0, γI)

b(x; ϑ) = [cos(ϑTx), sin(ϑTx)]

To see this, recall that the Fourier transform of a Gaussian is a Gaussian,
and write:

k(x, z)

= exp(−γ
2 ‖x− z‖2)

=
1

(2πγ)d/2

∫
e−
‖v‖2

2γ exp(ivT(x− z))dv

=
1

(2πγ)d/2

∫
e−
‖v‖2

2γ

{
cos(vTx) cos(vTz) + sin(vTx) sin(vTz)

}
dv .

This calculation gives new insights into the feature space associated with a
Gaussian kernel. It shows that the Gaussian kernel is a continuous mixture
of inner products of sines and cosines. The sinusoids are weighted by
a Gaussian function on their frequency: high frequency sinusoids have
vanishing weight in this expansion. The parameter γ controls how quickly
the higher frequencies are damped. Hence, the feature space here can be

65

−1.0 −0.5 0.0 0.5 1.0
cos(angle)

0.0

0.2

0.4

0.6

0.8

1.0

k(
an

gl
e)

relu
Gaussian

Figure 16: Comparison of the Gaussian and Arccosine Kernels. Plotting the
kernel value as a function of the angle between two unit norm vectors.

thought of as low frequency sinusoids. If we sample a frequency from a
Gaussian distribution, it will be low frequency (i.e., have small norm) with
high probability. Hence, a random collection of low frequency sinusoids
approximately spans the same space as that spanned by a Gaussian kernel.

If instead of using sinusoids, we chose our random features to be
ReLU(vTx), our kernel would become

k(x, z) =
1

(2π)d/2

∫
exp

(
−‖v‖

2

2

)
ReLU(vTx)ReLU(vTz)dv

= ‖x‖‖z‖ {sin(ϑ) + (π − ϑ) cos(ϑ)} ,

where

ϑ = cos−1
(〈x, z〉
‖x‖‖z‖

)
.

This computation was first made by Cho and Saul.59 Both the Gaussian
kernel and this “ReLU kernel” are universal Taylor kernels, and, when
plotted, we see even are comparable on unit norm data.

Prediction functions built with random features are just randomly wired
neural networks. This connection is useful for multiple reasons. First,
as we will see in the next chapter, optimization of the weights wk is far
easier than joint optimization of the weights and the parameters ϑ. Second,
the connection to kernel methods makes the generalization properties of
random features straightforward to analyze. Third, much of the recent

66

theory of neural nets is based on connections between random feature
maps and the randomization at initialization of neural networks. The main
drawback of random features is that, in practice, they often require large
dimensions before they provide predictions on par with neural networks.
These tradeoffs are worth considering when designing and implementing
nonlinear prediction functions.

Returning to the radial basis expansion

f (x) =
k

∑
j=1

wje−γ‖x−zj‖2
,

we see that this expression could be a neural network, a kernel machine,
or a random feature network. The main distinction between these three
methods is how the zj are selected. Neural nets search require some sort of
optimization procedure to find the zj. Kernel machines place the zj on the
training data. Random features select zj at random. The best choice for any
particular prediction problem will always be dictated by the constraints of
practice.

Chapter notes

To our knowledge, there is no full and holistic account of measurement and
quantization, especially when quantization is motivated by data science
applications. From the statistical signal processing viewpoint, we have a full
and complete theory of quantization in terms of understanding what signals
can be reconstructed from digital measurements. The Nyquist-Shannon
theory allows us to understand what parts of signals may be lost and what
artifacts are introduced. Such theory is now canon in undergraduate courses
on signal processing. See, e.g., Oppenheim and Willsky.60 For task-driven
sampling, the field remains quite open. The theory of compressive sensing
led to many recent and exciting developments in this space, showing that
task-driven sampling where we combined domain knowledge, computation,
and device design could reduce the data acquisition burdens of many
pattern recognition tasks.61 The theory of experiment design and survey
design has taken some cues from task-driven sampling.

Reproducing kernels have been used in pattern recognition and machine
learning for nearly as long as neural networks. Kernels and Hilbert spaces
were first used in time series prediction in the late 1940s, with fundamental
work by Karhunen–Loève showing that the covariance function of a time
series was a Mercer Kernel.62, 63 Shortly thereafter, Reproducing Kernel
Hilbert Spaces were formalized by Aronszajn in 1950.64 Parzen was likely

67

the first to show that time series prediction problem could be reduced to
solving a least-squares problem in an RKHS and hence could be computed
by solving a linear system.65 Wahba’s survey of RKHS techniques in statis-
tics covers many other developments post-Parzen.66 For further reading on
the theory and application of kernels in machine learning consult the texts
by Schölkopf and Smola67 and Shawe-Taylor and Cristianini.68

Also since its inception, researchers have been fascinated by the ap-
proximation power of neural networks. Rosenblatt discussed properties
of universal approximation in his monograph on neurodynamics.41 It was
in the 80s when it became clear that though neural networks were able
to approximate any continuous function, they needed to be made more
complex and intricate in order to achieve high quality approximation. Cy-
benko provided a simple proof that neural nets were dense in the space of
continuous functions, though did not estimate how large such networks
might need to be.52 An elegant, randomized argument by Maurey54 led to
a variety of approximation results which quantified how many basis terms
were needed. Notably, Jones showed that a simple greedy method could
approximate any continuous function with a sum of sinusoids.55 Barron
shows that similar greedy methods could be used53 to build neural nets that
approximated any function. Breiman analyzed ReLU networks using the
same framework.56 The general theory of approximation by bases is rich,
and a Pinkus’ book details some of the necessary and sufficient conditions
to achieve high quality approximations with as few bases as possible.69

That randomly wired neural networks could solve pattern recognition
problems also has a long history. Minsky’s first electronic neural network,
SNARC, was randomly wired. The story of SNARC (Stochastic Neural Ana-
log Reinforcement Calculator) is rather apocryphal. There are no known
photographs of the assembled device, although a 2019 article by Akst has a
picture of one of the “neurons”.70 The commonly referenced publication,
a Harvard technical report, appears to not be published. However, the
“randomly wired” story lives on, and it is one that Minsky told countless
times through his life. Many years later, Rahimi and Recht built upon the
approximation theory of Maurey, Barron, and Jones to show that random
combinations of basis functions could approximate continuous functions
well, and that such random combinations could be thought of as approxi-
mately solving prediction problems in a RKHS.58, 57, 71 This work was later
used as a means to understand neural networks, and, in particular, the
influence of their random initializations. Daniely et al. computed the kernel
spaces associated with that randomly initialized neural networks,72 and Ja-
cot et al. pioneered a line of work using kernels to understand the dynamics
of neural net training.73

There has been noted cultural tension between the neural-net and kernel

68

“camps.” For instance, the tone of the introduction of work by Decoste and
Schölkopf telegraphs a disdain by neural net proponents of the Support
Vector Machine.74

Initially, SVMs had been considered a theoretically elegant spin-
off of the general but, allegedly, largely useless VC-theory of
statistical learning. In 1996, using the first methods for incorpo-
rating prior knowledge, SVMs became competitive with the state
of the art in the handwritten digit classification benchmarks that
were popularized in the machine learning community by AT&T
and Bell Labs. At that point, practitioners who are not interested
in theory, but in results, could no longer ignore SVMs.

With the rise of deep learning, however, there are a variety of machine
learning benchmarks where SVMs or other kernel methods fail to match
the performance of neural networks. Many have dismissed kernel methods
as a framework whose time has past. However, kernels play an evermore
active role in helping to better understand neural networks and insights
from deep learning have helped to improve the power of kernel methods
on pattern recognition tasks.75 Neural nets and kernels are complementary,
and active research in machine learning aims to bring these two views more
closely together.

69

5
Optimization

In Chapter 2, we devised a closed form expression for the optimal decision
rule assuming we have a probability model for the data. Then we turned
to empirical risk minimization (ERM) where we instead rely on numerical
methods to discover good decision rules when we don’t have such a proba-
bility model. In this chapter, we take a closer look at how to solve empirical
risk minimization problems effectively. We focus on the core optimization
methods commonly used to solve empirical risk minimization problems
and on the mathematical tools used to analyze their running times.

Our main subject will be gradient descent algorithms and how to shape
loss functions so that gradient descent succeeds. Gradient descent is an
iterative procedure that iterates among possible models, at each step re-
placing the old model with one with lower empirical risk. We show that
the class of optimization problems where gradient descent is guaranteed
to find an optimal solution is the set of convex functions. When we turn to
risk minimization, this means that gradient descent will find the model that
minimizes the empirical risk whenever the loss function is convex and the
decision function is a linear combination of features.

We then turn to studying stochastic gradient descent, the workhorse of
machine learning. Stochastic gradient descent is effectively a generalization
of the perceptron learning rule. Its generality enables us to apply it to a
variety of function classes and loss functions and guarantee convergence
even if the data may not be separable. We spend a good deal of time looking
at the dynamics of the stochastic gradient method to try to motivate why it
is so successful and popular in machine learning.

Starting from the convex case, we work towards more general noncon-
vex problems. In particular, we highlight two salient features of gradient
descent and stochastic gradient descent that are particular to empirical risk
minimization and help to motivate the resilience of these methods.

First, we show that even for problems that are not convex, gradient
descent for empirical risk minimization has an implicit convexity property

70

that encourages convergence. Though we explicitly optimize over function
representations which are computationally intractable to optimize in the
worst-case, it turns out that we can still reason about the convergence of the
predictions themselves.

Second, we show that gradient descent implicitly manages the com-
plexity of the prediction function, encouraging solutions of low complexity
in cases where infinitely many solutions exist. We close the chapter with
a discussion of other methods for empirical risk minimization that more
explicitly account for model complexity and stable convergence.

Optimization basics

Stepping away from empirical risk minimization for a moment, consider
the general minimization problem

minimizew Φ(w)

where Φ : Rd → R is a real-valued function over the domain Rd.
When and how can we minimize such a function? Before we answer this

question, we need to formally define what we’re shooting for.

Definition 5. A point w? is a minimizer of Φ if Φ(w?) ≤ Φ(w) for all w. It
is a local minimizer of Φ if for some ε > 0, Φ(w?) ≤ Φ(w) for all w such
that ‖w− w?‖ ≤ ε.

Sometimes we will refer to minimizers as global minimizers to contrast against
local minimizers.

The figure below presents example functions and their minima. In
the first illustration, there is a unique minimizer. In the second, there
are an infinite number of minimizers, but all local minimizers are global
minimizers. In the third example, there are many local minimizers that are
not global minimizers.

Note that in our example, the two functions without suboptimal local
minimizers share the property that for any two points w1 and w2, the line
segment connecting (w1, Φ(w1)) to (w2, Φ(w2)) lies completely above the
graph of the function. Such functions are called convex functions.

Definition 6. A function Φ is convex if for all w1, w2 in Rd and α ∈ [0, 1],

Φ(αw1 + (1− α)w2) ≤ αΦ(w1) + (1− α)Φ(w2) .

We will see shortly that convex functions are the class of functions where
gradient descent is guaranteed to find an optimal solution.

71

global min infinitely many
global min

local min

global
min

Figure 17: Examples of minima of functions.

convex nonconvex

Figure 18: Convex vs nonconvex functions.

72

Gradient descent

Suppose we want to minimize a differentiable function Φ : Rd → R. Most
of the algorithms we will consider start at some point w0 and then aim to
find a new point w1 with a lower function value. The simplest way to do so
is to find a direction v such that Φ is decreasing when moving along the
direction v. This notion can be formalized by the following definition:

Definition 7. A vector v is a descent direction for Φ at w0 if Φ(w0 + tv) <
Φ(w0) for some t > 0.

For continuously differentiable functions, it’s easy to tell if v is a descent
direction: if vT∇Φ(w0) < 0 then v is a descent direction.

To see this note that by Taylor’s theorem,

Φ(w0 + αv) = Φ(w0) + α∇Φ(w0 + α̃v)Tv

for some α̃ ∈ [0, α]. By continuity, if α is small, we’ll have ∇Φ(w0 + α̃v)Tv <
0. Therefore Φ(w0 + αv) < Φ(w0) and v is a descent direction.

This characterization of descent directions allows us to provide condi-
tions as to when w minimizes Φ.

Proposition 4. The point w? is a local minimizer only if ∇Φ(w?) = 0 .

Why is this true? Well, the point −∇Φ(w?) is always a descent direction
if it’s not zero. If w? is a local minimum, there can be no descent directions.
Therefore, the gradient must vanish.

Gradient descent uses the fact that the negative gradient is always
a descent direction to construct an algorithm: repeatedly compute the
gradient and take a step in the opposite direction to minimize Φ.

Gradient Descent

• Start from an initial point w0 ∈ Rd.
• At each step t = 0, 1, 2, . . .:

– Choose a step size αt > 0
– Set wt+1 = wt − αt∇Φ(wt)

Gradient descent terminates whenever the gradient is so small that the
iterates wt no longer substantially change. Note now that there can be
points where the gradient vanishes but where the function is not minimized.
For example, maxima have this property. In general, points where the
gradient vanishes are called stationary points. It is critically important to
remember that not all stationary points are minimizers.

For convex Φ, the situation is dramatically simpler. This is part of the
reason why convexity is so appealing.

73

global min infinite
global min

local min

global
min

Figure 19: Examples of stationary points.

Proposition 5. Let Φ : Rd → R be a differentiable convex function. Then w? is a
global minimizer of Φ if and only if ∇Φ(w?) = 0.

Proof. To prove this, we need our definition of convexity: for any α ∈ [0, 1]
and w ∈ Rd,

Φ(w? + α(w− w?)) = Φ((1− α)w? + αw) ≤ (1− α)Φ(w?) + αΦ(w)

Here, the inequality is just our definition of convexity. Now, if we rearrange
terms, we have

Φ(w) ≥ Φ(w?) +
Φ(w? + α(w− w?))−Φ(w?)

α

Now apply Taylor’s theorem: there is now some α̃ ∈ [0, 1] such that Φ(w? +
α(w− w?))−Φ(w?) = α∇Φ(w? + α̃(w− w?))T(w− w?). Taking the limit
as α goes to zero yields

Φ(w) ≥ Φ(w?) +∇Φ(w?)
T(w− w?) .

But if ∇Φ(w?) = 0, that means, Φ(w) ≥ Φ(w?) for all w, and hence w?

is a global minimizer.

Tangent hyperplanes always fall below the graphs of convex functions.

Proposition 6. Let Φ : Rd → R be a differentiable convex function. Then for
any u and v, we have

Φ(u) ≥ Φ(v) +∇Φ(v)T(u− v) .

74

xz

Φ(x)

Φ(z)

Φ(x)+∇Φ(x)*(z-x)

Figure 20: Tangent planes to graphs of functions are defined by the gradient.

A convex function cookbook

Testing if a function is convex can be tricky in more than two dimensions.
But here are 5 rules that generate convex functions from simpler functions.
In machine learning, almost all convex cost functions are built using these
rules.

1. All norms are convex (this follows from the triangle inequality).

2. If Φ is convex and α ≥ 0, then αΦ is convex.

3. If Φ and Ψ are convex, then Φ + Ψ is convex.

4. If Φ and Ψ are convex, then h(w) = max{Φ(w), Ψ(w)} is convex.

5. If Φ is convex and A is a matrix and b is a vector, then the func-
tion h(w) = Φ(Aw + b) is convex.

All of these properties can be verified using only the definition of convex
functions. For example, consider the 4th property. This is probably the
trickiest of the list. Take two points w1 and w2 and α ∈ [0, 1]. Suppose,
without loss of generality, that Φ((1− α)w1 + αw2) ≥ Ψ((1− α)w1 + αw2)

h((1− α)w1 + αw2) = max{Φ((1− α)w1 + αw2), Ψ((1− α)w1 + αw2)}
= Φ((1− α)w1 + αw2)

≤ (1− α)Φ(w1) + αΦ(w2)

≤ (1− α)max{Φ(w1), Ψ(w1)}+ α max{Φ(w2), Ψ(w2)}
= (1− α)h(w1) + αh(w2)

75

Here, the first inequality follows because Φ is convex. Everything else
follows from the definition that h is the max of Φ and Ψ. The reader should
verify the other four assertions as an exercise. Another useful exercise is to
verify that the SVM cost in the next section is convex by just using these five
basic rules and the fact that the one dimensional function f (x) = mx + b is
convex for any scalars m and b.

Applications to empirical risk minimization

For decision theory problems, we studied the zero-one loss that counts
errors:

loss(ŷ, y) = 1{yŷ < 0}
Unfortunately, this loss is not useful for the gradient method. The gradient
is zero almost everywhere. As we discussed in the chapter on supervised
learning, machine learning practice always turns to surrogate losses that
are easier to optimize. Here we review three popular choices, all of which
are convex loss functions. Each choice leads to a different important opti-
mization problem that has been studied in its own right.

The support vector machine

Consider the canonical problem of support vector machine classification.
We are provided pairs (xi, yi), with xi ∈ Rd and yi ∈ {−1, 1} for i = 1, . . . n
(Note, the y labels are now in {−1, 1} instead of {0, 1}.) The goal is to find
a vector w ∈ Rd such that:

wTxi > 0 for yi = 1

wTxi < 0 for yi = −1

Such a w defines a half-space where we believe all of the positive examples
lie on one side and the negative examples on the other.

Rather than classifying these points exactly, we can allow some slack. We
can pay a penalty of 1− yiwTxi points that are not strongly classified. This
motivates the hinge loss we encountered earlier and leads to the support
vector machine objective:

minimizew

n

∑
i=1

max
{

1− yiwTxi, 0
}

.

Defining the function e(z) = 1{z ≤ 1}, we can compute that the gradient of
the SVM cost is

−
n

∑
i=1

e(yiwTxi)yixi .

76

Hence, gradient descent for this ERM problem would follow the iteration

wt+1 = wt + α
n

∑
i=1

e(yiwTxi)yixi

Although similar, note that this isn’t quite the perceptron method yet. The
time to compute one gradient step is O(n) as we sum over all n inner
products. We will soon turn to the stochastic gradient method that has
constant iteration complexity and will subsume the perceptron algorithm.

Logistic regression

Logistic regression is equivalent to using the loss function

loss(ŷ, y) = log (1 + exp(−yŷ)) .

Note that even though this loss has a probabilistic interpretation, it can also
just be seen as an approximation to the error-counting zero-one loss.

Least squares classification

Least squares classification uses the loss function

loss(ŷ, y) = 1
2(ŷ− y)2 .

Though this might seem like an odd approximation to the error-counting
loss, it leads to the maximum a posteriori (MAP) decision rule when mini-
mizing the population risk. Recall the MAP rule selects the label that has
highest probability conditional on the observed data.

It is helpful to keep the next picture in mind that summarizes how each
of these different loss functions approximate the zero-one loss. We can
ensure that the squared loss is an upper bound on the zero-one loss by
dropping the factor 1/2.

Insights from quadratic functions

Quadratic functions are the prototypical example that motivate algorithms
for differentiable optimization problems. Though not all insights from
quadratic optimization transfer to more general functions, there are several
key features of the dynamics of iterative algorithms on quadratics that are
notable. Moreover, quadratics are a good test case for reasoning about
optimization algorithms: if a method doesn’t work well on quadratics, it

77

−2 0 2 4
ŷy

0

1

2

3

4
Hinge

−2 0 2 4
ŷy

0

1

2

3

4
Logistic

−2 0 2 4
ŷy

0

1

2

3

4
Squared

Figure 21: Three different convex losses compared with the zero-one loss.

typically won’t work well on more complicated nonlinear optimization
problems. Finally, note that ERM with linear functions and a squared loss
is a quadratic optimization problem, so such problems are indeed relevant
to machine learning practice.

The general quadratic optimization problem takes the form

Φ(w) = 1
2 wTQw− pTw + r ,

where Q is a symmetric matrix, p is a vector, and r is a scalar. The scalar r
only affects the value of the function, and plays no role in the dynamics of
gradient descent. The gradient of this function is

∇Φ(w) = Qw− p .

The stationary points of Φ are the w where Qw = p. If Q is full rank, there
is a unique stationary point.

The gradient descent algorithm for quadratics follows the iterations

wt+1 = wt − α(Qwt − p) .

If we let w? be any stationary point of Φ, we can rewrite this iteration as

wt+1 − w? = (I − αQ)(wt − w?) .

Unwinding the recursion yields the “closed form” formula for the gradient
descent iterates

wt − w? = (I − αQ)t(w0 − w?) .

This expression reveals several possible outcomes. Let λ1 ≥ λ2 ≥ . . . ≥
λd denote the eigenvalues of Q. These eigenvalues are real because Q is

78

symmetric. First suppose that Q has a negative eigenvalue λd < 0 and v
is an eigenvector such that Qv = λdv. Then (I − αQ)tv = (1 + α|λd|)tv
which tends to infinity as t grows. This is because 1+ α|λd| is greater than 1
if α > 0. Hence, if 〈v, w0−w?〉 6= 0, gradient descent diverges. For a random
initial condition w0, we’d expect this dot product will not equal zero, and
hence gradient descent will almost surely not converge from a random
initialization.

In the case that all of the eigenvalues of Q are positive, then choosing α
greater than zero and less than 1/λ1 will ensure that 0 ≤ 1− αλk < 1 for
all k. In this case, the gradient method converges exponentially quickly to
the optimum w? :

‖wt+1 − w?‖ = ‖(I − αQ)(wt − w?)‖

≤ ‖I − αQ‖‖wt − w?‖ ≤
(

1− λd
λ1

)
‖wt − w?‖ .

When the eigenvalues of Q are all positive, the function Φ is strongly convex.
Strongly convex functions turn out to be the set of functions where gradient
descent with a constant step size converges exponentially from any starting
point.

Note that the ratio of λ1 to λd governs how quickly all of the components
converge to 0. Defining the condition number of Q to be κ = λ1/λd and
setting the step size α = 1/λ1, gives the bound

‖wt − w?‖ ≤
(

1− κ−1
)t
‖w0 − w?‖ .

This rate reflects what happens in practice: when there are small singular
values, gradient descent tends to bounce around and oscillate as shown
in the figure below. When the condition number of Q is small, gradient
descent makes rapid progress towards the optimum.

There is one final case that’s worth considering. When all of the eigen-
values of Q are nonnegative but some of them are zero, the function Φ is
convex but not strongly convex. In this case, exponential convergence to a
unique point cannot be guaranteed. In particular, there will be an infinite

79

number of global minimizers of Φ. If w? is a global minimizer and v is any
vector with Qv = 0, then w? + v is also a global minimizer. However, in the
span of the eigenvectors corresponding to positive eigenvalues, gradient
descent still converges exponentially. For general convex functions, it will
be important to consider different parts of the parameter space to fully
understand the dynamics of gradient methods.

Stochastic gradient descent

The stochastic gradient method is one of the most popular algorithms for
contemporary data analysis and machine learning. It has a long history and
has been “invented” several times by many different communities (under
the names “least mean squares,” “backpropagation,” “online learning,”
and the “randomized Kaczmarz method”). Most researchers attribute this
algorithm to the initial work of Robbins and Monro from 1951 who solved
a more general problem with the same method.76

Consider again our main goal of minimizing the empirical risk with
respect to a vector of parameters w, and consider the simple case of linear
classification where w is d-dimensional and

f (xi; w) = wTxi .

The idea behind the stochastic gradient method is that since the gradient
of a sum is the sum of the gradients of the summands, each summand
provides useful information about how to optimize the total sum. Stochastic
gradient descent minimizes empirical risk by following the gradient of the
risk evaluated on a single, random example.

Stochastic Gradient Descent

• Start from an initial point w0 ∈ Rd.
• At each step t = 0, 1, 2, . . .:

– Choose a step size αt > 0 and random index i ∈ [n].
– Set wt+1 = wt − αt∇wt loss(f (xi; wt), yi)

The intuition behind this method is that by following a descent direction
in expectation, we should be able to get close to the optimal solution if we
wait long enough. However, it’s not quite that simple. Note that even when
the gradient of the sum is zero, the gradients of the individual summands
may not be. The fact that w? is no longer a fixed point complicates the
analysis of the method.

80

Example: revisiting the perceptron

Let’s apply the stochastic gradient method to the support vector machine
cost loss. We initialize our half-space at some w0. At iteration t, we choose
a random data point (xi, yi) and update

wt+1 = wt + η

{
yixi if yiwT

t xi ≤ 1
0 otherwise

As we promised earlier, we see that using stochastic gradient descent
to minimize empirical risk with a hinge loss is completely equivalent to
Rosenblatt’s Perceptron algorithm.

Example: computing a mean

Let’s now try to examine the simplest example possible. Consider applying
the stochastic gradient method to the function

1
2n

n

∑
i=1

(w− yi)
2 ,

where y1, . . . , yn are fixed scalars. This setup corresponds to a rather simple
classification problem where the x features are all equal to 1. Note that the
gradient of one of the increments is

∇loss(f (xi; w), y) = w− yi .

To simplify notation, let’s imagine that our random samples are coming
to us in order {1, 2, 3, 4, ...} Start with w1 = 0, use the step size αk = 1/k.
We can then write out the first few equations:

w2 = w1 − w1 + y1 = y1

w3 = w2 −
1
2
(w2 − y2) =

1
2

y1 +
1
2

y2

w4 = w3 −
1
3
(w3 − y3) =

1
3

y1 +
1
3

y2 +
1
3

y3

Generalizing from here, we can conclude by induction that

wk+1 =

(
k− 1

k

)
wk +

1
k

yk =
1
k

k

∑
i=1

yi .

After n steps, wn is the mean of the yi, and you can check by taking a
gradient that this is indeed the minimizer of the ERM problem.

81

The 1/k step size was the originally proposed step size by Robbins and
Monro. This simple example justifies why: we can think of the stochastic
gradient method as computing a running average. Another motivation for
the 1/k step size is that the steps tend to zero, but the path length is infinite.

Moving to a more realistic random setting where the data might arrive
in any order, consider what happens when we run the stochastic gradient
method on the function

R(w) = 1
2E[(w−Y)2] .

Here Y is some random variable with mean µ and variance σ2. If we run
for k steps with i.i.d. samples Yi at each iteration, the calculation above
reveals that

wk =
1
k

k

∑
i=1

Yi .

The associated cost is

R(wk) =
1
2 E

(1
k

k

∑
i=1

Yi −Y

)2
 =

1
2k

σ2 +
1
2

σ2 .

Compare this to the minimum achievable risk R?. Expanding the definition

R(w) = 1
2E[w2 − 2Yw + Y2] = 1

2 w2 − µw + 1
2 σ2 + 1

2 µ2 ,

we find that the minimizer is w? = µ. Its cost is

R? = R(w?) =
1
2

σ2 ,

and after n iterations, we have the expected optimality gap

E [R(wn)− R?] =
1

2n
σ2 .

This is the best we could have achieved using any estimator for w? given the
collection of random draws. Interestingly, the incremental “one-at-a-time”
method finds as good a solution as one that considers all of the data to-
gether. This basic example reveals a fundamental limitation of the stochastic
gradient method: we can’t expect to generically get fast convergence rates
without additional assumptions. Statistical fluctuations themselves prevent
the optimality gap from decreasing exponentially quickly.

This simple example also helps give intuition on the convergence as we
sample stochastic gradients. The figure below plots an example of each
individual term in the summand, shaded with colors of blue to distinguish

82

Figure 22: Plot of the different increments of 1
2n ∑n

i=1(w− yi)
2. The red star

denotes the optimal solution.

each term. The minimizing solution is marked with a red star. To the far
left and far right of the figure, all of the summands will have gradients
pointing in the same direction to the solution. However, as our iterate gets
close to the optimum, we will be pointed in different directions depending
on which gradient we sample. By reducing the step size, we will be more
likely to stay close and eventually converge to the optimal solution.

Example: Stochastic minimization of a quadratic function

Let’s consider a more general version of stochastic gradient descent that
follows the gradient plus some unbiased noise. We can model the algorithm
as minimizing a function Φ(w) where we follow a direction ∇Φ(w) + ν
where ν is a random vector with mean zero and E[‖ν‖2] = σ2. Consider
the special case where Φ(w) is a quadratic function

Φ(w) = 1
2 wTQw− pTw + r .

Then the iterations take the form

wt+1 = wt − α(Qwt − p + νt) .

Let’s consider what happens when Q is positive definite with maximum
eigenvalue λ1 and minimum eigenvalue λd > 0. Then, if w? is a global
minimizer of Φ, we can again rewrite the iterations as

wt+1 − w? = (I − αQ)(wt − w?)− ανt .

Since we assume that the noise νt is independent of all of the wk with k ≤ t,
we have

E[‖wt+1 − w?‖2] ≤ ‖I − αQ‖2
E[‖wt − w?‖2] + α2σ2 .

83

which looks like the formula we derived for quadratic functions, but now
with an additional term from the noise. Assuming α < 1/λ1, we can
unwind this recursion to find

E[‖wt − w?‖2] ≤ (1− αλd)
2t‖w0 − w?‖2 +

ασ2

λd
.

From this expression, we see that gradient descent converges exponentially
quickly to some ball around the optimal solution. The smaller we make α,
the closer we converge to the optimal solution, but the rate of convergence
is also slower for smaller α. This tradeoff motivates many of the step size
selection rules in stochastic gradient descent. In particular, it is common to
start with a large step size and then successively reduce the step size as the
algorithm progresses.

Tricks of the trade

In this section, we describe key engineering techniques that are useful for
tuning the performance of stochastic gradient descent. Every machine
learning practitioner should know these simple tricks.

Shuffling. Even though we described the stochastic gradient method a
sampling each gradient with replacement from the increments, in practice
better results are achieved by simply randomly permuting the data points
and then running SGD in this random order. This is called “shuffling,” and
even a single shuffle can eliminate the pathological behavior we described
in the example with highly correlated data. Recently, beginning with work
by Gürbüzbalaban et al., researchers have shown that in theory, shuffling
outperforms independent sampling of increments.77 The arguments for
without-replacement sampling remain more complicated than the with-
replacement derivations, but optimal sampling for SGD remains an active
area of optimization research.

Step size selection. Step size selection in SGD remains a hotly debated
topic. We saw above a decreasing stepsize 1/k solved our simple one
dimensional ERM problem. However, a rule that works for an unreasonable
number of cases is to simply pick the largest step size which does not result
in divergence. This step will result in a model that is not necessarily optimal,
but significantly better than initialization. By slowly reducing the step size
from this initial large step size to successively smaller ones, we can zero in
on the optimal solution.

Step decay. The step size is usually reduced after a fixed number of
passes over the training data. A pass over the entire dataset is called an
epoch. In an epoch, some number of iterations are run, and then a choice is
made about whether to change the step size. A common strategy is to run

84

with a constant step size for some fixed number of iterations T, and then
reduce the step size by a constant factor γ. Thus, if our initial step size is α,
on the kth epoch, the step size is αγk−1. This method is often more robust
in practice than the diminishing step size rule. For this step size rule, a
reasonable heuristic is to choose γ between 0.8 and 0.9. Sometimes people
choose rules as aggressive as γ = 0.1.

Another possible schedule for the step size is called epoch doubling. In
epoch doubling, we run for T steps with step size α, then run 2T steps with
step size α/2, and then 4T steps with step size α/4 and so on. Note that
this provides a piecewise constant approximation to the function α/k.

Minibatching. A common technique used to take advantage of paral-
lelism is called minibatching. A minibatch is an average of many stochastic
gradients. Suppose at each iteration we sample a batchk with m data points.
The update rule then becomes

wk+1 = wk − αk
1
m ∑

j∈batchk

∇wloss(f (xj; wk), yj) .

Minibatching reduces the variance of the stochastic gradient estimate of
the true gradient, and hence tends to be a better descent direction. Of
course, there are tradeoffs in total computation time versus the size of the
minibatch, and these typically need to be handled on a case by case basis.

Momentum. Finally, we note that one can run stochastic gradient de-
scent with momentum. Momentum mixes the current gradient direction
with the previously taken step. The idea here is that if the previous weight
update was good, we may want to continue moving along this direction.
The algorithm iterates are defined as

wk+1 = wk − αkgk (wk) + β(wk + wk−1) ,

where gk denotes a stochastic gradient. In practice, these methods are very
successful. Typical choices for β here are between 0.8 and 0.95. Momentum
can provide significant accelerations, and should be considered an option
in any implementation of SGM.

The SGD quick start guide

Newcomers to stochastic gradient descent often find all of these design
choices daunting, and it’s useful to have simple rules of thumb to get going.
We recommend the following:

1. Pick as large a minibatch size as you can given your computer’s RAM.
2. Set your momentum parameter to either 0 or 0.9. Your call!

85

3. Find the largest constant stepsize such that SGD doesn’t diverge. This
takes some trial and error, but you only need to be accurate to within
a factor of 10 here.

4. Run SGD with this constant stepsize until the empirical risk plateaus.
5. Reduce the stepsize by a constant factor (say, 10)
6. Repeat steps 4 and 5 until you converge.

While this approach may not be the most optimal in all cases, it’s a great
starting point and is good enough for probably 90% of applications we’ve
encountered.

Analysis of the stochastic gradient method

We now turn to a theoretical analysis of the general stochastic gradient
method. Before we proceed, let’s set up some conventions. We will assume
that we are trying to minimize a convex function R : Rd → R. Let w?

denote any optimal solution of R. We will assume we gain access at every
iteration to a stochastic function g(w; ξ) such that

Eξ [g(w; ξ)] = ∇R(w) .

Here ξ is a random variable which determines what our direction looks like.
We additionally assume that these stochastic gradients are bounded so there
exists a non-negative constants B such that

‖g(w; ξ)‖ ≤ B .

We will study the stochastic gradient iteration

wt+1 = wt − αtg (wt; ξt) .

Throughout, we will assume that the sequence {ξ j} is selected i.i.d. from
some fixed distribution.

We begin by expanding the distance to the optimal solution:

‖wt+1 − w?‖2 = ‖wt − αtgt(wt; ξt)− w?‖2

= ‖wt − w?‖2 − 2αt〈gt(wt; ξt), wt − w?〉+ α2
t ‖gt(wt; ξt)‖2

We deal with each term in this expansion separately. First note that if
we apply the law of iterated expectation

E[〈gt(wt; ξt), wt − w?〉] = E
[
Eξt [〈gt(wt; ξt), wt − w?〉 | ξ0, . . . , ξt−1]

]
= E

[
〈Eξt [gt(wt; ξt) | ξ0, . . . , ξt−1], wt − w?〉

]
= E [〈∇R(wt), wt − w?〉] .

86

Here, we are simply using the fact that ξt being independent of all of
the preceding ξi implies that it is independent of wt. This means that
when we iterate the expectation, the stochastic gradient can be replaced by
the gradient. The last term we can bound using our assumption that the
gradients are bounded:

E[‖g(wt; ξt)‖2] ≤ B2

Letting δt := E[‖wt − w?‖2], this gives

δt+1 ≤ δt − 2αtE [〈∇R(wt), wt − w?〉] + α2
t B2 .

Now let λt = ∑t
j=0 αj denote the sum of all the step sizes up to iteration t.

Also define the average of the iterates weighted by the step size

w̄t = λ−1
t

t

∑
j=0

αjwj .

We are going to analyze the deviation of R(w̄t) from optimality.
Also let ρ0 = ‖w0 − w?‖. ρ0 is the initial distance to an optimal solution.

It is not necessarily a random variable.
To proceed, we just expand the following expression:

E [R (w̄T)− R(w?)] ≤ E

[
λ−1

T

T

∑
t=0

αt(R(wt)− R(w?))

]

≤ λ−1
T

T

∑
t=0

αtE[〈∇R(xt), wt − w?〉]

≤ λ−1
T

T

∑
t=0

1
2(δt − δt+1) +

1
2 α2

t B2

=
δ0 − δT+1 + B2 ∑T

t=0 α2
t

2λT

≤ ρ2
0 + B2 ∑T

t=0 α2
t

2 ∑T
t=0 αt

Here, the first inequality follows because R is convex (the line segments lie
above the function, i.e., R(w?) ≥ R(wt) + 〈∇R(wt), wt − w?〉). The second
inequality uses the fact that gradients define tangent planes to R and always
lie below the graph of R, and the third inequality uses the recursion we
derived above for δt.

The analysis we saw gives the following result.78

87

Theorem 3. Suppose we run the SGM on a convex function R with minimum
value R? for T steps with step size α. Define

αopt =
ρ0

B
√

T
and θ =

α

αopt
.

Then, we have the bound

E[R(w̄T)− R?] ≤
(

1
2 θ + 1

2 θ−1
) Bρ0√

T
.

This proposition asserts that we pay linearly for errors in selecting the
optimal constant step size. If we guess a constant step size that is two-times
or one-half of the optimal choice, then we need to run for at most twice as
many iterations. The optimal step size is found by minimizing our upper
bound on the suboptimality gap. Other step sizes could also be selected
here, including diminishing step size. But the constant step size turns out
to be optimal for this upper bound.

What are the consequences for risk minimization? First, for empirical risk,
assume we are minimizing a convex loss function and searching for a linear
predictor. Assume further that there exists a model with zero empirical risk.
Let C be the maximum value of the gradient of the loss function, D be the
largest norm of any example xi and let ρ denote the minimum norm w such
that RS[w] = 0. Then we have

E[RS[w̄T]] ≤
CDρ√

T
.

we see that with appropriately chosen step size, the stochastic gradient
method converges at a rate of 1/

√
T, the same rate of convergence observed

when studying the one-dimensional mean computation problem. Again,
the stochasticity forces us into a slow, 1/

√
T rate of convergence, but high

dimensionality does not change this rate.
Second, if we only operate on samples exactly once, and we assume our

data is i.i.d., we can think of the stochastic gradient method as minimizing
the population risk instead of the empirical risk. With the same notation,
we’ll have

E[R[w̄T]]− R? ≤
CDρ√

T
.

The analysis of stochastic gradient gives our second generalization bound of
the book. What it shows is that by optimizing over a fixed set of T data
points, we can get a solution that will have low cost on new data. We will
return to this observation in the next chapter.

88

Implicit convexity

We have thus far focused on convex optimization problems, showing that
gradient descent can find global minima with modest computational means.
What about nonconvex problems? Nonconvex optimization is such a general
class of problems that in general it is hard to make useful guarantees.
However, ERM is a special optimization problem, and its structure enables
nonconvexity to enter in a graceful way.

As it turns out there’s a “hidden convexity” of ERM problems which
shows that the predictions should converge to a global optimum even if
we can’t analyze to where exactly the model converges. We will show
this insight has useful benefits when models are overparameterized or
nonconvex.

Suppose we have a loss function loss that is equal to zero when ŷ = y
and is nonnegative otherwise. Suppose we have a generally parameterized
function class { f (x; w) : w ∈ Rd} and we aim to find parameters w that
minimize the empirical risk. The empirical risk

RS[w] =
1
n

n

∑
i=1

loss(f (xi; w), yi)

is bounded below by 0. Hence if we can find a solution with f (xi; w) = yi for
all i, we would have a global minimum not a local minimum. This is a trivial
observation, but one that helps focus our study. If during optimization all
predictions f (xi; w) converge to yi for all i, we will have computed a global
minimizer. For the sake of simplicity, we specialize to the square loss in this
section:

loss(f (xi; w), yi) =
1
2(f (xi; w)− yi)

2

The argument we develop here is inspired by the work of Du et al. who
use a similar approach to rigorously analyze the convergence of two layer
neural networks.79 Similar calculations can be made for other losses with
some modifications of the argument.

Convergence of overparameterized linear models

Let’s first consider the case of linear prediction functions

f (x; w) = wTx .

Define

y =

y1
...

yn

 and X =

xT
1
...

xT
n

 .

89

We can then write the empirical risk objective as

RS[w] =
1

2n
‖Xw− y‖2 .

The gradient descent update rule has the form

wt+1 = wt − αXT(Xwt − y) .

We pull the scaling factor 1/n into the step size for notational convenience.
Now define the vector of predictions

ŷt =

 f (x1; wt)
...

f (xn; wt)

 .

For the linear case, the predictions are given by ŷk = Xwk. We can use this
definition to track the evolution of the predictions instead of the parameters w.
The predictions evolve according to the rule

ŷt+1 = ŷt − αXXT(ŷt − y) .

This looks a lot like the gradient descent algorithm applied to a strongly
convex quadratic function that we studied earlier. Subtracting y from both
sides and rearranging shows

ŷt+1 − y = (I − αXXT)(ŷt − y) .

This expression proves that as long as XXT is strictly positive definite and α
is small enough, then the predictions converge to the training labels. Keep in
mind that X is n× d and a model is overparameterized if d > n. The n× n
matrix XXT has a chance of being strictly positive definite in this case.

When we use a sufficiently small and constant step size α, our predictions
converge at an exponential rate. This is in contrast to the behavior we saw for
gradient methods on overdetermined problems. Our general analysis of the
weights showed that the convergence rate might be only inverse polynomial
in the iteration counter. In the overparameterized regime, we can guarantee
the predictions converge more rapidly than the weights themselves.

The rate in this case is governed by properties of the matrix X. As we
have discussed we need the eigenvalues of XXT to be positive, and we’d
ideally like that the eigenvalues are all of similar magnitude.

First note that a necessary condition is that d, the dimension, must be
larger than n, the number of data points. That is, we need to have an over-
parameterized model in order to ensure exponentially fast convergence of

90

the predictions. We have already seen that such overparameterized models
make it possible to interpolate any set of labels and to always force the
data to be linearly separable. Here, we see further that overparameteriza-
tion encourages optimization methods to converge in fewer iterations by
improving the condition number of the data matrix.

Overparameterization can also help accelerate convergence. Recall that
the eigenvalues of XXT are the squares of the singular values of X. Let us
write out a singular value decomposition X = USVT , where S is a diagonal
matrix of singular values (σ1, . . . , σn). In order to improve the condition
number of this matrix, it suffices to add a feature that is concentrated in
the span of the singular vectors with small singular values. How to find
such features is not always apparent, but does give us a starting point as to
where to look for new, informative features.

Convergence of nonconvex models

Surprisingly, this analysis naturally extends to nonconvex models. With
some abuse of notation, let ŷ = f (x; w) ∈ Rn denote the n predictions of
some nonlinear model parameterized by the weights w on input x. Our
goal is to minimize the squared loss objective

1
2
‖ f (x; w)− y‖2 .

Since the model is nonlinear this objective is no longer convex. Nonetheless
we can mimic the analysis we did previously for overparameterized linear
models.

Running gradient descent on the weights gives

wt+1 = wt − αD f (x; wt)(ŷt − y) ,

where ŷt = f (x; wt) and D f is the Jacobian of the predictions with respect
to w. That is, D f (x; w) is the d× n matrix of first order derivatives of the
function f (x; w) with respect to w. We can similarly define the Hessian
operator H(w) to be the n× d× d array of second derivatives of f (x; w).
We can think of H(w) as a quadratic form that maps pairs of vectors
(u, v) ∈ Rd×d to Rn. With these higher order derivatives, Taylor’s theorem
asserts

ŷt+1 = f (x, wt+1)

= f (x, wt) +D f (x; wt)
T(wt+1 − wt)

+
∫ 1

0
H(wt + s(wt+1 − wt))(wt+1 − wt, wt+1 − wt)ds .

91

Since wt are the iterates of gradient descent, this means that we can write
the prediction as

ŷt+1 = ŷt − αD f (x; wt)
TD f (x; wt)(ŷt − y) + αεt ,

where

εt = α
∫ 1

0
H(wt + s(wt+1 − wt)) (D f (x; wt)(ŷt − y),D f (x; wt)(ŷt − y))ds .

Subtracting the labels y from both sides and rearranging terms gives the
recursion

ŷt+1 − y = (I − αD f (x; wt)
TD f (x; wt))(ŷt − y) + αεt .

If εt vanishes, this shows that the predictions again converge to the training
labels as long as the eigenvalues of D f (x; wt)TD f (x; wt) are strictly positive.
When the error vector εt is sufficiently small, similar dynamics will occur.
We expect εt to not be too large because it is quadratic in the distance of yt
to y and because it is multiplied by the step size α which can be chosen to
be small.

The nonconvexity isn’t particularly disruptive here. We just need to
make sure our Jacobians have full rank most of the time and that our steps
aren’t too large. Again, if the number of parameters are larger than the
number of data points, then these Jacobians are likely to be positive definite
as long as we’ve engineered them well. But how exactly can we guarantee
that our Jacobians are well behaved? We can derive some reasonable ground
rules by unpacking how we compute gradients of compositions of functions.
More on this follows in our chapter on deep learning.

Regularization

The topic of regularization belongs somewhere between optimization and
generalization and it’s one way of connecting the two. Hence, we will
encounter it in both chapters. Indeed, one complication with optimization
in the overparameterized regime is that there is an infinite collection of
models that achieve zero empirical risk. How do we break ties between
these and which set of weights should we prefer?

To answer this question we need to take a step back and remember that
the goal of supervised learning is not just to achieve zero training error. We
also care about performance on data outside the training set, and having
zero loss on its own doesn’t tell us anything about data outside the training
set.

92

As a toy example, imagine we have two sets of data Xtrain and Xtest
where Xtrain has shape n× d and Xtest is m× d. Let ytrain be the training
labels and let q be an m-dimensional vector of random labels. Then if d >
(m + n) we can find weights w such that[

Xtrain
Xtest

]
w =

[
ytrain

q

]
.

That is, these weights would produce zero error on the training set, but
error no better than random guessing on the testing set. That’s not desired
behavior! Of course this example is pathological, because in reality we
would have no reason to fit random labels against the test set when we
create our model.

The main challenge in supervised learning is to design models that
achieve low training error while performing well on new data. The main
tool used in such problems is called regularization. Regularization is the
general term for taking a problem with infinitely many solutions and biasing
its solution towards a smaller subset of solution space. This is a highly
encompassing notion.

Sometimes regularization is explicit insofar as we have a desired property
of the solution in mind which we exercise as a constraint on our optimization
problem. Sometimes regularization is implicit insofar as algorithm design
choices lead to a unique solution, although the properties of this solution
might not be immediately apparent.

Here, we take an unconventional tack of working from implicit to explicit,
starting with stochastic gradient descent.

Implicit regularization by optimization

Consider again the linear case of gradient descent or stochastic gradient
descent

wt+1 = wt − αetxt ,

where et is the gradient of the loss at the current prediction. Note that if we
initialize w0 = 0, then wt is always in the span of the data. This can be seen
by simple induction. This already shows that even though general weights
lie in a high dimensional, SGD searches over a space with dimension at
most n, the number of data points.

Now suppose we have a nonnegative loss with ∂loss(z,y)
∂z = 0 if and only

if y = z. This condition is satisfied by the square loss, but not hinge and
logistic losses. For such losses, at optimality we have for some vector v that:

1. Xw = y , because we have zero loss.

93

2. w = XTv , because we are in the span of the data.

Under the mild assumption that our examples are linearly independent,
we can combine these equations to find that

w = XT(XXT)−1y .

That is, when we run stochastic gradient descent we converge to a very
specific solution. Even though we were searching through an n-dimensional
space, we converge to a unique point in this space.

This special w is the minimum Euclidean norm solution of Xw = y. In
other words, out of all the linear prediction functions that interpolate the
training data, SGD selects the solution with the minimal Euclidean norm.
To see why this solution has minimal norm, suppose that ŵ = XTα + v
with v orthogonal to all xi. Then we have

Xŵ = XXTα + Xv = XXTα .

Which means α is completely determined and hence ŵ = XT(XXT)−1y + v.
But now

‖ŵ‖2 = ‖XT(XXT)−1y‖2 + ‖v‖2 .

Minimizing the right hand side shows that v must equal zero.
We now turn to showing that such minimum norm solutions have

important robustness properties that suggest that they will perform well
on new data. In the next chapter, we will prove that these methods are
guaranteed to perform well on new data under reasonable assumptions.

Margin and stability

Consider a linear predictor that makes no classification errors and hence
perfectly separates the data. Recall that the decision boundary of this predictor
is the hyperplane B = {z : wTz = 0} and the margin of the predictor is the
distance of the decision boundary from to data:

margin(w) = min
i

dist (xi,B) .

Since we’re assuming that w correctly classifies all of the training data, we
can write the margin in the convenient form

margin(w) = min
i

yiwTxi

‖w‖ .

Ideally, we’d like our data to be far away from the boundary and hence
we would like our predictor to have large margin. The reasoning behind

94

this desideratum is as follows: If we expect new data to be similar to the
training data and the decision boundary is far away from the training data,
then it would be unlikely for a new data point to lie on the wrong side of
the decision boundary. Note that margin tells us how large a perturbation in
the xi can be handled before a data point is misclassified. It is a robustness
measure that tells us how sensitive a predictor is to changes in the data
itself.

Let’s now specialize margin to the interpolation regime described in the
previous section. Under the assumption that we interpolate the labels so
that wTxi = yi, we have

margin(w) = ‖w‖−1 .

If we want to simultaneously maximize margin and interpolate the data,
then the optimal solution is to choose the minimum norm solution of Xw =
y. This is precisely the solution found by SGD and gradient descent.

Note that we could have directly tried to maximize margin by solving
the constrained optimization problem

minimize ‖w‖2

subject to yiwTxi ≥ 1 .

This optimization problem is the classic formulation of the support vector
machine. The support vector machine is an example of explicit regularization.
Here we declare exactly which solution we’d like to choose given that our
training error is zero. Explicit regularization of high dimensional models is
as old as machine learning. In contemporary machine learning, however, we
often have to squint to see how our algorithmic decisions are regularizing.
The tradeoff is that we can run faster algorithms with implicit regularizers.
But it’s likely that revisiting classic regularization ideas in the context of
contemporary models will lead to many new insights.

The representer theorem and kernel methods

As we have discussed so far, it is common in linear methods to restrict
the search space to the span of the data. Even when d is large (or even
infinite), this reduces the search problem to one in an n-dimensional space.
It turns out that under broad generality, solutions in the span of the data
are optimal for most optimization problems in prediction. Here, we make
formal an argument we first introduced in our discussion of features: for
most empirical risk minimization problems, the optimal model will lie in
the span of the training data.

95

Consider the penalized ERM problem

minimize
1
n

n

∑
i=1

loss(wTxi, yi) + λ‖w‖2

Here λ is called a regularization parameter. When λ = 0, there are an
infinite number of w that minimize the ERM problem. But for any λ > 0,
there is a unique minimizer. The term regularization refers to adding
some prior information to an optimization problem to make the optimal
solution unique. In this case, the prior information is explicitly encoding
that we should prefer w with smaller norms if possible. As we discussed
in our chapter on features, smaller norms tend to correspond to simpler
solutions in many feature spaces. Moreover, we just described that minimum
norm solutions themselves could be of interest in machine learning. A
regularization parameter allows us to explicitly tune the norm of the optimal
solution.

For our penalized ERM problem, using the same argument as above, we
can write any w as

w = XTβ + v

for some vectors β and v with vTxi = 0 for all i. Plugging this equation into
the penalized ERM problem yields

minimizeβ,v
1
n

n

∑
i=1

loss(βTXxi, yi) + λ‖XTβ‖2 + λ‖v‖2 .

Now we can minimize with respect to v, seeing that the only option is to
set v = 0. Hence, we must have that the optimum model lies in the span of
the data:

w = XTβ

This derivation is commonly called the representer theorem in machine
learning. As long as the cost function only depends on function evalu-
ations f (xi) = wTxi and the cost increases as a function of ‖w‖, then the
empirical risk minimizer will lie in the span of the data.

Define the kernel matrix of the training data K = XXT. We can then
rewrite the penalized ERM problem as

minimizeβ
1
n

n

∑
i=1

loss(eT
i Kβ, yi) + λβTKβ ,

where ei is the standard Euclidean basis vector. Hence, we can solve the
machine learning problem only using the values in the matrix K, searching
only for the coefficients β in the kernel expansion.

96

The representer theorem (also known as the kernel trick) tells us that
most machine learning problems reduce to a search in n dimensional
space, even if the feature space has much higher dimension. Moreover, the
optimization problems only care about the values of dot products between
data points. This motivates the use of the kernel functions described in
our discussion of representation: kernel functions allow us to evaluate
dot products of vectors in high dimensional spaces often without ever
materializing the vectors, reducing high-dimensional function spaces to the
estimation of weightings of individual data points in the training sample.

Squared loss methods and other optimization tools

This chapter focused on gradient methods for minimizing empirical risk,
as these are the most common methods in contemporary machine learning.
However, there are a variety of other optimization methods that may be use-
ful depending on the computational resources available and the particular
application in question.

There are a variety of optimization methods that have proven fruitful
in machine learning, most notably constrained quadratic programming for
solving support vector machines and related problems. In this section we
highlight least squares methods which are attractive as they can be solved
by solving linear systems. For many problems, linear systems solves are
faster than iterative gradient methods, and the computed solution is exact
up to numerical precision, rather than being approximate.

Consider the optimization problem

minimizew
1
2 ∑n

i=1(yi − wTxi)
2 .

The gradient of this loss function with respect to w is given by

−
n

∑
i=1

(yi − wTxi)xi .

If we let y denote the vector of y labels and X denote the n× d matrix

X =

xT

1
xT

2
...

xT
n

 ,

then setting the gradient of the least squares cost equal to zero yields the
solution

w = (XTX)−1XTy .

97

For many problems, it is faster to compute this closed form solution than it
is to run the number of iterations of gradient descent required to find a w
with small empirical risk.

Regularized least squares also has a convenient closed form solution.
The penalized ERM problem where we use a square loss is called the ridge
regression problem:

minimizew
1
2 ∑n

i=1(yi − wTxi)
2 + λ‖w‖2

Ridge regression can be solved in the same manner as above, yielding the
optimal solution

w = (XTX + λI)−1XTy .

There are a few other important problems solvable by least squares. First,
we have the identity

(XTX + λId)
−1XT = X(XXT + λIn)

−1 .

this means that we can solve ridge regression either by solving a system
in d equations and d unknowns or n equations and n unknowns. In the
overparameterized regime, we’d choose the formulation with n parameters.
Moreover, as we described above, the minimum norm interpolating problem

minimize ‖w‖2

subject to wTxi = yi .

is solved by w = X(XXT)−1y. This shows that the limit as λ goes to zero in
ridge regression is this minimum norm solution.

Finally, we note that for kernelized problems, we can simply replace
the matrix XXT with the appropriate kernel K. Hence, least squares for-
mulations are extensible to solve prediction problems in arbitrary kernel
spaces.

Chapter notes

Mathematical optimization is a vast field, and we clearly are only addressing
a very small piece of the puzzle. For an expanded coverage of the material
in this chapter with more mathematical rigor and implementation ideas, we
invite the reader to consult the recent book by Wright and Recht.80

The chapter focuses mostly on iterative, stochastic gradient methods.
Initially invented by Robbins and Monro for solving systems of equations
in random variables,76 stochastic gradient methods have played a key role
in pattern recognition since the Perceptron. Indeed, it was very shortly after

98

Rosenblatt’s invention that researchers realized the Perceptron was solving a
stochastic approximation problem. Of course, the standard perceptron step
size schedule does not converge to a global optimum when the data is not
separable, and this lead to a variety of methods to fix the problem. Many
researchers employed the Widrow-Hoff “Least-Mean-Squares” rule which in
modern terms is minimizing the empirical risk associated with a square loss
by stochastic gradient descent.81 Aizerman and his colleagues determined
not only how to apply stochastic gradient descent to linear functions, but
how to operate in kernel spaces as well.46 Of course, all of these methods
were closely related to each other, but it took some time to put them all
on a unified footing. It wasn’t until the 1980s with a full understanding of
complexity theory, that optimal step sizes were discovered for stochastic
gradient methods by Nemirovski and Yudin.82 More surprisingly, it was not
until 2007 that the first non-asymptotic analysis of the perceptron algorithm
was published.83

Interestingly, it wasn’t again until the early 2000s that stochastic gradi-
ent descent became the default optimization method for machine learning.
There tended to be a repeated cycle of popularity for the various optimiza-
tion methods. Global optimization methods like linear programming were
determined effective in the 1960s for pattern recognition problems,45 sup-
planting interest in stochastic descent methods. Stochastic gradient descent
was rebranded as back propagation in the 1980s, but again more global
methods eventually took center stage. Mangasarian, who was involved
in both of these cycles, told us in private correspondence that linear pro-
gramming methods were always more effective in terms of their speed of
computation and quality of solution.

Indeed this pattern was also followed in optimization. Nemirovski and
Nesterov did pioneering work in iterative gradient and stochastic gradient
methods . But they soon turned to developing the foundations of interior
point methods for solving global optimization problems.84 In the 2000s,
they republished their work on iterative methods, leading to a revolution in
machine learning.

It’s interesting to track this history and forgetting in machine learning.
Though these tools are not new, they are often forgotten and replaced. It’s
perhaps time to revisit the non-iterative methods in light of this.

99

6
Generalization

Simply put, generalization relates the performance of a model on seen exam-
ples to its performance on unseen examples. In this chapter, we discuss the
interplay between representation, optimization, and generalization, again
focusing on models with more parameters than seen data points. We ex-
amine the intriguing empirical phenomena related to overparameterization
and generalization in today’s machine learning practice. We then review
available theory—some old and some emerging—to better understand and
anticipate what drives generalization performance.

Generalization gap

Recall, the risk of a predictor f : X → Y with respect to a loss function
loss : Y × Y → R is defined as

R[f] = E [loss(f (X), Y)] .

Throughout this chapter, it will often be convenient to stretch the notation
slightly by using loss(f , (x, y)) to denote the loss of a predictor f on an
example (x, y) . For predictors specified by model parameters w, we’ll also
write loss(w, (x, y)) .

For the purposes of this chapter, it makes sense to think of the n samples
as an ordered tuple

S = ((x1, y1), , (xn, yn)) ∈ (X ×Y)n .

The empirical risk RS[f] is, as before,

RS[f] =
1
n

n

∑
i=1

loss(f (xi), yi) .

100

Empirical risk minimization seeks to find a predictor f ∗ in a specified
class F that minimizes the empirical risk:

RS[f ∗] = min
f∈F

RS[f]

In machine learning practice, the empirical risk is often called training error
or training loss, as it corresponds to the loss achieved by some optimization
method on the sample. Depending on the optimization problem, we may
not be able to find an exact empirical risk minimizer and it may not be
unique.

Empirical risk minimization is commonly used as a proxy for minimizing
the unknown population risk. But how good is this proxy? Ideally, we
would like that the predictor f we find via empirical risk minimization
satisfies RS[f] ≈ R[f]. However, this may not be the case, since the risk R[f]
captures loss on unseen example, while the empirical risk RS[f] captures
loss on seen examples.

Generally, we expect to do much better on seen examples than unseen
examples. This performance gap between seen and unseen examples is
what we call generalization gap.

Definition 8. Define the generalization gap of a predictor f with respect to a
dataset S as

∆gen(f) = R[f]− RS[f] .

This quantity is sometimes also called generalization error or excess risk.
Recall the following tautological, yet important identity:

R[f] = RS[f] + ∆gen(f)

What it says is that if we manage to make the empirical risk RS[f] small
through optimization, then all that remains to worry about is generalization
gap.

The last chapter provided powerful tools to make optimization succeed.
How we can bound the generalization gap is the topic of this chapter. We
first take a tour of evidence from machine learning practice for inspiration.

Overparameterization: empirical phenomena

We previously experienced the advantages of overparameterized models
in terms of their ability to represent complex functions and our ability to
feasily optimize them. The question remains whether they generalize well
to unseen data. Perhaps we simply kicked the can down the road. Does the
model size that was previously a blessing now come back to haunt us? We

101

Complexity of model class

R
is

k

overfittingunderfitting

risk
empirical risk

Figure 23: Traditional view of generalization

will see that not only do large models often generalize well in practice, but
often more parameters lead to better generalization performance. Model
size does, however, challenge some theoretical analysis. The empirical
evidence will orient our theoretical study towards dimension-free bounds
that avoid worst-case analysis.

Effects of model complexity

Think of a model family with an associated measure of complexity, such
as number of trainable parameters. Suppose that for each setting of the
complexity measure, we can solve the empirical risk minimization problem.
We can then plot what happens to risk and empirical risk as we vary model
complexity.

A traditional view of generalization posits that as we increase model
complexity initially both empirical risk and risk decrease. However, past a
certain point the risk begins to increase again, while empirical risk decreases.

The graphic shown in many textbooks is a u-shaped risk curve. The
complexity range below the minimum of the curve is called underfitting.
The range above is called overfitting.

This picture is often justified using the bias-variance trade-off, motivated
by a least squares regression analysis. However, it does not seem to bear
much resemblance to what is observed in practice.

We have already discussed the example of the Perceptron which achieves
zero training loss and still generalizes well in theory. Numerous practi-
tioners have observed that other complex models also can simultaneously
achieve close to zero training loss and still generalize well. Moreover, in
many cases risk continues to decreases as model complexity grows and

102

Complexity of model class

R
is

k

overparameterized

underparameterized
risk
empirical risk

Figure 24: Double descent.

Complexity of model class

R
is

k

overparameterized

underparameterized

risk
empirical risk

Figure 25: Single descent.

training data are interpolated exactly down to (nearly) zero training loss.
This empirical relationship between overparameterization and risk appears
to be robust and manifests in numerous model classes, including overpa-
rameterized linear models, ensemble methods, and neural networks.

In the absence of regularization and for certain model families, the
empirical relationship between model complexity and risk is more accu-
rately captured by the double descent curve in the figure above. There is
an interpolation threshold at which a model of the given complexity can
fit the training data exactly. The complexity range below the threshold is
the underparameterized regime, while the one above is the overparameterized
regime. Increasing model complexity in the overparameterized regime
continues to decrease risk indefinitely, albeit at decreasing marginal returns,
toward some convergence point.

103

The double descent curve is not universal. In many cases, in practice we
observe a single descent curve throughout the entire complexity range. In
other cases, we can see multiple bumps as we increase model complexity.85

However, the general point remains. There is no evidence that highly
overparameterized models do not generalize. Indeed, empirical evidence
suggests larger models not only generalize, but that larger models make
better out-of-sample predictors than smaller ones.86, 87

Optimization versus generalization

Training neural networks with stochastic gradient descent, as is commonly
done in practice, attempts to solve a non-convex optimization problem.
Reasoning about non-convex optimization is known to be difficult. Theo-
reticians see a worthy goal in trying to prove mathematically that stochastic
gradient methods successfully minimize the training objective of large artifi-
cial neural networks. The previous chapter discussed some of the progress
that has been made toward this goal.

It is widely believed that what makes optimization easy crucially de-
pends on the fact that models in practice have many more parameters than
there are training points. While making optimization tractable, overparame-
terization puts burden on generalization.

We can force a disconnect between optimization and generalization in a
simple experiment that we will see next. One consequence is that even if a
mathematical proof established the convergence guarantees of stochastic
gradient descent for training some class of large neural networks, it would
not necessarily on its own tell us much about why the resulting model
generalizes well to the test objective.

Indeed, consider the following experiment. Fix training data
(x1, y1), . . . , (xn, yn) and fix a training algorithm A that achieves zero train-
ing loss on these data and achieves good test loss as well.

Now replace all the labels y1, . . . , yn by randomly and independently
drawn labels ỹ1, . . . , ỹn . What happens if we run the same algorithm on the
training data with noisy labels (x1, ỹ1), . . . , (xn, ỹn))?

One thing is clear. If we choose from k discrete classes, we expect the
model trained on the random labels to have no more than 1/k test accuracy,
that is, the accuracy achieved by random guessing. After all, there is no
statistical relationship between the training labels and the test labels that
the model could learn.

What is more interesting is what happens to optimization. The left
panel of the figure shows the outcome of this kind of randomization test
on the popular CIFAR-10 image classification benchmark for a standard
neural network architecture. What we can see is that the training algorithm

104

Figure 26: Randomization test on CIFAR-10. Left: How randomization
affects training loss. Right: How increasing the fraction of corrupted
training labels affects test error.

continues to drive the training loss to zero even if the labels are randomized.
The right panel shows that we can vary the amount of randomization to
obtain a smooth degradation of the test error. At full randomization, the
test error degrades to 90%, as good as guessing one of the 10 classes. The
figure shows what happens to a specific model architecture, called Incep-
tion, but similar observations hold for most, if not all, overparameterized
architectures that have been proposed.

The randomization experiment shows that optimization continues to
work well even when generalization performance is no better than random
guessing, i.e., 10% accuracy in the case of the CIFAR-10 benchmark that
has 10 classes. The optimization method is moreover insensitive to proper-
ties of the data, since it works even on random labels. A consequence of
this simple experiment is that a proof of convergence for the optimization
method may not reveal any insights into the nature of generalization.

The diminished role of explicit regularization

Regularization plays an important role in the theory of convex empirical
risk minimization. The most common form of regularization used to be
`2-regularization corresponding to adding a scalar of the squared Euclidean
norm of the parameter vector to the objective function.

A more radical form of regularization, called data augmentation, is com-
mon in the practice of deep learning. Data augmentation transforms each
training point repeatedly throughout the training process by some operation,
such as a random crop of the image. Training on such randomly modified
data points is meant to reduce overfitting, since the model never encounters
the exact same data point twice.

105

Regularization continues to be a component of training large neural
networks in practice. However, the nature of regularization is not clear. We
can see a representative empirical observation in the table below.

Table 3: The training and test accuracy (in percent-
age) with and without data augmentation and `2-
regularization.

params random crop `2-regularization train accuracy test accuracy

1,649,402 yes yes 100.0 89.05

yes no 100.0 89.31

no yes 100.0 86.03

no no 100.0 85.75

The table shows the performance of a common neural model architecture,
called Inception, on the standard CIFAR-10 image classification benchmark.
The model has more than 1.5 million trainable parameters, even though
there are only 50, 000 training examples spread across 10 classes. The
training procedure uses two explicit forms of regularization. One is a form
of data augmentation with random crops. The other is `2-regularization.
With both forms of regularization the fully trained model achieves close
to 90% test accuracy. But even if we turn both of them off, the model
still achieves close to 86% test accuracy (without even readjusting any
hyperparameters such as learning rate of the optimizer). At the same time,
the model fully interpolates the training data in the sense of making no
errors whatsoever on the training data.

These findings suggest that while explicit regularization may help gener-
alization performance, it is by no means necessary for strong generalization
of heavily overparameterized models.

Theories of generalization

With these empirical facts in hand, we now turn to mathematical theories
that might help explain what we observe in practice and also may guide
future empirical and theoretical work. In the remainder of the chapter, we
tour several different, seemingly disconnected views of generalization.

We begin with a deep dive into algorithmic stability, which posits that gen-
eralization arises when models are insensitive to perturbations in the data
on which they are trained. We then discuss VC dimension and Rademacher
complexity, which show how small generalization gaps can arise when we
restrict the complexity of models we wish to fit to data. We then turn to

106

margin bounds which assert that whenever the data is easily separable, good
generalization will occur. Finally we discuss generalization bounds that
arise from optimization, showing how choice of an algorithmic scheme itself
can yield models with desired generalization properties.

In all of these cases, we show that we can recover generalization bounds
of the form we saw in the Perceptron: the bounds will decrease with number
of data points and increase with “complexity” of the optimal prediction
function. Indeed, looking back at the proof of the Perceptron generalization
bound, all of the above elements appeared. Our generalization bound arose
because we could remove single data points from a set and not change the
number of mistakes made by the Perceptron. A large margin assumption
was essential to get a small mistake bound. The mistake bound itself was
dependent on the iterations of the algorithm. And finally, we related the
size of the margin to the scale of the data and optimal separator.

Though starting from different places, we will shows that the four
different views of generalization can all arrive at similar results. Each
of the aforementioned ingredients can alone lead to generalization, but
considerations of all of these aspects help to improve machine learning
methods. Generalization is multifaceted and multiple perspectives are
useful when designing data-driven predictive systems.

Before diving into these four different views, we first take a quick pause
to consider how we hope generalization bounds might look.

How should we expect the gap to scale?

Before we turn to analyzing generalization gaps, it’s worth first considering
how we should expect them to scale. That is, what is the relationship
between the expected size of ∆gen and the number of observations, n?

First, note that we showed that for a fixed prediction function f , the
expectation of the empirical risk is equal to the population risk. That is, the
empirical risk of a single function is a sample average of the population risk
of that function. As we discussed in Chapter 3, i.i.d. sample averages should
generalize and approximate the average at the population level. Here, we
now turn to describing how they might be expected to scale under different
assumptions.

Quantitative central limit theorems

The central limit theorem formalizes how sample averages estimate their
expectations: If Z is a random variable with bounded variance then µ̂

(n)
Z

converges in distribution to a Gaussian random variable with mean zero
and variance on the order of 1/n.

107

The following inequalities are useful quantitative forms of the central
limit theorem. They precisely measure how close the sample average will
be to the population average using limited information about the random
quantity.

• Markov’s inequality: Let Z be a nonnegative random variable. Then,

P[Z ≥ t] ≤ E[Z]
t

.

This can be proven using the inequality I[Z≥t](z) ≤ z
t .

• Chebyshev’s inequality: Suppose Z is a random variable with mean
µZ and variance σ2

Z. Then,

P[Z ≥ t + µZ] ≤
σ2

Z
t2

Chebyshev’s inequality helps us understand why sample averages are
good estimates of the mean. Suppose that X1, . . . , Xn are independent sam-
ples we were considering above. Let µ̂ denote the sample mean 1

n ∑n
i=1 Zi.

Chebyshev’s inequality implies

P[µ̂ ≥ t + µX] ≤
σ2

X
nt2 ,

which tends to zero as n grows. A popular form of this inequality sets t =
µX which gives

P[µ̂ ≥ 2µX] ≤
σ2

X
nµ2

X
.

• Hoeffding’s inequality: Let Z1, Z2, . . . , Zn be independent random
variables, each taking values in the interval [ai, bi].Let µ̂ denote the
sample mean 1

n ∑n
i=1 Zi. Then

P[µ̂ ≥ µZ + t] ≤ exp
(
− 2n2t2

∑n
i=1(bi − ai)2

)
.

An important special case is when the Zi are identically distributed
copies of Z and take values in [0, 1]. Then we have

P[µ̂ ≥ µZ + t] ≤ exp
(
−2nt2

)
.

This shows that when random variables are bounded, sample averages
concentrate around their mean value exponentially quickly. If we invoke

108

this bound with t = C/
√

n, the point at which it gives non-trivial results,
we have an error of O(1/

√
n) with exponentially high probability. We will

see shortly that this relationship between error and number of samples is
ubiquitous in generalization theory.

These powerful concentration inequalities let us precisely quantify how
close the sample average will be to the population average. For instance, we
know a person’s height is a positive number and that there are no people
who are taller than nine feet. With these two facts, Hoeffding’s inequality
tells us that if we sample the heights of thirty thousand individuals, our
sample average will be within an inch of the true average height with
probability at least 83%. This assertion is true no matter how large the
population of individuals. The required sample size is dictated only by the
variability of height, not by the number of total individuals.

You could replace “height” in this example with almost any attribute
that you are able to measure well. The quantitative central limits tell us that
for attributes with reasonable variability, a uniform sample from a general
population will give a high quality estimate of the average value.

“Reasonable variability” of a random variable is necessary for quanti-
tative central limit theorems to hold. When random variables have low
variance or are tightly bounded, small experiments quickly reveal insights
about the population. When variances are large or effectively unbounded,
the number of samples required for high precision estimates might be im-
practical and our estimators and algorithms and predictions may need to
be rethought.

Bounding generalization gaps for individual predictors

Let us now return to generalization of prediction, considering the example
where the quantity of interest is the prediction error on individuals in a
population. There are effectively two scaling regimes of interest in gener-
alization theory. In one case when the empirical risk is large, we expect
the generalization gap to decrease inversely proportional to

√
n . When the

empirical risk is expected to be very small, on the other hand, we tend to
see the the generalization gap decrease inversely proportional to n .

Why we see these two regimes is illustrated by studying the case of
a single prediction function f , chosen independently of the sample S . Our
ultimate goal is to reason about the generalization gap of predictors chosen
by an algorithm running on our data. The analysis we walk through next
doesn’t apply to data-dependent predictors directly, but it nonetheless
provides helpful intuition about what bounds we can hope to get.

For a fixed function f , the zero-one loss on a single randomly chosen
data point is a Bernoulli random variable, equal to 1 with probability p

109

and 1− p otherwise. The empirical risk RS[f] is the sample average of
this random variable and the risk R[f] is its expectation. To estimate the
generalization gap, we can apply Hoeffding’s inequality to find

P[R[f]− RS[f] ≥ ε] ≤ exp
(
−2nε2

)
.

Hence, we will have with probability 1− δ on our sample that

|∆gen(f)| ≤
√

log(1/δ)

2n
.

That is, the generalization gap goes to zero at a rate of 1/
√

n .
In the regime where we observe no empirical mistakes, a more refined

analysis can be applied. Suppose that R[f] > ε . Then the probability that
we observe RS[f] = 0 cannot exceed

P[∀i : sign(f (xi)) = yi] =
n

∏
i=1

P[sign(f (xi)) = yi]

≤ (1− ε)n ≤ e−εn .

Hence, with probability 1− δ,

|∆gen(f)| ≤ log(1/δ)

n
,

which is the 1/n regime. These two rates are precisely what we observe
in the more complex regime of generalization bounds in machine learning.
The main trouble and difficulty in computing bounds on the generalization
gap is that our prediction function f depends on the data, making the above
analysis inapplicable.

In this chapter, we will focus mostly on 1/
√

n rates. These rates are
more general as they make no assumptions about the expected empirical
risk. With a few notable exceptions, the derivation of 1/

√
n rates tends to

be easier than the 1/n counterparts. However, we note that every one of our
approaches to generalization bounds have analyses for the “low empirical
risk” or “large margin” regimes. We provide references at the end of this
chapter to these more refined analyses.

Algorithmic stability

We will first see a tight characterization in terms of an algorithmic robust-
ness property we call algorithmic stability. Intuitively, algorithmic stability
measures how sensitive an algorithm is to changes in a single training

110

example. Whenever a model is insensitive to such perturbations, the gener-
alization gap will be small. Stability gives us a powerful and intuitive way
of reasoning about generalization.

There are a variety of different notions of perturbation. We could
consider resampling a single data point and look at how much a model
changes. We could also leave one data point out and see how much
the model changes. This was the heart of our Perceptron generalization
argument. More aggressively, we could study what happens when a single
data point is arbitrarily corrupted. All three of these approaches yield
similar generalization bounds, though it is often easier to work with one
than the others. To simplify the exposition, we choose to focus on only one
notion (resampling) here.

To introduce the idea of stability, we first condense our notation to make
the presentation a bit less cumbersome. Recall that we operate on tuples
of n labeled examples,

S = ((x1, y1), , (xn, yn)) ∈ (X ×Y)n .

We denote a labeled example as z = (x, y). We will overload our notation
and denote the loss accrued by a prediction function f on a data point z
as loss(f , z). That is, loss(f , z) = loss(f (x), y). We use the uppercase letters
when a labeled example Z is randomly drawn from a population (X, Y).

With this notation in hand, let’s now consider two independent random
samples S = (Z1, . . . , Zn) and S′ = (Z′1, . . . , Z′n), each drawn independently
and identically from a population (X, Y). We call the second sample S′ a
ghost sample as it is solely an analytical device. We never actually collect this
second sample or run any algorithm on it.

We introduce n hybrid samples S(i), for i ∈ {1, . . . , n} as

S(i) = (Z1, . . . , Zi−1, Z′i , Zi+1, . . . , Zn) ,

where the i-th example comes from S′, while all others come from S.
We can now introduce a data-dependent notion of average stability of an

algorithm. For this definition, we think of an algorithm as a deterministic
map A that takes a training sample in (X ×Y)n to some prediction function
in a function space Ω . That is A(S) denotes the function from X to Y that
is returned by our algorithm when run on the sample S.

Definition 9. The average stability of an algorithm A : (X ×Y)n → Ω is

∆(A) = E
S,S′

[
1
n

n

∑
i=1

(
loss(A(S), Z′i)− loss(A(S(i)), Z′i)

)]
.

111

There are two useful ways to parse this definition. The first is to interpret
average stability as the average sensitivity of the algorithm to a change in
a single example. Since we don’t know which of its n input samples the
algorithm may be sensitive to, we test all of them and average out the
results.

Second, from the perspective of A(S), the example Z′i is unseen, since
it is not part of S. But from the perspective of A(S(i)) the example Z′i is
seen, since it is part of S(i) via the substitution that defines the i-th hybrid
sample. This shows that the instrument ∆(A) also measures the average
loss difference of the algorithm on seen and unseen examples. We therefore
have reason to suspect that average stability relates to generalization gap as
the next proposition confirms.

Proposition 7. The expected generalization gap equals average stability:

E[∆gen(A(S))] = ∆(A)

Proof. By linearity of expectation,

E[∆gen(A(S))] = E [R[A(S)]− RS[A(S)]]

= E

[
1
n

n

∑
i=1

loss(A(S), Z′i)

]
−E

[
1
n

n

∑
i=1

loss(A(S), Zi)

]
.

Here, we used that Z′i is an example drawn from the distribution that does
not appear in the set S, while Zi does appear in S. At the same time, Zi
and Z′i are identically distributed and independent of the other examples.
Therefore,

E loss(A(S), Zi) = E loss(A(S(i)), Z′i) .

Applying this identity to each term in the empirical risk above, and com-
paring with the definition of ∆(A), we conclude

E[R[A(S)]− RS[A(S)]] = ∆(A) .

Uniform stability

While average stability gave us an exact characterization of generalization
error, it can be hard to work with the expectation over S and S′. Uniform
stability replaces the averages by suprema, leading to a stronger but useful
notion.

Definition 10. The uniform stability of an algorithm A is defined as

∆sup(A) = sup
S,S′∈(X×Y)n

dH (S,S′)=1

sup
z∈X×Y

|loss(A(S), z)− loss(A(S′), z)|,

where dH(S, S′) is the Hamming distance between tuples S and S′ .

112

In this definition, it is important to note that the z has nothing to do
with S and S′ . Uniform stability is effectively computing the worst-case
difference in the predictions of the learning algorithm run on two arbitrary
datasets that differ in exactly one point.

Uniform stability upper bounds average stability, and hence uniform
stability upper bounds generalization gap (in expectation). Thus, we have
the corollary

E[∆gen(A(S))] ≤ ∆sup(A)

This corollary turns out to be surprisingly useful since many algorithms
are uniformly stable. For example, strong convexity of the loss function is
sufficient for the uniform stability of empirical risk minimization, as we will
see next.

Stability of empirical risk minimization

We now show that empirical risk minimization is uniformly stable provided
under strong assumptions on the loss function. One important assumption
we need is that the loss function loss(w, z) is differentiable and strongly
convex in the model parameters w for every example z. What this means is
that for every example z and for all w, w′ ∈ Ω,

loss(w′, z) ≥ loss(w, z) + 〈∇loss(w, z), w′ − w〉+ µ

2
‖w− w′‖2 .

There’s only one property of strong convexity we’ll need. Namely, if
Φ : Rd → R is µ-strongly convex and w∗ is a stationary point (and hence
global minimum) of the function Φ, then we have

Φ(w)−Φ(w∗) ≥ µ

2
‖w− w∗‖2 .

The second assumption we need is that loss(w, z) is L-Lipschitz in w for
every z, i.e., ‖∇loss(w, z)‖ ≤ L . Equivalently, this means |loss(w, z) −
loss(w′, z)| ≤ L‖w− w′‖.

Theorem 4. Assume that for every z, loss(w, z) is µ-strongly convex in w over the
domain Ω, i.e., Further assume that, that the loss function loss(w, z) is L-Lipschitz
in w for every z. Then, empirical risk minimization (ERM) satisfies

∆sup(ERM) ≤ 4L2

µn
.

Proof. Let ŵS = arg minw∈Ω
1
n ∑n

i=1 loss(w, zi) denote the empirical risk min-
imizer on the sample S. Fix arbitrary samples S, S′ of size n that differ in

113

a single index i ∈ {1, . . . , n} where S contains zi and S′ contains z′i . Fix an
arbitrary example z . We need to show that

|loss(ŵS, z)− loss(ŵS′ , z)| ≤ 4L2

µn
.

Since the loss function is L-Lipschitz, it suffices to show that

‖ŵS − ŵS′‖ ≤
4L
µn

.

On the one hand, since ŵS minimizes the empirical risk by definition, it
follows from the strong convexity of the empirical risk that

µ

2
‖ŵS − ŵS′‖2 ≤ RS[ŵS′]− RS[ŵS] .

On the other hand, we can bound the right hand side as

RS[ŵS′]− RS[ŵS]

=
1
n
(loss(ŵS′ , zi)− loss(ŵS, zi)) +

1
n ∑

i 6=j
(loss(ŵS′ , zj)− loss(ŵS, zj))

=
1
n
(loss(ŵS′ , zi)− loss(ŵS, zi)) +

1
n
(loss(ŵS, z′i)− loss(ŵS′ , z′i))

+ (RS′ [ŵS′]− RS′ [ŵS])

≤ 1
n
|loss(ŵS′ , zi)− loss(ŵS, zi)|+

1
n
|loss(ŵS, z′i)− loss(ŵS′ , z′i)|

≤ 2L
n
‖ŵS′ − ŵS‖ .

Here, we used the assumption that loss is L-Lipschitz and the fact that

RS′ [ŵS′]− RS′ [ŵS] ≤ 0 .

Putting together the strong convexity property and our calculation above,
we find

‖ŵS′ − ŵS‖ ≤
4L
µn

.

Hence, ∆sup(ERM) ≤ 4L2

µn .

An interesting point about this result is that there is no explicit reference
to the complexity of the model class referenced by Ω.

114

Stability of regularized empirical risk minimization

Some empirical risk minimization problems, such as the Perceptron (ERM
with hinge loss) we saw earlier, are convex but not strictly convex. We
can turn convex problems into strongly convex problems by adding an
`2-regularization term to the loss function:

r(w, z) = loss(w, z) +
µ

2
‖w‖2 .

The last term is named `2-regularization, weight decay, or Tikhonov regulariza-
tion depending on field and context.

By construction, if the loss is convex, then the regularized loss r(w, z)
is µ-strongly convex. Hence, our previous theorem applies. However, by
adding regularization we changed the objective function. The optimizer of
the regularized objective is in general not the same as the optimizer of the
unregularized objective.

Fortunately, A simple argument shows that solving the regularized
objective also solves the unregularized objective. The idea is that assum-
ing ‖w‖ ≤ B we can set the regularization parameter µ = L

B
√

n . This ensures

that the regularization term µ‖w‖2 is at most O(LB√
n) and therefore the min-

imizer of the regularized risk also minimizes the unregularized risk up to
error O(LB√

n) . Plugging this choice of µ into the ERM stability theorem, the

generalization gap will also be O(LB√
n) .

The case of regularized hinge loss

Let’s relate the generalization theory we just saw to the familiar case of the
perceptron algorithm from Chapter 3. This corresponds to the special case
of minimizing the regularized hinge loss

r(w, (x, y)) = max{1− y〈w, x〉, 0}+ µ

2
‖w‖2 .

Moreover, we assume that the data are are linearly separable with margin γ.
Denoting by ŵS the empirical risk minimizer on a random sample S of

size n, we know that
µ

2
‖ŵS‖2 ≤ RS(ŵS) ≤ RS(0) = 1 .

Hence, ‖ŵS‖ ≤ B for B =
√

2/µ. We can therefore restrict our domain to
the Euclidean ball of radius B. If the data are also bounded, say ‖x‖ ≤ D,
we further get that

‖∇wr(w, z)‖ ≤ ‖x‖+ µ‖w‖ = D + µB .

115

Hence, the regularized hinge loss is L-Lipschitz with

L = D + µB = D +
√

2µ .

Let wγ be a maximum margin hyperplane for the sample S. We know
that the empirical loss will satisfy

RS[ŵS] ≤ RS[wγ] =
µ

2
‖wγ‖2 =

µ

2γ2 .

Hence, by Theorem 4,

E[R[ŵS]] ≤ E[RS[ŵS]] + ∆sup(ERM) ≤ µ

2γ2 +
4(D +

√
2µ)2

µn

Setting µ = 2γD√
n and noting that γ ≤ D gives that

E[R[ŵS]] ≤ O
(

D
γ
√

n

)
.

Finally, since the regularized hinge loss upper bounds the zero-one loss, we
can conclude that

P[YŵT
S X < 0] ≤ O

(
D

γ
√

n

)
,

where the probability is taken over both sample S and test point (X, Y).
Applying Markov’s inequality to the sample, we can conclude the same
bound holds for a typical sample up to constant factors.

This bound is proportional to the square root of the bound we saw for
the perceptron in Chapter 3. As we discussed earlier, this rate is slower
than the perceptron rate as it does not explicitly take into account the
fact that the empirical risk is zero. However, it is worth noting that the
relationship between the variables in question—diameter, margin, and
number of samples—is precisely the same as for the perceptron. This kind
of bound is common and we will derive it a few more times in this chapter.

Stability analysis combined with explicit regularization and convexity
thus give an appealing conceptual and mathematical approach to reasoning
about generalization. However, empirical risk minimization involving non-
linear models is increasingly successful in practice and generally leads to
non-convex optimization problems.

Model complexity and uniform convergence

We briefly review other useful tools to reason about generalization. Ar-
guably, the most basic is based on counting the number of different functions
that can be described with the given model parameters.

116

Given a sample S of n independent draws from the same underlying
distribution, the empirical risk RS[f] for a fixed function f is an average
of n random variables, each with mean equal to the risk R[f] . Assuming for
simplicity that the range of our loss function is bounded in the interval [0, 1] ,
Hoeffding’s bound gives us the tail bound

P [RS[f] > R[f] + t] ≤ exp(−2nt2) .

By applying the union bound to a finite set of functions F we can
guarantee that with probability 1− δ, we have for all functions f ∈ F that

∆gen(f) ≤
√

ln |F |+ ln(1/δ)

n
. (2)

The cardinality bound |F | is a basic measure of the complexity of the
model family F . We can think of the term ln(F) as a measure of com-
plexity of the function class F . The gestalt of the generalization bound as
“
√

complexity/n” routinely appears with varying measures of complexity.

VC dimension

Bounding the generalization gap from above for all functions in a function
class is called uniform convergence. A classical tool to reason about uniform
convergence is the Vapnik-Chervonenkis dimension (VC dimension) of a
function class F ⊆ X → Y, denoted VC(F) . It’s defined as the size of the
largest set Q ⊆ X such that for any Boolean function h : Q→ {−1, 1}, there
is a predictor f ∈ F such that f (x) = h(x) for all x ∈ Q . In other words, if
there is a size-d sample Q such that the functions of F induce all 2d possible
binary labelings of Q, then the VC-dimension of F is at least d .

The VC-dimension measures the ability of the model class to conform to
an arbitrary labeling of a set of points. The so-called VC inequality implies
that with probability 1− δ, we have for all functions f ∈ F

∆gen(f) ≤
√

VC(F) ln n + ln(1/δ)

n
. (3)

We can see that the complexity term VC(F) refines our earlier cardinality
bound since VC(F) ≤ log |F | + 1. However VC-dimension also applies
to infinite model classes. Linear models over Rd have VC-dimension d,
corresponding to the number of model parameters. Generally speaking,
VC dimension tends to grow with the number of model parameters for
many model families of interest. In such cases, the bound in Equation 3

becomes useless once the number of model parameters exceeds the size of
the sample.

117

However, the picture changes significantly if we consider notions of
model complexity different than raw counts of parameters. Consider the
set of all hyperplanes in Rd with norm at most γ−1 . Vapnik showed88 that
when the data had maximum norm ‖x‖ ≤ D , then the VC dimension
of this set of hyperplanes was D2

γ2 . As described in a survey of support
vector machines by Burges, the worst case arrangement of n data points
is a simplex in n− 2 dimensions.89 Plugging this VC-dimension into our
generalization bound yields

∆gen(f) ≤
√

D2 ln n + γ2 ln(1/δ)

γ2n
.

We again see our Perceptron style generalization bound! This bound again
holds when the empirical risk is nonzero. And the dimension of the data, d
does not appear at all in this bound. The difference between the parametric
model and the margin-like bound is that we considered properties of the
data. In the worst case bound which counts parameters, it appears that high-
dimensional prediction is impossible. It is only by considering data-specific
properties that we can find a reasonable generalization bound.

Rademacher complexity

An alternative to VC-dimension is Rademacher complexity, a flexible tool
that often is more amenable to calculations that incorporate problem-specific
aspects such as restrictions on the distribution family or properties of the
loss function. To get a generalization bound in terms of Rademacher
complexity, we typically apply the definition not the model class F itself
but to the class of functions L of the form h(z) = loss(f , z) for some f ∈ F
and a loss function loss . By varying the loss function, we can derive different
generalization bounds.

Fix a function class L ⊆ Z → R, which will later correspond to the
composition of a predictor with a loss function, which is why we chose the
symbol L . Think of the domain Z as the space of labeled examples z =
(x, y) . Fix a distribution P over the space Z .

The empirical Rademacher complexity of a function class L ⊆ Z → R with
respect to a sample {z1, . . . , zn} ⊆ Z drawn i.i.d. from the distribution P is
defined as:

R̂n(L) = E
σ∈{−1,1}n

[
1
n

sup
h∈L

∣∣∣∣∣ n

∑
i=1

σih(zi)

∣∣∣∣∣
]

.

We obtain the Rademacher complexity Rn(L) = E

[
R̂n(L)

]
by taking the

expectation of the empirical Rademacher complexity with respect to the

118

sample. Rademacher complexity measures the ability of a function class to
interpolate a random sign pattern assigned to a point set.

One application of Rademacher complexity applies when the loss func-
tion is L-Lipschitz in the parameterization of the model class for every exam-
ple z . This bound shows that with probability 1− δ for all functions f ∈ F ,
we have

∆gen(f) ≤ 2LRn(F) + 3

√
log(1/δ)

n
.

When applied to the hinge loss with the function class being hyperplanes of
norm less than γ−1, this bound again recovers the perceptron generalization
bound

∆gen(f) ≤ 2
D

γ
√

n
+ 3

√
log(1/δ)

n
.

Margin bounds for ensemble methods

Ensemble methods work by combining many weak predictors into one
strong predictor. The combination step usually involves taking a weighted
average or majority vote of the weak predictors. Boosting and random
forests are two ensemble methods that continue to be highly popular and
competitive in various settings. Both methods train a sequence of small de-
cision trees, each on its own achieving modest accuracy on the training task.
However, so long as different trees make errors that aren’t too correlated,
we can obtain a higher accuracy model by taking, say, a majority vote over
the individual predictions of the trees.

Researchers in the 1990s already observed that boosting often continues
to improve test accuracy as more weak predictors are added to the ensemble.
The complexity of the entire ensemble was thus often far too large to apply
standard uniform convergence bounds.

A proffered explanation was that boosting, while growing the complex-
ity of the ensemble, also improved the margin of the ensemble predictor.
Assuming that the final predictor f : X → {−1, 1} is binary, its margin on
an example (x, y) is defined as the value y f (x) . The larger the margin the
more “confident” the predictor is about its prediction. A margin y f (x) just
above 0 shows that the weak predictors in the ensemble were nearly split
evenly in their weighted votes.

An elegant generalization bound relates the risk of any predictor f to the
fraction of correctly labeled training examples at a given margin θ. Below
let R[f] be the risk of f w.r.t. zero-one loss. However, let Rθ

S(f) be the
empirical risk with respect to margin errors at level θ, i.e., the loss 1(y f (x) ≤
θ) that penalizes errors where the predictor is within an additive θ margin
of making a mistake.

119

Theorem 5. With probability 1− δ, every convex combination f of base predictors
in H satisfies the following bound for every θ > 0 :

R[f]− Rθ
S[f] ≤ O

(
1√
n

(
VC(H) log n

θ2 + log(1/δ)

)1/2
)

The theorem can be proved using Rademacher complexity. Crucially, the
bound only depends on the VC dimension of the base class H but not the
complexity of ensemble. Moreover, the bound holds for all θ > 0 and so we
can choose θ after knowing the margin that manifested during training.

Margin bounds for linear models

Margins also play a fundamental role for linear prediction. We saw one
margin bound for linear models in our chapter on the Perceptron algorithm.
Similar bounds hold for other variants of linear prediction. We’ll state the
result here for a simple least squares problem:

w∗ = arg min
w : ‖w‖≤B

1
n

n

∑
i=1

(〈xi, w〉 − y)2

In other words, we minimize the empirical risk w.r.t. the squared loss
over norm bounded linear separators, call this class WB . Further assume
that all data points satisfy ‖xi‖ ≤ 1 and y ∈ {−1, 1}. Analogous to the
margin bound in Theorem 5, it can be shown that with probability 1− δ for
every linear predictor f specified by weights inWB we have

R[f]− Rθ
S[f] ≤ 4

R(WB)

θ
+ O

(
log(1/δ)√

n

)
.

Moreover, given the assumptions on the data and model class we made,
the Rademacher complexity satisfies R(W) ≤ B/

√
n. What we can learn

from this bound is that the relevant quantity for generalization is the ratio
of complexity to margin B/θ .

It’s important to understand that margin is a scale-sensitive notion;
it only makes sense to talk about it after suitable normalization of the
parameter vector. If the norm didn’t appear in the bound we could scale up
the parameter vector to achieve any margin we want. For linear predictors
the Euclidean norm provides a natural and often suitable normalization.

Generalization from algorithms

In the overparameterized regime, there are always an infinite number of
models that minimize empirical risk. However, when we run a particular

120

algorithm, the algorithm usually returns only one from this continuum. In
this section, we show how directly analyzing algorithmic iteration can itself
yield generalization bounds.

One pass optimization of stochastic gradient descent

As we briefly discussed in the optimization chapter, we can interpret the
convergence analysis of stochastic gradient descent as directly providing
a generalization bound for a particular variant of SGD. Here we give the
argument in full detail. Suppose that we choose a loss function that upper
bounds the number of mistakes. That is loss(ŷ, y) ≥ 1{yŷ < 0} . The hinge
loss would be such an example. Choose the function R to be the risk (not
empirical risk!) with respect to this loss function:

R[w] = E[loss(wTx, y)]

At each iteration, suppose we gain access to an example pair (xi, yi) sampled
i.i.d. from the a data generating distribution. Then when we run the
stochastic gradient method, the iterates are

wt+1 = wt − αte(wT
t xt, yt)xt , where e(z, y) =

∂loss(z, y)
∂z

.

Suppose that for all x, ‖x‖ ≤ D . Also suppose that |e(z, y)| ≤ C . Then the
SGD convergence theorem tells us that after n steps, starting at w0 = 0
and using an appropriately chosen constant step size, the average of our
iterates w̄n will satisfy

P[sign(w̄T
n x) 6= y] ≤ E[R[w̄n]] ≤ R[w?] +

CD‖w?‖√
n

.

This inequality tells us that we will find a distribution boundary that has
low population risk after seeing n samples. And the population risk itself
lets us upper bound the probability of our model making an error on new
data. That is, this inequality is a generalization bound.

We note here that this importantly does not measure our empirical
risk. By running stochastic gradient descent, we can find a low-risk model
without ever computing the empirical risk.

Let us further assume that the population can be separated with large
margin. As we showed when we discussed the Perceptron, the margin is
equal to the inverse of the norm of the corresponding hyperplane. Suppose
we ran the stochastic gradient method using a hinge loss. In this case, C = 1,
so, letting γ denote the maximum margin, we get the simplified bound

P[sign(w̄T
n x) 6= y] ≤ D

γ
√

n
.

121

Note that the Perceptron analysis did not have a step size parameter that
depended on the problem instance. But, on the other hand, this analysis
of SGD holds regardless of whether the data is separable or whether zero
empirical risk is achieved after one pass over the data. The stochastic
gradient analysis is more general but generality comes at the cost of a looser
bound on the probability of error on new examples.

Uniform stability of stochastic gradient descent

Above we showed that empirical risk minimization is stable no matter what
optimization method we use to solve the objective. One weakness is that the
analysis applied to the exact solution of the optimization problem and only
applies for strongly convex loss function. In practice, we might only be able
to compute an approximate empirical risk minimizer and may be interested
in losses that are not strongly convex. Fortunately, we can also show that
some optimization methods are stable even if they don’t end up computing
a minimizer of a strongly convex empirical risk. Specifically, this is true
for the stochastic gradient method under suitable assumptions. Below we
state one such result which requires the assumption that the loss function
is smooth. A continuously differentiable function f : Rd → R is β-smooth
if ‖∇ f (y)−∇ f (x)‖ ≤ β‖y− x‖.
Theorem 6. Assume a continuously differentiable loss function that is β-smooth
and L-Lipschitz on every example and convex. Suppose that we run the stochastic
gradient method (SGM) with step sizes ηt ≤ 2/β for T steps. Then, we have

∆sup(SGM) ≤ 2L2

n

T

∑
t=1

ηt .

The theorem allows for SGD to sample the same data points multiple
times, as is common practice in machine learning. The stability approach
also extends to the non-convex case albeit with a much weaker quantitative
bound.

What solutions does stochastic gradient descent favor?

We reviewed empirical evidence that explicit regularization is not necessary
for generalization. Researchers therefore believe that a combination of
data generating distribution and optimization algorithm perform implicit
regularization. Implicit regularization describes the tendency of an algorithm
to seek out solutions that generalize well on their own on a given a dataset
without the need for explicit correction. Since the empirical phenomena we
reviewed are all based on gradient methods, it makes sense to study implicit

122

regularization of gradient descent. While a general theory for non-convex
problems remains elusive, the situation for linear models is instructive.

Consider again the linear case of gradient descent or stochastic gradient
descent:

wt+1 = wt − αetxt

where et is the gradient of the loss at the current prediction. As we showed in
the optimization chapter, if we run this algorithm to convergence, we must
have the resulting ŵ lies in the span of the data, and that it interpolates the
data. These two facts imply that the optimal ŵ is the minimum Euclidean
norm solution of Xw = y . That is, w solves the optimization problem

minimize ‖w‖2

subject to yiwTxi = 1 .

Moreover, a closed form solution of this problem is given by

ŵ = XT(XXT)−1y .

That is, when we run stochastic gradient descent we converge to a very
specific solution. Now what can we say about the generalization properties
of this minimum norm interpolating solution?

The key to analyzing the generalization of the minimum norm solu-
tion will be a stability-like argument. We aim to control the error of the
model trained on the first m data points on the next data point in the
sequence, xm+1 . To do so, we use a simple identity that follows from linear
algebra.

Lemma 3. Let S be an arbitrary set of m ≥ 2 data points. Let wm−1 and wm denote
the minimum norm solution trained on the first m− 1 and m points respectively.
Then

(1− ym〈wm−1, xm〉)2 = s2
m(‖wm‖2 − ‖wm−1‖2) ,

where
sm := dist (span(x1, . . . , xm−1), xm) .

We hold off on proving this lemma and first prove our generalization
result with the help of this lemma.

Theorem 7. Let Sn+1 denote a set of n + 1 i.i.d. samples. Let Sj denote the
first j samples and wj denote the solution of minimum norm that interpolates
these j points. Let Rj denote the maximum norm of ‖xi‖ for 1 ≤ i ≤ j . Let (x, y)
denote another independent sample from D . Then if εj := E[(1− y fSj(x))2] is a
non-increasing sequence, we have

P[y〈wn, x〉 < 0] ≤
E[R2

j ‖wn+1‖2]

n
.

123

Proof. Lemma together with the bound s2
i ≤ R2

n+1 yields the inequality

E[(1− y〈wi, x〉)2] ≤ (E[R2
n+1‖wi+1‖2]−E[R2

n+1‖wi‖2]) .

Here, we could drop the subscript on x and y on the left-hand side as they
are identically distributed to (xi+1, yi+1) . Adding these inequalities together
gives the bound

1
n

n

∑
i=1

E[(1− y fSi(x))2] ≤ E[R2
n+1‖wn+1‖2]

n
.

Assuming the sequence is decreasing means that the minimum summand
of the previous inequality is E[(1− y fi(x))2] . This and Markov’s inequality
prove the theorem.

This proof reveals that the minimum norm solution, the one found
by running stochastic gradient descent to convergence, achieves a nearly
identical generalization bound as the Perceptron, even with the fast 1/n
rate. Here, nothing is assumed about margin, but instead we assume that
the complexity of the interpolating solution does not grow rapidly as we
increase the amount of data we collect. This proof combines ideas from
stability, optimization, and model complexity to find yet another explanation
for why gradient methods find high-quality solutions to machine learning
problems.

Proof of Lemma 3

We conclude with the deferred proof of Lemma 3.

Proof. Let K = XXT denote the kernel matrix for S . Partition K as

K =

[
K11 K12
K21 K22

]
where K11 is (m− 1)× (m− 1) and K22 is a scalar equal to 〈xm, xm〉 . Simi-
larly, partition the vector of labels y so that y(m−1) denotes the first m− 1
labels. Under this partitioning,

〈wm−1, xm〉 = K21K−1
11 y(m−1) .

Now note that
s2

m = K22 − K21K−1
11 K12 .

124

Next, using the formula for inverting partitioned matrices, we find

K−1 =

[
(K11 − K12K21K−1

22)−1 s−2
m K−1

11 K12
s−2

m (K−1
11 K12)

T s−2
m

]
.

By the matrix inversion lemma we have

(K11 − K12K21K−1
22)−1 = K−1

11 + s−2
m

(
K21K−1

11

)T (
K21K−1

11

)
.

Hence,

‖wi‖ = yTK−1y

= s−2
m (y2

m − 2ym〈wm−1, xm〉+ 〈wm−1, xm〉2) + y(m−1)T
K−1

11 y(m−1) .

Rearranging terms proves the lemma.

Looking ahead

Despite significant effort and many recent advances, the theory of gen-
eralization in overparameterized models still lags behind the empirical
phenomenology. What governs generalization remains a matter of debate
in the research community.

Existing generalization bounds often do not apply directly to practice
by virtue of their assumptions, are quantitatively too weak to apply to
heavily overparameterized models, or fail to explain important empirical
observations. However, it is not just a lack of quantitative sharpness that
limits our understanding of generalization.

Conceptual questions remain open: What is it a successful theory of
generalization should do? What are formal success criteria? Even a qualita-
tive theory of generalization, that is not quantitatively precise in concrete
settings, may be useful if it leads to the successful algorithmic interventions.
But how do we best evaluate the value of a theory in this context?

Our focus in this chapter was decidedly narrow. We discussed how to
related risk and empirical risk. This perspective can only capture ques-
tions that relate performance on a sample to performance on the very
same distribution that the sample was drawn from. What is left out are
important questions of extrapolation from a training environment to test-
ing conditions that differ from training. Overparameterized models that
generalize well in the narrow sense can fail dramatically even with small
changes in the environment. We will revisit the question of generalization
for overparameterized models in our chapter on deep learning.

125

Chapter notes

The tight characterization of generalization gap in terms of average stability,
as well as stability of regularized empirical risk minimization (Theorem
4), is due to Shalev-Shwartz et al.90 Uniform stability was introduced by
Bousquet and Elisseeff.91 For additional background on VC dimension and
Rademacher complexity, see, for example, the text by Shalev-Shwartz and
Ben-David.92

The double descent figure is from work of Belkin et al.93 Earlier work
pointed out similar empirical risk-complexity relationships.94 The empirical
findings related to the randomization test and the role of regularization are
due to Zhang et al.95

Theorem 5 is due to Schapire et al.96 Later work showed theoretically
that boosting maximizes margin.97, 98 The margin bound for linear models
follows from more general results of Kakade, Sridharan, and Tewari99 that
build on earlier work by Bartlett and Mendelson,100 as well as work of
Koltchinskii and Panchenko.101 Rademacher complexity bounds for family
of neural networks go back to work of Bartlett102 and remain and active
research topic. We will see more on this in our chapter on deep learning.

The uniform stability bound for stochastic gradient descent is due to
Hardt, Recht, and Singer.103 Subsequent work further explores the gener-
alization performance stochastic gradient descent in terms of its stability
properties. Theorem 7 and Lemma 3 are due to Liang and Recht.104

There has been an explosion of work on generalization and overparame-
terization in recent years. See, also, recent work exploring how other norms
shed light on generalization performance.105 Our exposition is by no means
a representative survey of the broad literature on this topic. There are
several ongoing lines of work we did not cover: PAC-Bayes bounds,106 com-
pression bounds,107 and arguments about the properties of the optimization
landscape.108 This chapter builds on a chapter by Hardt,109 but contains
several structural changes as well as different results.

126

7
Deep learning

The past chapters have sketched a path towards predictive modeling: ac-
quire data, construct a set of features that properly represent data in a
way such that relevant conditions can be discriminated, pose a convex
optimization problem that balances fitting training data to managing model
complexity, optimize this problem with a standard solver, and then reason
about generalization via the holdout method or cross validation. In many
ways this pipeline suffices for most predictive tasks.

However, this standard practice does have its deficiencies. Feature
engineering has many moving pieces, and choices at one part of the pipeline
may influence downstream decisions in unpredictable ways. Moreover,
different software dependencies may be required to intertwine the various
parts of this chain, making the machine learning engineering more fragile.
It’s additionally possible that more concise feature representations are
possible if the pieces can all be tuned together.

Though motivated differently by different people, deep learning can
be understood as an attempt to “delayer” the abstraction boundaries in
the standard machine learning workflow. It enables holistic design of
representation and optimization. This delayering comes at the cost of
loss of convexity and some theoretical guarantees on optimization and
generalization. But, as we will now describe in this chapter, this cost is
often quite modest and, on many machine learning problems such as image
classification and machine translation, the predictive gains can be dramatic.

Deep learning has been tremendously successful in solving industrial
machine learning problems at many tech companies. It is also the top
performing approach in most academic prediction tasks in computer vision,
speech, and other domains.

The success of deep learning is not just a purely technical matter. Once
the industry had embraced deep learning, an unprecedented amount of
resources has gone into building and refining high quality software for
practicing deep learning. The open source deep learning ecosystem is vast

127

and evolving quickly. For almost any task, there is already some code
available to start from. Companies are actively competing over open source
frameworks with convenient high-level syntax and extensive documentation.
An honest answer for why practitioners prefer deep learning at this point
over other methods is because it simply seems to work better on many
problems and there is a lot of quality code available.

We now retrace our path through representation, optimization, and
generalization, highlighting what is different for deep learning and what
remains the same.

Deep models and feature representation

We discussed in the chapter on representation that template matching,
pooling, and nonlinear lifting can all be achieved by affine transformations
followed by pointwise nonlinearities. These mappings can be chained
together to give a series of new feature vectors:

x`+1 = φ(A`x` + b`) .

Here, ` indexes the layer of a model. We can chain several layers together to
yield a final representation xL.

As a canonical example, suppose x1 is a pixel representation of an
image. Let’s say this representation has size d1 × d1 × c1, with d1 counting
spatial dimensions and c1 counting the number of color channels. We could
apply c2 template matching convolutions to this image, resulting in a second
layer of size d1 × d1 × c2. Since we expect convolutions to capture local
variation, we can compress the size of this second layer, averaging every 2×
2 cell to produce x2 of size d2× d2× c2, with d2 < d1 and c2 > c1. Repeating
this procedure several times will yield a representation xL−1 which has few
spatial dimensions (dL−1 is small) but many channel dimensions (cL−1 is
large). We can then map this penultimate layer through some universal
approximator like a neural network.

A variety of machine learning pipelines can be thought of in this way.
The first layer might correspond to edge detectors like in SIFT110 or HOG.111

The second layer may look for parts relevant to detection like in a deformable
parts model.112 The insight in deep learning is that we can declare the
parameters of each layer A` and b` to be optimization variables. This way, we
do not have to worry about the particular edge or color detectors to use for
our problem, but can instead let the collected data dictate the best settings
of these features.

This abstraction of “features” as “structure linear maps with tunable
parameters” allows for a set of basic building blocks that can be used across
a variety of domains.

128

1. Fully connected layers. Fully connected layers are simply unstruc-
tured neural networks that we discussed in the representation chapter.
For a fixed nonlinear function σ, a fully connected layer maps a vec-
tor x to a vector z with coordinates

zi = σ

(
∑

j
Aijxj + bi

)
.

While it is popular to chain fully connected layers together to get
deep neural networks, there is little established advantage over just
using a single layer. Daniely et al. have backed up this empirical
observation, showing theoretically that no new approximation power
is gained by concatenating fully connected layers.72 Moreover, as we
will discuss below, concatenating many layers together often slows
down optimization. As with most things in deep learning, there’s
nothing saying you can’t chain fully connected layers, but we argue
that most of the gains in deep learning come from the structured
transforms, including the ones we highlight here.

2. Convolutions. Convolutions are the most important building block in
all of deep learning. We have already discussed the use of convolutions
as template matchers that promote spatial invariances. Suppose the
input is d0× d0× c0, with the first two components indexing space and
the last indexing channels. The parameter A has size q0× q0× c0× c1,
where q0 is usually small (greater than 2 and less than 10. b typically
has size c1. The number of parameters used to define a convolutional
layer is dramatically smaller than what would be used in a fully
connected layer. The structured linear map of a convolution can be
written as

za,b,c = σ

(
∑
i,j,k

Ai,j,k,cxa−i,b−j,k + bc

)
.

3. Recurrent structures. Recurrent structures let us capture repeatable
stationary patters in time or space. Suppose we expect stationarity
in time. In this case, we expect each layer to represent a state of
the system, and the next time step should be a static function of the
previous:

xt+1 = f (xt)

When we write f as a neural network, this is called a recurrent neural
network. Recurrent neural networks share weights insofar as the f does
not change from one time step to the next.

129

4. Attention mechanisms. Attention mechanisms have proven powerful
tools in natural language processing for collections of vectors with
dependencies that are not necessarily sequential. Suppose our layer
is a list of m vectors of dimension d. That is, x has shape d×m. An
attention layer will have two matrices U and V, one to operate on the
feature dimensions and one to operate on the sequential dimensions.
The transformation takes form

za,b = σ

(
∑
i,j

Ua,ixijVb,j

)
.

Just as was the case with convolutions, this structured map can have
fewer dimensions than a fully connected layer, and can also respect a
separation of the feature dimensions from the sequential dimensions
in the data matrix x.

Optimization of deep nets

Once we have settled on a feature representation, typically called model
architecture in this context, we now need to solve empirical risk minimization.
Let’s group all of the parameters of the layers into a single large array of
weights, w. We denote the map from x to prediction with weights w
as f (x; w). At an abstract level, empirical risk minimization amounts to
minimizing

RS[w] =
1
n

n

∑
i=1

loss(f (xi; w), yi) .

This is a nonconvex optimization problem, but we can still run gradient
methods to try to find minimizers. Our main concerns from an optimization
perspective are whether we run into local optima and how can we compute
gradient steps efficiently.

We will address gradient computation through a discussion of automatic
differentiation. With regards to global optimization, there are unfortunately
computational complexity results proving efficient optimization of arbitrary
neural networks is intractable. Even neural nets with a single neuron can
have exponentially many local minimizers,113 and finding the minimum of
a simple two-layer neural network is NP-hard.114, 115 We cannot expect a
perfectly clean mathematical theory guiding our design and implementation
of neural net optimization algorithms.

However, these theoretical results are about the worst case. In practice,
optimization of neural nets is often easy. If the loss is bounded below by
zero, any model with zero loss is a global minimizer. As we discussed in

130

the generalization chapter, one can quickly find a global optimum of a state-
of-the-art neural net by cloning a GitHub repo and turning off the various
regularization schemes. In this section, we aim to provide some insights
about the disconnect between computational complexity in the worst case
and the results achieved in practice. We provide some partial insights as to
why neural net optimization is doable by studying the convergence of the
predictions and how this convergence can be aided by overparameterization.

Convergence of predictions in nonlinear models

Consider the special case where we aim to minimize the square-loss. Let
ŷt denote the vector of predictions (f (xi; wt))

n
i=1 ∈ Rn. Gradient descent

follows the iterations

wt+1 = wt − αDw f (x; wt)(ŷt − y)

where Dw f (x; wt) denotes the d× n Jacobian matrix of the predictions ŷt.
Reasoning about convergence of the weights is difficult, but we showed in
the optimization chapter that we could reason about convergence of the
predictions:

ŷt+1 − y = (I − αDw f (x; wt)
TDw f (x; wt))(ŷt − y) + αεt .

Here,
εt =

α

2
Λ‖ŷt − y‖2

and Λ bounds the curvature of the f . If εt = 0 is sufficiently small the
predictions will converge to the training labels.

Hence, under some assumptions, nonconvexity does not stand in the
way of convergence to an empirical risk minimizer. Moreover, control of the
Jacobians Dw f can accelerate convergence. We can derive some reasonable
ground rules on how to keep Dw f well conditioned by unpacking how we
compute gradients of compositions of functions.

Automatic differentiation

For linear models it’s not hard to calculate the gradient with respect to the
model parameters analytically and to implement the analytical expression
efficiently. The situation changes once we stack many operations on top
of each other. Even though in principle we can calculate gradients using
the chain rule, this gets tedious and error-prone very quickly. Moreover,
the straightforward way of implementing the chain rule is computationally
inefficient. What’s worse is that any change to the model architecture would
require us to redo our calculation and update its implementation.

131

Fortunately, the field of automatic differentiation has the tools to avoid
all of these problems. At a high-level, automatic differentiation provides
efficient algorithms to compute gradients of any function that we can write
as a composition of differentiable building blocks. Though automatic differ-
entiation has existed since the 1960s, the success of deep learning has led
to numerous free, well-engineered, and efficient automatic differentiation
packages. Moreover, the dynamic programming algorithm behind these
methods is quite instructive as it gives us some insights into how to best
engineer model architectures with desirable gradients.

Automatic differentiation serves two useful purposes in deep learning.
First, it lowers the barrier to entry, allowing practitioners to think more about
modeling than about the particulars of calculus and numerical optimization.
Second, a standard automatic differentiation algorithm helps us write down
parseable formulas for the gradients of our objective function so we can
reason about what structures encourage faster optimization.

To define this dynamic programming algorithm, called backpropagation,
it’s helpful to move up a level of abstraction before making the matter more
concrete again. After all, the idea is completely general and not specific
to deep models. Specifically, we consider an abstract computation that
proceeds in L steps starting from an input z(0) and produces an output z(L)

with L− 1 intermediate steps z(1), . . . , z(L−1):

input z(0)

z(1) = f1(z(0))
...

z(L−1) = fL−1(z(L−2))

output z(L) = fL(z(L−1))

We assume that each layer z(i) is a real-valued vector and that each function fi
maps a real-valued vector of some dimension to another dimension. Recall
that for a function f : Rn → Rm, the Jacobian matrix D(w) is the n × m
matrix of first-order partial derivatives evaluated at the point w. When m =
1 the Jacobian matrix coincides with the transpose of the gradient.

In the context of backpropagation, it makes sense to be a bit more explicit
in our notation. Specifically, we will denote the Jacobian of a function f
with respect to a variable x evaluated at point w by Dx f (w) .

The backpropagation algorithm is a computationally efficient way of
computing the partial derivatives of the output z(L) with respect to the
input z(0) evaluated at a given parameter vector w, that is, the Jaco-
bian Dz(0)z

(L)(w). Along the way, it computes the Jacobians for any of
the intermediate layers as well.

132

Backpropagation

• Input: parameters w
• Forward pass:

– Set v0 = w
– For i = 1, . . . , L:

* Store vi−1 and compute vi = fi(vi−1)

• Backward pass:

– Set ΛL = DzL zL(vL) = I.
– For i = L, . . . , 1:

* Set Λi−1 = ΛiDz(i−1)z(i)(vi−1).

• Output Λ0.

First note that backpropagation runs in time O(LC) where C is the com-
putational cost of performing an operation at one step. On the forward
pass, this cost correspond to function evaluation. On the backward pass, it
requires computing the partial derivatives of z(i) with respect to z(i−1). The
computational cost depends on what the operation is. Typically, the i-th step
of the backward pass has the same computational cost as the correspond-
ing i-th step of the forward pass up to constant factors. What is important
is that computing these partial derivatives is an entirely local operation. It
only requires the partial derivatives of a function with respect to its input
evaluated at the value vi−1 that we computed in the forward pass. This
observation is key to all fast implementations of backpropagation. Each
operation in our computation only has to implement function evaluation, its
first-order derivatives, and store an array of values computed in the forward
pass. There is nothing else we need to know about the computation that
comes before or after.

The main correctness property of the algorithm is that the final output
Λ0 equals the partial derivative of the output layer with respect to the input
layer evaluated at the input w.

Proposition 8. Correctness of backpropagation.

Λ0 = Dz(0)z
(L)(w)

The claim directly follows by induction from the following lemma, which
states that if we have the correct partial derivatives at step i of the backward
pass, then we also get them at step i− 1.

Lemma 4. Backpropagation invariant.

Λi = Dz(i)z
(L)(vi) =⇒ Λi−1 = Dz(i−1)z(L)(vi−1)

133

Proof. Assume that the premise holds. Then, we have

Λi−1 = ΛiDz(i−1)z(i)(vi−1)

= Dz(i)z
(L)(vi)Dz(i−1)z(i)(vi−1)

= Dz(i−1)z(L)(vi−1)

The last identity is the multivariate chain rule.

To aid the intuition, it can be helpful to write the multivariate chain rule
informally in the familiar Leibniz notation:

∂z(L)

∂z(i)
∂z(i)

∂z(i−1)
=

∂z(L)

∂z(i−1)

A worked out example

The backpropagation algorithm works in great generality. It produces
partial derivatives for any variable appearing in any layer z(i). So, if we
want partial derivatives with respect to some parameters, we only need to
make sure they appear on one of the layers. This abstraction is so general
that we can easily express all sorts of deep architectures and the associated
objective functions with it.

But let’s make that more concrete and get a feeling for the mechanics
of backpropagation in the two cases that are most common: a non-linear
transformation applied coordinate-wise, and a linear transformation.

Suppose at some point in our computation we apply the rectified linear
unit ReLU = max{u, 0} coordinate-wise to the vector u. ReLU units remain
one of the most common non-linearities in deep neural networks. To
implement the backward pass, all we need to be able to do is to compute the
partial derivatives of ReLU(u) with respect to u. It’s clear that when ui > 0,
the derivative is 1. When ui < 0, the derivative is 0. The derivative is not
defined at ui = 0, but we choose to ignore this issue by setting it to be 0.
The resulting Jacobian matrix is a diagonal matrix D(u) which has a one
in all coordinates corresponding to positive coordinates of the input vector,
and is zero elsewhere.

• Forward pass:

– Input: u
– Store u and compute the value v = ReLU(u).

• Backward pass:

134

– Input: Jacobian matrix Λ
– Output ΛD(u)

If we were to swap out the rectified linear unit for some other coordinate-
wise nonlinearity, we’d still get a diagonal matrix. What changes are the
coefficients along the diagonal.

Now, let’s consider an affine transformation of the input v = Au + b.
The Jacobian of an affine transformation is simply the matrix A itself. Hence,
the backward pass is simple:

• Backward pass:

– Input: Jacobian matrix Λ
– Output: ΛA

We can now easily chain these together. Suppose we have a typical
ReLU network that strings together L linear transformations with ReLU
operations in between:

f (x) = ALReLU(AL−1ReLU(· · ·ReLU(A1x)))

The Jacobian of this chained operation with respect to the input x is given
by a chain of linear operations:

ALDL−1AL−1 · · ·D1A1

Each matrix Di is a diagonal matrix that zeroes out some coordinates and
leaves others untouched. Now, in a deep model architecture the weights of
the linear transformation are typically trainable. That means we really want
to be able to compute the gradients with respect to, say, the coefficients of
the matrix Ai.

Fortunately, the same reasoning applies. All we need to do is to make
Ai part of the input to the matrix-vector multiplication node and back-
propagation will automatically produce derivatives for it. To illustrate this
point, suppose we want to compute the partial derivatives with respect
to, say, the j-th column of Ai. Let u = ReLU(Ai−1 · · · (A1x)) be the vector
that we multiply Ai with. We know from the argument above that the
Jacobian of the output with respect to the vector Aiu is given by the linear
map B = ALDL−1AL−1 · · ·Di. To get the Jacobian with respect to the j-th
column of Ai we therefore only need to find the partial derivative of Aiu
with respect to the j-th column of Ai. We can verify by taking derivatives
that this equals uj I. Hence, the partial derivatives of f (x) with respect to
the j-th column of Ai are given by Buj.

Let’s add in the final ingredient, a loss function. Suppose AL maps into
one dimension and consider the squared loss 1

2(f (x)− y)2. The only thing

135

this loss function does is to scale our Jacobian by a factor f (x)− y. In other
words, the partial derivatives of the loss with respect to the j-th columns of
the weight matrix Ai is given by (f (x)− y)Buj.

As usual with derivatives, we can interpret this quantity as the sensitivity
of our loss to changes in the model parameters. This interpretation will be
helpful next.

Vanishing gradients

The previous discussion revealed that the gradients of deep models are
produced by chains of linear operations. Generally speaking, chains of
linear operations tend to either blow up the input exponentially with depth,
or shrink it, depending on the singular values of the matrices. It is helpful
to keep in mind the simple case of powering the same symmetric real
matrix A a number of times. For almost all vectors u, the norm ‖ALu‖
grows as Θ

(
λ1(A)L) asymptotically with L. Hence it vanishes exponentially

quickly if λ1(A) < 1 and it grows exponentially quickly if λ1(A) > 1.
When it comes to gradients, these two cases correspond to the vanishing

gradients problem and the exploding gradients problem, respectively. Both
result in a failure case for gradient-based optimization methods. Huge
gradients are numerically unstable. Tiny gradients preclude progress and
stall any gradient-based optimization method. We can always avoid one of
the problems by scaling the weights, but avoiding both can be delicate.

Vanishing and exploding gradients are not the fault of an optimization
method. They are a property of the model architecture. As a result, to
avoid them we need to engineer our model architectures carefully. Many
architecture innovations in deep learning aim to address this problem. We
will discuss two of them. The first are residual connections, and the second
are layer normalizations.

Residual connections

The basic idea behind residual networks is to make each layer close to the
identity map. Traditional building blocks of neural networks typically
looked like two affine transformations A, B, with a nonlinearity in the
middle:

f (x) = B(ReLU(A(x)))

Residual networks modify these building blocks by adding the input x back
to the output:

h(x) = x + B(ReLU(A(x)))

136

In cases where the output of C differs in its dimension from x, practitioners
use different padding or truncation schemes to match dimensions. Thinking
about the computation graph, we create a connection from the input to the
output of the building block that skips the transformation. Such connections
are therefore called skip connections.

This seemingly innocuous change was hugely successful. Residual
networks took the computer vision community by storm, after they achieved
leading performance in numerous benchmarks upon their release in 2015.
These networks seemed to avoid the vanishing gradients better than prior
architectures and allowed for model depths not seen before.

Let’s begin to get some intuition for why residual layers are reasonable
by thinking about what they do to the gradient computation. Let J = Dx f (x)
be the Jacobian of the function f with respect to its input. We can verify
that the Jacobian of the residual block looks like

J′ = Dxh(x) = Dx I(x) +Dx f (x) = I + J .

In other words, the Jacobian of a residual block is the Jacobian of a regular
block plus the identity. This means that if we scale down the weights of
the regular block, the Jacobian J′ approaches the identity in the sense that
all its singular values are between 1− ε and 1 + ε. We can think of such a
transformation as locally well-conditioned. It neither blows up nor shrinks
down the gradient much. Since the full Jacobian of a deep residual network
will be a product of such matrices, our reasoning suggests that suitably
scaled residual networks have well-conditioned Jacobians, and hence, as we
discussed above, predictions should converge rapidly.

Our analyses of non-convex ERM thus far have described scenarios
where we could prove the predictions converge to the training labels. Resid-
ual networks are interesting as we can construct cases where the weights
converge to a unique optimal solution. This perhaps gives even further
motivation for their use.

Let’s consider the simple case of where the activation function is the
identity. The resulting residual blocks are linear transformations of the
form I + A. We can chain them as A = (I + AL) · · · (I + A1). Such networks
are no longer universal approximators, but they are non-convex parame-
terizations of linear functions. We can turn this parameterization into an
optimization problem by solving a least squares regression problem in this
residual parameterization:

minimizeA1,...,AL E[1
2‖A(X)−Y‖2]

Assume X is a random vector with covariance matrix I and Y = B(X) + G
where B is a linear transformation and G is centered random Gaussian

137

noise. A standard trick shows that up to an additive constant the objective
function is equal to

f (A1, . . . , AL) =
1
2
‖A− B‖2

F .

What can we say about the gradients of this function? We can verify that
the Jacobian of f with respect to Ai equals

DAi f (A1, . . . , AL) = PTEQT

where P = (I + AL) · · · (I + Ai+1) and Q = (I + Ai−1) · · · (I + A1).
Note that when P and Q are non-singular, then the gradient can only

vanish at E = 0. But that means we’re at the global minimum of the objective
function f . We can ensure that P and Q are non-singular by making the
largest singular value of each Ai to be less than 1/L.

The property we find here is that the gradient vanishes only at the
optimum. This is implied by convexity, but it does not imply convexity.
Indeed, the objective function above is not convex. However, this weaker
property is enough to ensure that gradient-based methods do not get stuck
except at the optimum. In particular, the objective has no saddle points. This
desirable property does not hold for the standard parameterization A =
AL · · · A1 and so it speaks to the benefit of the residual parameterization.

Normalization

Consider a feature vector x. We can partition this vector into subsets so that

x =
[
x1 · · · xP

]
,

and normalize each subset to yield a vector with partitions

x′i = 1/si(xi − µi)

where µi is the mean of the components of xi and si is the standard deviation.
Such normalization schemes have proven powerful for accelerating the

convergence of stochastic gradient descent. In particular, it is clear why
such an operation can improve the conditioning of the Jacobian. Consider
the simple linear case where ŷ = Xw. Then D(w) = X. If each row of X
has a large mean, i.e., X ≈ X0 + c11T, then, X may be ill conditioned, as
the rank one term will dominate first singular value, and the remaining
singular values may be small. Removing the mean improves the condition
number. Rescaling by the variance may improve the condition number, but
also has the benefit of avoiding numerical scaling issues, forcing each layer
in a neural network to be on the same scale.

138

Such whole vector operations are expensive. Normalization in deep
learning chooses parts of the vector to normalize that can be computed
quickly. Batch Normalization normalizes along the data-dimension in
batches of data used to as stochastic gradient minibatches.116 Group Nor-
malization generalizes this notion to arbitrary partitioning of the data,
encompassing a variety of normalization proposals.117 The best normaliza-
tion scheme for a particular task is problem dependent, but there is a great
deal of flexibility in how one partitions features for normalization.

Generalization in deep learning

While our understanding of optimization of deep neural networks has made
significant progress, our understanding of generalization is considerably
less settled. In the previous chapter, we highlighted four paths towards
generalization: stability, capacity, margin, optimization. It’s plausible deep
neural networks have elements of all four of these core components. The
evidence is not as cut and dry as it is for linear models, but some mathe-
matical progress has been made to understand how deep learning leverages
classic foundations of generalization. In this section we review the partial
evidence gathered so far.

In the next chapter we will extend this discussion by taking a closer
look at the role that data and community practices play in the study of
generalization for deep learning.

Algorithmic stability of deep neural networks

We discussed how stochastic gradient descent trained on convex models
was algorithmically stable. The results we saw in Chapter 6 extend to some
to the non-convex case. However, results that go through uniform stability
ultimately cannot explain the generalization performance of training large
deep models. The reason is that uniform stability does not depend on the
data generating distribution. In fact, uniform stability is invariant under
changes to the labeling of the data. But we saw in Chapter 6 that we can
make the generalization gap whatever we want by randomizing the labels
in the training set.

Nevertheless, it’s possible that a weaker notion of stability that is sen-
sitive to the data would work. In fact, it does appear to be the case in
experiment that stochastic gradient descent is relatively stable in concrete
instances. To measure stability empirically we can look at the Euclidean
distance between the parameters of two identical models trained on the
datasets which differ only by a single example. If these are close for many

139

0 1 2 3 4 5 6 7
epoch

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

0.018

N
o
rm

a
liz

e
d
 e

u
cl

id
e
a
n
 d

is
ta

n
ce

Late substitution

layer

conv1

Figure 27: Parameter divergence on AlexNet trained on ImageNet. The two
models differ only in a single example.

independent runs, then the algorithm appears to be stable. Note that
parameter distance is a stronger notion than stability of the loss.

The plot below displays the parameter distance for the venerable AlexNet
model trained on the ImageNet benchmark. We observe that the parameter
distance grows sub-linearly even though our theoretical analysis is unable
to prove this to be true.

Capacity of deep neural networks

Many researchers have attempted to compute notions like VC-dimension or
Rademacher complexity of neural networks. The earliest work by Baum and
Haussler bounded the VC-dimension of small neural networks and showed
that as long these networks could be optimized well in the underparameterized
regime, then the neural networks would generalize.118 Later, seminal work
by Bartlett showed that the size of the weights was more important than the
number of weights in terms of understanding generalization capabilities of
neural networks.119 These bounds were later sharpened using Rademacher
complexity arguments.100

Margin bounds for deep neural networks

The margin theory for linear models conceptually extends to neural net-
works. The definition of margin is unchanged. It simply quantifies how
close the network is to making an incorrect prediction. What changes is that

140

for multi-layer neural networks the choice of a suitable norm is substantially
more delicate.

To see why, a little bit of notation is necessary. We consider multi-layer
neural networks specified by a composition of L layers. Each layer is a linear
transformation of the input, followed by a coordinate-wise non-linear map:

Input x → Ax → σ(Ax)

The linear transformation has trainable parameters, while the non-linear
map does not. For notational simplicity, we assume we have the same
non-linearity σ at each layer scaled so that the map is 1-Lipschitz. For
example, the popular coordinate-wise ReLU max{x, 0} operation satisfies
this assumption.

Given L weight matrices A = (A1, . . . , AL) let fA : Rd → Rk denote the
function computed by the corresponding network:

fA(x) := ALσ(AL−1 · · · σ(A1x) · · ·)) .

The network output FA(x) ∈ Rk is converted to a class label in {1, . . . , k}
by taking the arg max over components, with an arbitrary rule for breaking
ties. We assume d ≥ k only for notational convenience.

Our goal now is to define a complexity measure of the neural network
that will allow us to prove a margin bound. Recall that margins are mean-
ingless without a suitable normalization of the network. Convince yourself
that the Euclidean norm can no longer work for multi-layer ReLU networks.
After all we can scale the linear transformation on one later by a constant c
and a subsequent layer by a constant 1/c. Since the ReLU non-linearity
is piecewise linear, this transformation changes the Euclidean norm of
the weights arbitrarily without changing the function that the network
computes.

There’s much ongoing work about what good norms are for deep neural
networks. We will introduce one possible choice here.

Let ‖ · ‖op denote the spectral norm. Also, let ‖A‖2,1 =
‖(‖A:,1‖2, . . . , ‖A:,m‖2)‖1 the matrix norm where we apply the `2-norm
to each column of the matrix and then take the `1-norm of the resulting
vector.

The spectral complexity RA of a network FA with weights A is the defined
as

RA :=

(
L

∏
i=1
‖Ai‖op

) L

∑
i=1

(
‖A>i −M>i ‖2,1

‖Ai‖op

)2/3
3/2

. (7.1)

Here, the matrices M1, . . . , ML are free parameters that we can choose to
minimize the bound. Random matrices tend to be good choices.

141

The following theorem provides a generalization bound for neural net-
works with fixed nonlinearities and weight matrices A of bounded spectral
complexity RA.

Theorem 8. Assume data (x1, y1), . . . , (xn, yn) are drawn i.i.d. from any proba-
bility distribution over Rd × {1, . . . , k}. With probability at least 1− δ, for every
margin θ > 0 and every network fA : Rd → Rk,

R[fA]− Rθ
S[fA] ≤ Õ

RA
√

∑i ‖xi‖2
2 ln(d)

θn
+

√
ln(1/δ)

n

 ,

where Rθ
S[f] ≤ n−1 ∑i 1

[
f (xi)yi ≤ θ + maxj 6=yi f (xi)j

]
.

The proof of the theorem involves Rademacher complexity and so-
called data-dependent covering arguments. Although it can be shown
empirically that the above complexity measure RA is somewhat correlated
with generalization performance in some cases, there is no reason to believe
that it is the “right” complexity measure. The bound has other undesirable
properties, such as an exponential dependence on the depth of the network
as well as an implicit dependence on the size of the network.

Implicit regularization by stochastic gradient descent in deep learning

There have been recent attempts to understand the dynamics of stochastic
gradient descent on deep neural networks. Using an argument similar to the
one we used to reason about convergence of the predictions of deep neural
networks, Jacot et al. used a differential equations argument to understand
to which function stochastic gradient converged.73

Here we can sketch the rough details of their argument. Recall our
expression for the dynamics of the predictions in gradient descent:

ŷt+1 − y = (I − αD(wt)
TD(wt))(ŷt − y) + αεt .

If α is very small, we can further approximate this as

ŷt+1 − y = (I − αD(w0)
TD(w0))(ŷt − y) + αε′t .

Now ε′t captures both the curvature of the function representation and
the deviation of the weights from their initial condition. Note that in this
case, D(w0) is a constant for all time. The matrix D(w0)

TD(w0) is n× n,
positive semidefinite, and only depends on the data and the initial setting
of the weights. When the weights are random, this is a kernel induced by

142

random features. The expected value of this random feature embedding is
called a Neural Tangent Kernel.

k(x1, x2) = E
w0

[〈∇w f (x1; w0),∇w f (x2; w0)〉] .

Using a limit where α tends to zero, Jacot et. al argue that a deep
neural net will find a minimum norm solution in the RKHS of the Neu-
ral Tangent Kernel. This argument was made non-asymptotic by Heckel
and Soltanolkotabi.120 In the generalization chapter, we showed that the
minimum norm solution of in RKHS generalized with a rate of O(1/n).
Hence, this argument suggests a similar rate of generalization may occur in
deep learning, provided the norm of the minimum norm solution does not
grow to rapidly with the number of data points and that the true function
optimized by stochastic gradient descent isn’t too dissimilar from the Neural
Tangent Kernel limit. We note that this argument is qualitative, and there
remains work to be done to make these arguments fully rigorous.

Perhaps the most glaring issue with NTK arguments is that they do not
reflect practice. Models trained with Neural Tangent Kernels do not match
the predictive performance of the corresponding neural network. Moreover,
simpler kernels inspired by these networks can out perform Neural Tangent
Kernels.75 There is a significant gap between the theory and practice here,
but the research is new and remains active and this gap may be narrowed
in the coming years.

Chapter notes

Deep learning is at this point a vast field with tens of thousands of papers.
We don’t attempt to survey or systematize this vast literature. It’s worth
emphasizing though the importance of learning about the area by experi-
menting with available code on publicly available datasets. The next chapter
will cover datasets and benchmarks in detail.

Apart from the development of benchmark datasets, one of the most
important advances in deep learning over the last decade has been the
development of high quality, open source software. This software makes
it easier than ever to prototype deep neural network models. One such
open source project is PyTorch (pytorch.org), which we recommend for
the researcher interested in experimenting with deep neural networks.
The best way to begin to understand some of the nuances of architecture
selection is to find pre-existing code and understand how it is composed.
We recommend the tutorial by David Page which demonstrates how the
many different pieces fit together in a deep learning pipeline.121

143

For a more in depth understanding of automatic differentiation, we
recommend Griewank and Walther’s Evaluating Derivatives.122 This text
works through a variety of unexpected scenarios—such as implicitly defined
functions—where gradients can be computed algorithmically. Jax is open
source automatic differentiation package that incorporates many of these
techniques, and is useful for any application that could be assisted by
automatic differentiation.123

The AlexNet architecture was introduced by Krizhevsky, Sutskever, and
Hinton in 2012.124 Achieving the best known performance on the ImageNet
benchmark at the time, it was pivotal in kicking of the most recent wave of
research on deep learning.

Residual networks were introduced by He, Zhang, Ren, and Sun in
2016.86 The observation about linear residual networks is due to Hardt and
Ma.125

Theorem 8 is due to Bartlett, Foster, and Telgarsky.126 The dimension
dependence of the theorem can be removed.127

144

8
Datasets

It’s become commonplace to point out that machine learning models are
only as good as the data they’re trained on. The old slogan “garbage in,
garbage out” no doubt applies to machine learning practice, as does the
related catchphrase “bias in, bias out”. Yet, these aphorisms still understate—
and somewhat misrepresent—the significance of data for machine learning.

It’s not only the output of a learning algorithm that may suffer with
poor input data. A dataset serves many other vital functions in the machine
learning ecosystem. The dataset itself is an integral part of the problem
formulation. It implicitly sorts out and operationalizes what the problem
is that practitioners end up solving. Datasets have also shaped the course
of entire scientific communities in their capacity to measure and bench-
mark progress, support competitions, and interface between researchers in
academia and practitioners in industry.

If so much hinges on data in machine learning, it might come as a
surprise that there is no simple answer to the question of what makes data
good for what purpose. The collection of data for machine learning applica-
tions has not followed any established theoretical framework, certainly not
one that was recognized a priori.

In this chapter, we take a closer look at popular datasets in the field of
machine learning and the benchmarks that they support. We trace out the
history of benchmarks and work out the implicit scientific methodology
behind machine learning benchmarks. We limit the scope of this chapter
in some important ways. Our focus will be largely on publicly available
datasets that support training and testing purposes in machine learning
research and applications. Primarily, we critically examine the train-and-test
paradigm machine learning practitioners take for granted today.

145

The scientific basis of machine learning benchmarks

Methodologically, much of modern machine learning practice rests on a
variant of trial and error, which we call the train-test paradigm. Practitioners
repeatedly build models using any number of heuristics and test their per-
formance to see what works. Anything goes as far as training is concerned,
subject only to computational constraints, so long as the performance looks
good in testing. Trial and error is sound so long as the testing protocol
is robust enough to absorb the pressure placed on it. We will examine to
which extent this is the case in machine learning.

From a theoretical perspective, the best way to test the performance of a
predictor f is to collect a sufficiently large fresh dataset S and to compute
the empirical risk RS[f]. We already learned that the empirical risk in this
case is an unbiased estimate of the risk of the predictor. For a bounded loss
function and a test set of size n, an appeal to Hoeffding’s inequality proves
the generalization gap to be no worse than O(1/

√
n). We can go a step

further and observe that if we take union bound over k fixed predictors, our
fresh sample will simultaneously provide good estimates for all k predictors
up to a maximum error of O(

√
log(k)/n). In fact, we can apply any of

the mathematical tools we saw in the Generalization chapter so long as the
sample S really is a fresh sample with respect to the set of models we want
to evaluate.

Data collection, however, is a difficult and costly task. In most applica-
tions, practitioners cannot sample fresh data for each model they would like
to try out. A different practice has therefore become the de facto standard.
Practitioners split their dataset into typically two parts, a training set used
for training a model, and a test set used for evaluating its performance.
Sometimes practitioners divide their data into multiple splits, e.g., train-
ing, validation, and test sets. However, for our discussion here that won’t
be necessary. Often the split is determined when the dataset is created.
Datasets used for benchmarks in particular have one fixed split persistent
throughout time. A number of variations on this theme go under the name
holdout method.

Machine learning competitions have adopted the same format. The
company Kaggle, for example, has organized hundreds of competitions
since it was founded. In a competition, a holdout set is kept secret and
is used to rank participants on a public leaderboard as the competition
unfolds. In the end, the final winner is whoever scores highest on a separate
secret test set not used to that point.

In all applications of the holdout method the hope is that the test set will
serve as a fresh sample that provides good risk estimates for all the models.
The central problem is that practitioners don’t just use the test data once

146

only to retire it immediately thereafter. The test data are used incrementally
for building one model at a time while incorporating feedback received
previously from the test data. This leads to the fear that eventually models
begin to overfit to the test data.

Duda and Hart summarize the problem aptly in their 1973 textbook:

In the early work on pattern recognition, when experiments
were often done with very small numbers of samples, the same
data were often used for designing and testing the classifier.
This mistake is frequently referred to as “testing on the training
data.” A related but less obvious problem arises when a classifier
undergoes a long series of refinements guided by the results of
repeated testing on the same data. This form of “training on the
testing data” often escapes attention until new test samples are
obtained.128

Nearly half a century later, Hastie, Tibshirani, and Friedman still caution
in the 2017 edition of their influential textbook:

Ideally, the test set should be kept in a “vault,” and be brought
out only at the end of the data analysis. Suppose instead that
we use the test-set repeatedly, choosing the model with smallest
test-set error. Then the test set error of the final chosen model
will underestimate the true test error, sometimes substantially.129

Indeed, reuse of test data—on the face of it—invalidates the statistical
guarantees of the holdout method. The predictors created with knowledge
about prior test-set evaluations are no longer independent of the test data.
In other words, the sample isn’t fresh anymore. While the suggestion to
keep the test data in a “vault” is safe, it couldn’t be further from the reality
of modern practice. Popular test datasets often see tens of thousands of
evaluations.

We could try to salvage the situation by relying on uniform convergence.
If all models we try out have sufficiently small complexity in some formal
sense, such as VC-dimension, we could use the tools from the Generalization
chapter to negotiate some sort of a bound. However, the whole point of the
train-test paradigm is not to constrain the complexity of the models a priori,
but rather to let the practitioner experiment freely. Moreover, if we had an
actionable theoretical generalization guarantee to begin with, there would
hardly be any need for the holdout method whose purpose is to provide an
empirical estimate where theoretical guarantees are lacking.

Before we discuss the “training on the testing data” problem any further,
it’s helpful to get a better sense of concrete machine learning benchmarks,
their histories, and their impact within the community.

147

A tour of datasets in different domains

The creation of datasets in machine learning does not follow a clear the-
oretical framework. Datasets aren’t collected to test a specific scientific
hypothesis. In fact, we will see that there are many different roles data plays
in machine learning. As a result, it makes sense to start by looking at a few
influential datasets from different domains to get a better feeling for what
they are, what motivated their creation, how they organized communities,
and what impact they had.

TIMIT

Automatic speech recognition is a machine learning problem of significant
commercial interest. Its roots date back to the early 20th century.130

Interestingly, speech recognition also features one of the oldest bench-
marks datasets, the TIMIT (Texas Instruments/Massachusetts Institute for
Technology) data. The creation of the dataset was funded through a 1986

DARPA program on speech recognition. In the mid-eighties, artificial intel-
ligence was in the middle of a “funding winter” where many governmental
and industrial agencies were hesitant to sponsor AI research because it often
promised more than it could deliver. DARPA program manager Charles
Wayne proposed a way around this problem was establishing more rigorous
evaluation methods. Wayne enlisted the National Institute of Standards and
Technology to create and curate shared datasets for speech, and he graded
success in his program based on performance on recognition tasks on these
datasets.

Many now credit Wayne’s program with kick starting a revolution of
progress in speech recognition.12, 13, 14 According to Church,

It enabled funding to start because the project was glamour-and-
deceit-proof, and to continue because funders could measure
progress over time. Wayne’s idea makes it easy to produce
plots which help sell the research program to potential sponsors.
A less obvious benefit of Wayne’s idea is that it enabled hill
climbing. Researchers who had initially objected to being tested
twice a year began to evaluate themselves every hour.13

A first prototype of the TIMIT dataset was released in December of
1988 on a CD-ROM. An improved release followed in October 1990. TIMIT
already featured the training/test split typical for modern machine learning
benchmarks. There’s a fair bit we know about the creation of the data due
to its thorough documentation.131

148

TIMIT features a total of about 5 hours of speech, composed of 6300

utterances, specifically, 10 sentences spoken by each of 630 speakers. The
sentences were drawn from a corpus of 2342 sentences such as the following.

She had your dark suit in greasy wash water all year. (sa1)
Don’t ask me to carry an oily rag like that. (sa2)
This was easy for us. (sx3)
Jane may earn more money by working hard. (sx4)
She is thinner than I am. (sx5)
Bright sunshine shimmers on the ocean. (sx6)
Nothing is as offensive as innocence. (sx7)

The TIMIT documentation distinguishes between 8 major dialect regions
in the United States:

New England, Northern, North Midland, South Midland, South-
ern, New York City, Western, Army Brat (moved around)

Of the speakers, 70% are male and 30% are female. All native speakers
of American English, the subjects were primarily employees of Texas Instru-
ments at the time. Many of them were new to the Dallas area where they
worked.

Racial information was supplied with the distribution of the data and
coded as “White”, “Black”, “American Indian”, “Spanish-American”, “Ori-
ental”, and “Unknown”. Of the 630 speakers, 578 were identified as White,
26 as Black, 2 as American Indian, 2 as Spanish-American, 3 as Oriental,
and 17 as unknown.

Table 4: Demographic information about the TIMIT
speakers

Male Female Total (%)

White 402 176 578 (91.7%)
Black 15 11 26 (4.1%)
American Indian 2 0 2 (0.3%)
Spanish-American 2 0 2 (0.3%)
Oriental 3 0 3 (0.5%)
Unknown 12 5 17 (2.6%)

The documentation notes:

In addition to these 630 speakers, a small number of speakers
with foreign accents or other extreme speech and/or hearing

149

abnormalities were recorded as “auxiliary” subjects, but they are
not included on the CD-ROM.

It comes to no surprise that early speech recognition models had signifi-
cant demographic and racial biases in their performance.

Today, several major companies, including Amazon, Apple, Google, and
Microsoft, all use speech recognition models in a variety of products from
cell phone apps to voice assistants. Today, speech recognition lacks a major
open benchmark that would support the training models competitive with
the industrial counterparts. Industrial speech recognition pipelines are often
complex systems that use proprietary data sources that not a lot is known
about. Nevertheless, even today’s speech recognition systems continue to
have racial biases.132

UCI Machine Learning Repository

The UCI Machine Learning Repository currently hosts more than 500

datasets, mostly for different classification and regression tasks. Most
datasets are relatively small, many of them structured tabular datasets with
few attributes.

The UCI Machine Learning Repository contributed to the adoption of
the train-test paradigm in machine learning in the late 1980s. Langley
recalls:

The experimental movement was aided by another development.
David Aha, then a PhD student at UCI, began to collect datasets
for use in empirical studies of machine learning. This grew
into the UCI Machine Learning Repository (http://archive.
ics.uci.edu/ml/), which he made available to the community
by FTP in 1987. This was rapidly adopted by many researchers
because it was easy to use and because it let them compare their
results to previous findings on the same tasks.11

Aha’s PhD work involved evaluating nearest-neighbor methods, and
he wanted to be able to compare the utility of his algorithms to decision
tree induction algorithms, popularized by Ross Quinlan. Aha describes his
motivation for building the UCI repository as follows.

I was determined to create and share it, both because I wanted
to use the datasets for my own research and because I thought it
was ridiculous that the community hadn’t fielded what should
have been a useful service. I chose to use the simple attribute-
value representation that Ross Quinlan was using so successfully
for distribution with his TDIDT implementations.133

150

The UCI dataset was wildly successful, and partially responsible for
the renewed interest in pattern recognition methods in machine learning.
However, this success came with some detractors. By the mid 1990s, many
were worried that evaluation-by-benchmark encouraged chasing state-of-
the-art results and writing incremental papers. Aha reflects:

By ICML-95, the problems “caused” by the repository had be-
come popularly espoused. For example, at that conference
Lorenza Saitta had, in an invited workshop that I co-organized,
passionately decried how it allowed researchers to publish dull
papers that proposed small variations of existing supervised
learning algorithms and reported their small-but-significant in-
cremental performance improvements in comparison studies.

Nonetheless, the UCI repository remains one of the most popular source
for benchmark datasets in machine learning, and many of the early datasets
still are used for benchmarking in machine learning research. The most
popular dataset in the UCI repository is Ronald A. Fisher’s Iris Data Set that
Fisher collected for his 1936 paper on “The use of multiple measurements
in taxonomic problems”.

As of writing, the second most popular dataset in the UCI repository
is the Adult dataset. Extracted from the 1994 Census database, the dataset
features nearly 50,000 instances describing individual in the United States,
each having 14 attributes. The goal is to classify whether an individual
earns more than 50,000 US dollars or less.

The Adult dataset became popular in the algorithmic fairness commu-
nity, largely because it is one of the few publicly available datasets that
features demographic information including gender (coded in binary as
male/female), as well as race (coded as Amer-Indian-Eskimo, Asian-Pac-
Islander, Black, Other, and White).

Unfortunately, the data has some idiosyncrasies that make it less than
ideal for understanding biases in machine learning models.134 Due to the
age of the data, and the income cutoff at $50,000, almost all instances labeled
Black are below the cutoff, as are almost all instances labeled female. Indeed,
a standard logistic regression model trained on the data achieves about
85% accuracy overall, while the same model achieves 91% accuracy on
Black instances, and nearly 93% accuracy on female instances. Likewise,
the ROC curves for the latter two groups enclose actually more area than
the ROC curve for male instances. This is a rather untypical situation
since often machine learning models perform more poorly on historically
disadvantaged groups.

151

Figure 28: A look at Highleyman’s data

Highleyman’s data

The first machine learning benchmark dates back to the late 1950s. Few
used it and even fewer still remembered it by the time benchmarks became
widely used in machine learning in the late 1980s.

In 1959 at Bell Labs, Bill Highleyman and Louis Kamenstky designed
a scanner to evaluate character recognition techniques.135 Their goal was
“to facilitate a systematic study of character-recognition techniques and an
evaluation of methods prior to actual machine development.” It was not
clear at the time which part of the computations should be done in special
purpose hardware and which parts should be done with more general
computers. Highleyman later patented an optical character recognition
(OCR) scheme that we recognize today as a convolutional neural network
with convolutions optically computed as part of the scanning.136

Highleyman and Kamentsky used their scanner to create a data set of
1800 alphanumeric characters. They gathered the 26 capital letters of the
English alphabet and 10 digits from 50 different writers. Each character in
their corpus was scanned in binary at a resolution of 12 x 12 and stored on
punch cards that were compatible with the IBM 704, the first mass-produced
computer with floating-point arithmetic hardware.

With the data in hand, Highleyman and Kamenstky began studying
various proposed techniques for recognition. In particular, they analyzed
a method of Woody Bledsoe’s and published an analysis claiming to be
unable to reproduce the results.137 Bledsoe found the numbers to be con-
siderably lower than he expected, and asked Highleyman to send him the
data. Highleyman obliged, mailing the package of punch cards across the
country to Sandia Labs. Upon receiving the data, Bledsoe conducted a new

152

experiment. In what may be the first application of the train-test split, he
divided the characters up, using 40 writers for training and 10 for testing.
By tuning the hyperparameters, Bledsoe was able to achieve approximately
60% error.138 Bledsoe also suggested that the high error rates were to be
expected as Highleyman’s data was too small. Prophetically, he declared
that 1000 alphabets might be needed for good performance.

By this point, Highleyman had also shared his data with Chao Kong
Chow at the Burroughs Corporation (a precursor to Unisys). A pioneer
of using decision theory for pattern recognition,30 Chow built a pattern
recognition system for characters. Using the same train-test split as Bledsoe,
Chow obtained an error rate of 41.7%.139

Highleyman made at least six additional copies of the data he had sent
to Bledsoe and Chow, and many researchers remained interested. He thus
decided to publicly offer to send a copy to anyone willing to pay for the
duplication and shipping fees.140 Of course, the dataset was sent by US
Postal Service. Electronic transfer didn’t exist at the time, resulting in
sluggish data transfer rates on the order of a few bits per minute.

Highleyman not only created the first machine learning benchmark.
He authored the the first formal study of train-test splits141 and proposed
empirical risk minimization for pattern classification31 as part of his 1961

dissertation. By 1963, however, Highleyman had left his research position at
Bell Labs and abandoned pattern recognition research.

We don’t know how many people requested Highleyman’s data, but
the total number of copies may have been less than twenty. Based on
citation surveys, we determined there were at least six additional copies
made after Highleyman’s public offer for duplication, sent to researchers at
UW Madison, CMU, Honeywell, SUNY Stony Brook, Imperial College in
London, and Stanford Research Institute (SRI).

The SRI team of John Munson, Richard Duda, and Peter Hart performed
some of the most extensive experiments with Highleyman’s data.142 A
1-nearest-neighbors baseline achieved an error rate of 47.5%. With a more
sophisticated approach, they were able to do significantly better. They
used a multi-class, piecewise linear model, trained using Kesler’s multi-
class version of the perceptron algorithm. Their feature vectors were 84

simple pooled edge detectors in different regions of the image at different
orientations. With these features, they were able to get a test error of 31.7%,
10 points better than Chow. When restricted only to digits, this method
recorded 12% error. The authors concluded that they needed more data,
and that the error rates were “still far too high to be practical.” They
concluded that “larger and higher-quality datasets are needed for work
aimed at achieving useful results.” They suggested that such datasets “may
contain hundreds, or even thousands, of samples in each class.”

153

Figure 29: A sample of MNIST digits

Munson, Duda, and Hart also performed informal experiments with
humans to gauge the readability of Highleyman’s characters. On the full
set of alphanumeric characters, they found an average error rate of 15.7%,
about 2x better than their pattern recognition machine. But this rate was
still quite high and suggested the data needed to be of higher quality. They
concluded that “an array size of at least 20X20 is needed, with an optimum
size of perhaps 30X30.”

Decades passed until such a dataset, the MNIST digit recognition task,
was created and made widely available.

MNIST

The MNIST dataset contains images of handwritten digits. Its most common
version has 60,000 training images and 10,000 test images, each having 28x28

grayscale pixels.
MNIST was created by researchers Burges, Cortes, and LeCun from data

by the National Institute of Standards and Technology (NIST). The dataset
was introduced in a research paper in 1998 to showcase the use of gradient-
based deep learning methods for document recognition tasks.143 However,
the authors released the dataset to provide a convenient benchmark of
image data, in contrast to UCI’s predominantly tabular data. The MNIST
website states

154

It is a good database for people who want to try learning tech-
niques and pattern recognition methods on real-world data while
spending minimal efforts on preprocessing and formatting.144

MNIST became a highly influential benchmark in the machine learning
community. Two decades and over 30,000 citation later, researchers continue
to use the data actively.

The original NIST data had the property that training and test data
came from two different populations. The former featured the handwriting
of two thousand American Census Bureau employees, whereas the latter
came from five hundred American high school students.145 The creators
of MNIST reshuffled these two data sources and split them into training
and test set. Moreover, they scaled and centered the digits. The exact
procedure to derive MNIST from NIST was lost, but recently reconstructed
by matching images from both data sources.146

The original MNIST test set was of the same size as the training set, but
the smaller test set became standard in research use. The 50,000 digits in
the original test set that didn’t make it into the smaller test set were later
identified and dubbed the lost digits.146

From the beginning, MNIST was intended to be a benchmark used to
compare the strengths of different methods. For several years, LeCun main-
tained an informal leaderboard on a personal website that listed the best
accuracy numbers that different learning algorithms achieved on MNIST.

Table 5: A snapshot of the original MNIST leaderboard
from February 2, 1999. Source: Internet Archive (Re-
trieved: December 4, 2020)

Method Test error (%)

linear classifier (1-layer NN) 12.0
linear classifier (1-layer NN) [deskewing] 8.4
pairwise linear classifier 7.6
K-nearest-neighbors, Euclidean 5.0
K-nearest-neighbors, Euclidean, deskewed 2.4
40 PCA + quadratic classifier 3.3
1000 RBF + linear classifier 3.6
K-NN, Tangent Distance, 16x16 1.1
SVM deg 4 polynomial 1.1
Reduced Set SVM deg 5 polynomial 1.0
Virtual SVM deg 9 poly [distortions] 0.8
2-layer NN, 300 hidden units 4.7
2-layer NN, 300 HU, [distortions] 3.6

155

Method Test error (%)

2-layer NN, 300 HU, [deskewing] 1.6
2-layer NN, 1000 hidden units 4.5
2-layer NN, 1000 HU, [distortions] 3.8
3-layer NN, 300+100 hidden units 3.05

3-layer NN, 300+100 HU [distortions] 2.5
3-layer NN, 500+150 hidden units 2.95

3-layer NN, 500+150 HU [distortions] 2.45

LeNet-1 [with 16x16 input] 1.7
LeNet-4 1.1
LeNet-4 with K-NN instead of last layer 1.1
LeNet-4 with local learning instead of ll 1.1
LeNet-5, [no distortions] 0.95

LeNet-5, [huge distortions] 0.85

LeNet-5, [distortions] 0.8
Boosted LeNet-4, [distortions] 0.7

In its capacity as a benchmark, it became a showcase for the emerging ker-
nel methods of the early 2000s that temporarily achieved top performance
on MNIST.74 Today, it is not difficult to achieve less than 0.5% classification
error with a wide range of convolutional neural network architectures. The
best models classify all but a few pathological test instances correctly. As a
result, MNIST is widely considered too easy for today’s research tasks.

MNIST wasn’t the first dataset of handwritten digits in use for machine
learning research. Earlier, the US Postal Service (USPS) had released a
dataset of 9298 images (7291 for training, and 2007 for testing). The USPS
data was actually a fair bit harder to classify than MNIST. A non-negligible
fraction of the USPS digits look unrecognizable to humans,147 whereas
humans recognize essentially all digits in MNIST.

ImageNet

ImageNet is a large repository of labeled images that has been highly
influential in computer vision research over the last decade. The image
labels correspond to nouns from the WordNet lexical database of the English
language. WordNet groups nouns into cognitive synonyms, called synsets.
The words car and automobile, for example, would fall into the same synset.
On top of these categories, WordNet provides a hierarchical structure
according to a super-subordinate relationship between synsets. The synset
for chair, for example, is a child of the synset for furniture in the wordnet
hierarchy. WordNet existed before ImageNet and in part inspired the

156

creation of ImageNet.
The initial release of ImageNet included about 5000 image categories

each corresponding to a synset in WordNet. These ImageNet categories
averaged about 600 images per category.148 ImageNet grew over time and
its Fall 2011 release had reached about 32,000 categories.

The construction of ImageNet required two essential steps:

1. The first was the retrieval of candidate images for each synset.
2. The second step in the creation process was the labeling of images.

Scale was an important consideration due to the target size of the image
repository.

This first step utilized available image databases with a search interface,
specifically, Flickr. Candidate images were taken from the image search
results associated with the synset nouns for each category.

For the second labeling step, the creators of ImageNet turned to Ama-
zon’s Mechanical Turk platform (MTurk). MTurk is an online labor market
that allows individuals and corporations to hire on-demand workers to
perform simple tasks. In this case, MTurk workers were presented with
candidate images and had to decide whether or not the candidate image
was indeed an image corresponding to the category that it was putatively
associated with.

It is important to distinguish between this ImageNet database and a pop-
ular machine learning benchmark and competition, called ImageNet Large
Scale Visual Recognition Challenge (ILSVRC), that was derived from it.149

The competition was organized yearly from 2010 until 2017 to “measure the
progress of computer vision for large scale image indexing for retrieval and
annotation.” In 2012, ILSVRC reached significant notoriety in both industry
and academia when a deep neural network trained by Krizhevsky, Sutskever,
and Hinton outperformed all other models by a significant margin.124 This
result—yet again an evaluation in a train-test paradigm—helped usher in
the latest era of exuberant interest in machine learning and neural network
models under the rebranding as deep learning.150

When machine learning practitioners say “ImageNet” they typically
refer to the data used for the image classification task in the 2012 ILSVRC
benchmark. The competition included other tasks, such as object recog-
nition, but image classification has become the most popular task for the
dataset. Expressions such as “a model trained on ImageNet” typically refer
to training an image classification model on the benchmark dataset from
2012.

Another common practice involving the ILSVRC data is pre-training.
Often a practitioner has a specific classification problem in mind whose label
set differs from the 1000 classes present in the data. It’s possible nonetheless

157

to use the data to create useful features that can then be used in the target
classification problem. Where ILSVRC enters real-world applications it’s
often to support pre-training.

This colloquial use of the word ImageNet can lead to some confusion, not
least because the ILSVRC-2012 dataset differs significantly from the broader
database. It only includes a subset of 1000 categories. Moreover, these
categories are a rather skewed subset of the broader ImageNet hierarchy.
For example, of these 1000 categories only three are in the person branch of
the WordNet hierarchy, specifically, groom, baseball player, and scuba diver.
Yet, more than 100 of the 1000 categories correspond to different dog breeds.
The number is 118, to be exact, not counting wolves, foxes, and wild dogs
that are also present among the 1000 categories.

What motivated the exact choice of these 1000 categories is not entirely
clear. The apparent canine inclination, however, isn’t just a quirk either.
At the time, there was an interest in the computer vision community in
making progress on prediction with many classes, some of which are very
similar. This reflects a broader pattern in the machine learning community.
The creation of datasets is often driven by an intuitive sense of what the
technical challenges are for the field. In the case of ImageNet, scale, both in
terms of the number of data points as well as the number of classes, was an
important motivation.

The large scale annotation and labeling of datasets, such as we saw in
the case of ImageNet, fall into a category of labor that anthropologist Gray
and computer scientist Suri coined Ghost Work in their book of the same
name.151 They point out:

MTurk workers are the AI revolution’s unsung heroes.

Indeed, ImageNet was labeled by about 49,000 MTurk workers from 167

countries over the course of multiple years.

Longevity of benchmarks

The holdout method is central to the scientific and industrial activities of
the machine learning community. Thousands of research papers have been
written that report numbers on popular benchmark data, such as MNIST,
CIFAR-10, or ImageNet. Often extensive tuning and hyperparameter opti-
mization went into each such research project to arrive at the final accuracy
numbers reported in the paper.

Does this extensive reuse of test sets not amount to what Duda and Hart
call the “training on the testing data” problem? If so, how much of the

158

g
predictor ft

dataset S

−−−−−−−−−−−−−−−−−−→

risk estimate Rt
←−−−−−−−−−−−−−−−−−−

round t = 1 . . . k

Figure 30: The adaptive analyst model.

progress that has been made is real, and how much amounts of overfitting
to the test data?

To answer these questions we will develop some more theory that will
help us interpret the outcome of empirical meta studies into the longevity
of machine learning benchmarks.

The problem of adaptivity

Model building is an iterative process where the performance of a model
informs subsequent design choices. This iterative process creates a closed
feedback loop between the practitioner and the test set. In particular, the
models the practitioner chooses are not independent of the test set, but
rather adaptive.

Adaptivity can be interpreted as a form of overparameterization. In
an adaptively chosen sequence of predictors f1, . . . , fk, the k-th predictor
had the ability to incorporate at least k− 1 bits of information about the
performance of previously chosen predictors. This suggests that as k ≥ n,
the statistical guarantees of the holdout method become vacuous. This
intuition is formally correct, as we will see.

To reason about adaptivity, it is helpful to frame the problem as an
interaction between two parties. One party holds the dataset S. Think of
this party as implementing the holdout method. The other party, we call
analyst, can query the dataset by requesting the empirical risk RS[f] of a
given predictor f on the dataset S. The parties interact for some number k of
rounds, thus creating a sequence of adaptively chosen predictors f1, . . . , fk.
Keep in mind that this sequence depends on the dataset! In particular,
when S is drawn at random, f2, . . . , fk become random variables, too, that
are in general not independent of each other.

In general, the estimate Rt returned by the holdout mechanism at step
t need not be equal to RS[ft]. We can often do better than the standard

159

holdout mechanism by limiting the information revealed by each response.
Throughout this chapter, we restrict our attention to the case of the zero-one
loss and binary prediction, although the theory extends to other settings.

As it turns out, the guarantee of the standard holdout mechanism in
the adaptive case is exponentially worse in k compared with the non-
adaptive case. Indeed, there is a fairly natural sequence of k adaptively
chosen predictors, resembling the practice of ensembling, on which the
empirical risk is off by at least Ω(

√
k/n). This is a lower bound on the gap

between risk and empirical risk in the adaptive setting. Contrast this with
the O(

√
log(k)/n) upper bound that we observed for the standard holdout

mechanism in the non-adaptive case. We present the idea for the zero-one
loss in a binary prediction problem.

Overfitting by ensembling:

1. Choose k of random binary predictors f1, . . . , fk.
2. Compute the set I = {i ∈ [k] : RS[fi] < 1/2}.
3. Output the predictor f = majority{ fi : i ∈ I} that takes a

majority vote over all the predictors computed in the second
step.

The key idea of the algorithm is to select all the predictors that have
accuracy strictly better than random guessing. This selection step creates a
bias that gives each selected predictor an advantage over random guessing.
The majority vote in the third step amplifies this initial advantage into a
larger advantage that grows with k. The next proposition confirms that
indeed this strategy finds a predictor whose empirical risk is bounded away
from 1/2 (random guessing) by a margin of Ω(

√
k/n). Since the predictor

does nothing but taking a majority vote over random functions, its risk is of
course no better than 1/2.

Proposition 9. For sufficiently large k ≤ n, overfitting by ensembling returns a
predictor f whose classification error satisfies with probability 1/3,

RS[f] ≤ 1
2
−Ω(

√
k/n) .

In particular, ∆gen(f) ≥ Ω(
√

k/n).

We also have a nearly matching upper bound that essentially follows
from a Hoeffding’s concentration inequality just as the cardinality bound
in the previous chapter. However, in order to apply Hoeffding’s inequality
we first need to understand a useful idea about how we can analyze the
adaptive setting.

160

A(∅)

A(0) A(1
n) A(2

n)

. . . A(2
n , 0) A(2

n , 1
n)

· · · A(2
n , 1

n , 0)A(2
n , 1

n , 1
n) A(2

n , 1
n , 2

n)
. . . A(2

n , 1
n , 1) · · ·

A(2
n , 2

n)
. . . A(2

n , 1) · · ·

. . . A(1)

Figure 31: Constructing a tree of depth k and degree n+ 1 given an adaptive
analyst. Each node corresponds to the predictor the analyst chooses based
on the responses seen so far.

The idea is that we can think of the interaction between a fixed analyst A
and the dataset as a tree. The root node is labeled by f1 = A(∅), i.e., the first
function that the analyst queries without any input. The response RS[f1]
takes on n+ 1 possible values. This is because we consider the zero-one loss,
which can only take the values {0, 1/n, 2/n, . . . , 1}. Each possible response
value a1 creates a new child node in the tree corresponding to the function
f2 = A(a1) that the analyst queries upon receiving answer a1 to the first
query f1. We recursively continue the process until we built up a tree of
depth k and degree n + 1 at each node.

Note that this tree only depends on the analyst and how it responds to
possible query answers, but it does not depend on the actual query answers
we get out of the sample S. The tree is therefore data-independent. This
argument is useful in proving the following proposition.

Proposition 10. For any sequence of k adaptively chosen predictors f1, . . . , fk, the
holdout method satisfies with probability 2/3,

max
1≤t≤k

∆gen(ft) ≤ O
(√

k log(n + 1)/n
)

.

Proof. The adaptive analyst defines a tree of depth k and degree n + 1. Let
F be the set of functions appearing at any of the nodes in the tree. Note
that |F| ≤ (n + 1)k.

Since this set of functions is data independent, we can apply the car-
dinality bound from the previous chapter to argue that the maximum

161

Figure 32: Model accuracy on the original test sets vs. new test sets for
CIFAR-10 and ImageNet. Each data point corresponds to one model in a
test bed of representative models.

generalization gap for any function in F is bounded by O(
√

log |F|/n) with
any constant probability. But the functions f1, . . . , fk are contained in F by
construction. Hence, the claim follows.

These propositions show that the principal concern of “training on the
testing data” is not unfounded. In the worst case, holdout data can lose its
guarantees rather quickly. If this pessimistic bound manifested in practice,
popular benchmark datasets would quickly become useless. But does it?

Replication efforts

In recent replication efforts, researchers carefully recreated new test sets for
the CIFAR-10 and ImageNet classification benchmarks, created according
to the very same procedure as the original test sets. The researchers then
took a large collection of representative models proposed over the years and
evaluated all of them on the new test sets. In the case of MNIST, researchers
used the lost digits as a new test set, since these digits hadn’t been used in
almost all of the research on MNIST.

The results of these studies teach us a couple of important lessons that
we will discuss in turn.

First, all models suffer a significant drop in performance on the new test
set. The accuracy on the new data is substantially lower than on the old
data. This shows that these models transfer surprisingly poorly from one
dataset to a very similar dataset that was constructed in much the same way

162

as the original data. This observation resonates with a robust fact about
machine learning. Model fitting will do exactly that. The model will be
good on exactly the data it is trained on, but there is no good reason to
believe that it will perform well on other data. Generalization as we cast it
in the preceding chapter is thus about interpolation. It’s about doing well on
more data from the same source. It is decidedly not about doing well on
data from other sources.

The second observation is relevant to the question of adaptivity; it’s
a bit more subtle. The scatter plots admit a clean linear fit with positive
slope. In other words, the better a model is on the old test set the better
it is on the new test set, as well. But notice that newer models, i.e., those
with higher performance on the original test set, had more time to adapt
to the test set and to incorporate more information about it. Nonetheless,
the better a model performed on the old test set the better it performs on
the new set. Moreover, on CIFAR-10 we even see clearly that the absolute
performance drops diminishes with increasing accuracy on the old test set.
In particular, if our goal was to do well on the new test set, seemingly our
best strategy is to continue to inch forward on the old test set. This might
seem counterintuitive.

We will discuss each of these two observations in more detail, starting
with the one about adaptivity.

Benign adaptivity

The experiments we just discussed suggest that the effect of adaptivity was
more benign than our previous analysis suggested. This raises the question
what it is that prevents more serious overfitting. There are a number of
pieces to the puzzle that researchers have found. Here we highlight two.

The main idea behind both mechanisms that damp adaptivity is that the
set of possible nodes in the adaptive tree may be much less than nk because
of empirical conventions. The first mechanism is model similarity. Effectively,
model similarity notes that the leaves of the adaptive tree may be producing
similar predictions, and hence the adaptivity penalty is smaller than our
worst case count. The second mechanism is the leaderboard principle. This
more subtle effect states that since publication biases force researchers to
chase state-of-the-art results, they only publish models if they see significant
improvements over prior models.

While we don’t believe that these two phenomena explain the entirety
of why overfitting is not observed in practice, they are simple mechanisms
that significantly reduce the effects of adaptivity. As we said, these are two
examples of norms in machine learning practice that diminish the effects of
overfitting.

163

Model similarity

Naively, there are 2n total assignments of binary labels to a dataset of size n.
But how many such labeling assignments do we see in practice? We do not
solve pattern recognition problems using the ensembling attack described
above. Rather, we use a relatively small set of function approximation
architectures, and tune the parameters of these architectures. While we have
seen that these architectures can yield any of the 2n labeling patterns, we
expect that a much smaller set of predictions is returned in practice when
we run standard empirical risk minimization.

Model similarity formalizes this notion as follows. Given an adaptively
chosen sequence of predictors f1, . . . , fk, we have a corresponding sequence
of empirical risks R1, . . . , Rk.

Definition 11. We say that a sequence of models f1, . . . , fk are ζ-similar if for all
pairs of models fi and f j with empirical risks Ri ≤ Rj, respectively, we have

P
[
{ f j(x) = y} ∩ { fi(x) 6= y}

]
≤ ζ .

This definition states that there is low probability of a model with
small empirical risk misclassifying an example where a model with higher
empirical risk was correct. It effectively grades the set of examples as being
easier or harder to classify, and suggests that models with low risk usually
get the easy examples correct.

Though simple, this definition is sufficient to reduce the size of the
adaptive tree, thus leading to better theoretical bound.152 Empirically, deep
learning models appear to have high similarity beyond what follows from
their accuracies.152

The definition of similarity can also help explain the scatter plots we
saw previously: When we consider the empirical risks of high similarity
models on two different test sets, the scatter plot the (Ri, R′i) pairs cluster
around a line.153

The leaderboard principle

The leaderboard principle postulates that a researcher only cares if their model
improved over the previous best or not. This motivates a notion of leaderboard
error where the holdout method is only required to track the risk of the
best performing model over time, rather than the risk of all models ever
evaluated.

Definition 12. Given an adaptively chosen sequence of predictors f1, . . . , fk, we
define the leaderboard error of a sequence of estimates R1, . . . , Rk as

lberr(R1, . . . , Rk) = max
1≤t≤k

∣∣∣∣min
1≤i≤t

R[fi]− Rt

∣∣∣∣ .

164

We discuss an algorithm called the Ladder algorithm that achieves small
leaderboard accuracy. The algorithm is simple. For each given predictor,
it compares the empirical risk estimate of the predictor to the previously
smallest empirical risk achieved by any predictor encountered so far. If
the loss is below the previous best by some margin, it announces the
empirical risk of the current predictor and notes it as the best seen so far.
Importantly, if the loss is not smaller by a margin, the algorithm releases no
new information and simply continues to report the previous best.

Again, we focus on risk with respect to the zero-one loss, although the
ideas apply more generally.

Input: Dataset S, threshold η > 0

• Assign initial leaderboard error R0 ← 1.
• For each round t← 1, 2 . . . :

1. Receive predictor ft : X → Y
2. If RS[ft] < Rt−1 − η, update leaderboard error to Rt ←

RS[ft]. Else keep previous leaderboard error Rt ← Rt−1.
3. Output leaderboard error Rt

The next theorem follows from a variant of the adaptive tree argument
we saw earlier, in which we carefully prune the tree and bound its size.

Theorem 9. For a suitably chosen threshold parameter, for any sequence of adap-
tively chosen predictors f1, . . . , fk, the Ladder algorithm achieves with probabil-
ity 1− o(1):

lberr(R1, . . . , Rk) ≤ O

(
log1/3(kn)

n1/3

)
.

Proof. Set η = log1/3(kn)/n1/3. With this setting of η, it suffices to show that
with probability 1− o(1) we have for all t ∈ [k] the bound |RS[ft]− R[ft]| ≤
O(η) = O(log1/3(kn)/n1/3).

Let A be the adaptive analyst generating the function sequence. The
algorithm A naturally defines a rooted tree T of depth k recursively defined
as follows:

1. The root is labeled by f1 = A(∅).
2. Each node at depth 1 < i ≤ k corresponds to one re-

alization (h1, r1, . . . , hi−1, ri−1) of the tuple of random variables
(f1, R1, . . . , fi−1, Ri−1) and is labeled by hi = A(h1, r1, . . . , hi−1, ri−1).
Its children are defined by each possible value of the output Ri of
Ladder Mechanism on the sequence h1, r1, . . . , ri−1, hi.

165

. . .

1: 0.89

23: 0.68

. . . 45: 0.43 . . .

. . .

. . .

Figure 33: Low bit encoding of the adaptive tree. Dashed lines correspond
to rounds with no update.

Let B = (1/η + 1) log(4k(n + 1)). We claim that the size of the tree
satisfies |T | ≤ 2B. To prove the claim, we will uniquely encode each node
in the tree using B bits of information. The claim then follows directly.

The compression argument is as follows. We use dlog ke ≤ log(2k) bits
to specify the depth of the node in the tree. We then specify the index
of each i ∈ [k] for which the Ladder algorithm performs an “update” so
that Ri ≤ Ri−1 − η together with the value Ri. Note that since Ri ∈ [0, 1]
there can be at most d1/ηe ≤ (1/η) + 1 many such steps. This is because
the loss is lower bounded by 0 and decreases by η each time there is an
update.

Moreover, there are at most n+ 1 many possible values for Ri, since we’re
talking about the zero-one loss on a dataset of size n. Hence, specifying all
such indices requires at most (1/η + 1)(log(n + 1) + log(2k)) bits. These
bits of information uniquely identify each node in the graph, since for every
index i not explicitly listed we know that Ri = Ri−1. The total number of
bits we used is:

(1/η + 1)(log(n + 1) + log(2k)) + log(2k) ≤ (1/η + 1) log(4k(n + 1)) = B .

This establishes the claim we made. The theorem now follows by applying a
union bound over all nodes in T and using Hoeffding’s inequality for each
fixed node. Let F be the set of all functions appearing in T . By a union

166

bound, we have

P {∃ f ∈ F : |R[f]− RS[f]| > ε} ≤ 2|F | exp(−2ε2n)

≤ 2 exp(−2ε2n + B) .

Verify that by putting ε = 5η, this expression can be upper bounded
by 2 exp(−n1/3) = o(1), and thus the claim follows.

Harms associated with data

The collection and use of data often raises serious ethical concerns. We will
walk through some that are particularly relevant to machine learning.

Representational harm and biases

As we saw earlier, we have no reason to expect a machine learning model to
perform well on any population that differs significantly from the training
data. As a result, underrepresentation or misrepresentation of populations
in the training data has direct consequences on the performance of any
model trained on the data.

In a striking demonstration of this problem, Buolamwini and Gebru154

point out that two facial analysis benchmarks, IJB-A and Adience, over-
whelmingly featured lighter-skinned subjects. Introducing a new facial
analysis dataset, which is balanced by gender and skin type, Buolamwini
and Gebru demonstrated that commercial face recognition software mis-
classified darker-skinned females at the highest rate, while misclassifying
lighter-skinned males at the lowest rate.

Images are not the only domain where this problem surfaces. Models
trained on text corpora reflect the biases and stereotypical representations
present in the training data. A well known example is the case of word
embeddings. Word embeddings map words in the English language to a
vector representation. This representation can then be used as a feature
representation for various other downstream tasks. A popular word em-
bedding method is Google’s word2vec tool that was trained on a corpus of
Google news articles. Researchers demonstrated that the resulting word
embeddings encoded stereotypical gender representations of the form man
is to computer programmer as woman is to homemaker.155 Findings like these
motivated much work on debiasing techniques that aim to remove such
biases from the learned representation. However, there is doubt whether
such methods can successfully remove bias after the fact.156

167

Privacy violations

The Netflix Prize was one of the most famous machine learning competitions.
Starting on October 2, 2006, the competition ran for nearly three years
ending with a grand prize of $1M, announced on September 18, 2009. Over
the years, the competition saw 44,014 submissions from 5169 teams.

The Netflix training data contained roughly 100 million movie ratings
from nearly 500 thousand Netflix subscribers on a set of 17770 movies.
Each data point corresponds to a tuple <user, movie, date of rating,
rating>. At about 650 megabytes in size, the dataset was just small enough
to fit on a CD-ROM, but large enough to be pose a challenge at the time.

The Netflix data can be thought of as a matrix with n = 480189 rows
and m = 17770 columns. Each row corresponds to a Netflix subscriber and
each column to a movie. The only entries present in the matrix are those for
which a given subscriber rated a given movie with rating in {1, 2, 3, 4, 5}.
All other entries—that is, the vast majority—are missing. The objective of
the participants was to predict the missing entries of the matrix, a problem
known as matrix completion, or collaborative filtering somewhat more broadly.
In fact, the Netflix challenge did so much to popularize this problem that
it is sometimes called the Netflix problem. The idea is that if we could
predict missing entries, we’d be able to recommend unseen movies to users
accordingly.

The holdout data that Netflix kept secret consisted of about three mil-
lion ratings. Half of them were used to compute a running leaderboard
throughout the competition. The other half determined the final winner.

The Netflix competition was hugely influential. Not only did it attract
significant participation, it also fueled much academic interest in collabora-
tive filtering for years to come. Moreover, it popularized the competition
format as an appealing way for companies to engage with the machine
learning community. A startup called Kaggle, founded in April 2010, orga-
nized hundreds of machine learning competitions for various companies
and organizations before its acquisition by Google in 2017.

But the Netflix competition became infamous for another reason. Al-
though Netflix had replaced usernames by random numbers, researchers
Narayanan and Shmatikov were able to re-identify many of the Netflix
subscribers whose movie ratings were in the dataset.157 In a nutshell, their
idea was to link movie ratings in the Netflix dataset with publicly available
movie ratings on IMDB, an online movie database. Some Netflix subscribers
had also publicly rated an overlapping set of movies on IMDB under their
real name. By matching movie ratings between the two sources of informa-
tion, Narayanan and Shmatikov succeeded in associating anonymous users
in the Netflix data with real names from IMDB. In the privacy literature,

168

this is called a linkage attack and it’s one of the many ways that seemingly
anonymized data can be de-anonymized.158

What followed were multiple class action lawsuits against Netflix, as
well as an inquiry by the Federal Trade Commission over privacy concerns.
As a consequence, Netflix canceled plans for a second competition, which it
had announced on August 6, 2009.

To this day, privacy concerns are a highly legitimate obstacle to public
data release and dataset creation. Deanonymization techniques are mature
and efficient. There provably is no algorithm that could take a dataset and
provide a rigorous privacy guarantee to all participants, while being useful
for all analyses and machine learning purposes. Dwork and Roth call this
the Fundamental Law of Information Recovery: “overly accurate answers to
too many questions will destroy privacy in a spectacular way.”159

Copyright

Privacy concerns are not the only obstruction to creating public datasets and
using data for machine learning purposes. Almost all data sources are also
subject to copyright. Copyright is a type of intellectual property, protected
essentially worldwide through international treaties. It gives the creator of
a piece of work the exclusive right to create copies of it. Copyright expires
only decades after the creator dies. Text, images, video, digital or not, are
all subject to copyright. Copyright infringement is a serious crime in many
countries.

The question of how copyright affects machine learning practice is
far from settled. Courts have yet to set precedents on whether copies of
content that feed into machine learning training pipelines may be considered
copyright infringement.

Legal scholar Levendowski argues that copyright law biases creators of
machine learning systems toward “biased, low-friction data”. These are
data sources that carry a low risk of creating a liability under copyright law,
but carry various biases in the data that affect how the resulting models
perform.160

One source of low-friction data is what is known as “public domain”.
Under current US law, works enter public domain 75 years after the death
of the copyright holder. This means that most public domain works were
published prior to 1925. If the creator of a machine learning system relied
primarily on public domain works for training, it would likely bias the data
toward older content.

Another example of a low-friction dataset is the Enron email corpus that
contains 1.6 million emails sent among Enron employees over the course
of multiple years leading up to the collapse of the company in 2001. The

169

corpus was released by the Federal Energy Regulatory Commission (FERC)
in 2003, following its investigation into the serious accounting fraud case
that became known as “Enron scandal”. The Enron dataset is one of the few
available large data sources of emails sent between real people. Even though
the data were released by regulators to the public, that doesn’t mean that
they are “public domain”. However, it is highly unlikely that a former Enron
employee might sue for copyright infringement. The dataset has numerous
biases. The emails are two decades old, and sent by predominantly male
senior managers in a particular business sector.

An example of a dataset that is not low-friction is the corpus of news
articles that became the basis for Google’s famous word embedding tool
called word2vec that we mentioned earlier. Due to copyright concerns with
the news articles contained in the corpus, the dataset was never released,
only the trained model.

Problem framing and comparisons with humans

A long-standing ambition of artificial intelligence research is to match or
exceed human cognitive abilities by an algorithm. This desire often leads to
comparisons between humans and machines on various tasks. Judgments
about human accuracy often also enter the debate around when to use
statistical models in high stakes decision making settings.

The comparison between human decision makers and statistical models
is by no means new. For decades, researchers have compared the accuracy
of human judgments with that of statistical models.161

Even within machine learning, the debate dates way back. A 1991 paper
by Bromley and Sackinger explicitly compared the performance of artificial
neural networks to a measure of human accuracy on the USPS digits dataset
that predates the famous MNIST data.147 A first experiment put the human
accuracy at 2.5%, a second experiment found the number 1.51%, while a
third reported the number 2.37%.162

Comparison with so-called human baselines has since become widely
accepted in the machine learning community. The Electronic Frontier
Foundation (EFF), for example, hosts a major repository of AI progress
measures that compares the performance of machine learning models to
reported human accuracies on numerous benchmarks.163

For the ILSVRC 2012 data, the reported human error rate is 5.1%. To
be precise, this number is referring to the fraction of times that the correct
image label was not contained in the top 5 predicted labels. This often
quoted number corresponds to the performance of a single human annotator
who was “trained on 500 images and annotated 1500 test images”. A second
annotator who was “trained on 100 images and then annotated 258 test

170

images” achieved an error rate of 12%.149

Based on this number of 5.1%, researchers announced in 2015 that
their model was “the first to surpass human-level performance”.164 Not
surprisingly, this claim received significant attention throughout the media.

However, a later more careful investigation into “human accuracy” on
ImageNet revealed a very different picture.165 The researchers found that
only models from 2020 are actually on par with the strongest human labeler.
Moreover, when restricting the data to 590 object classes out of 1000 classes
in total, the best human labeler performed much better at less than 1%
error than even the best predictive models. Recall, that the ILSVRC 2012

data featured 118 different dog breeds alone, some of which are extremely
hard to distinguish for anyone who is not a trained dog expert. In fact, the
researchers had to consult with experts from the American Kennel Club
(AKC) to disambiguate challenging cases of different dog breeds. Simply
removing dog classes alone increases the performance of the best human
labeler to less than 1.3% error.

There is another troubling fact. Small variations in the data collection
protocol turn out to have a significant effect on the performance of machine
predictors: “the accuracy scores of even the best image classifiers are still
highly sensitive to minutiae of the data cleaning process.”166

These results cast doubt not only on how me measure “human accuracy”,
but also on the validity of the presumed theoretical construct of “human
accuracy” itself. It is helpful to take a step back and reflect on measurement
more broadly. Recall from Chapter 4 that the field of measurement theory
distinguishes between a measurement procedure and the target construct
that we wish to measure. For any measurement to be valid, the target
construct has to be valid in the first place.

However, the machine learning community has adopted a rather casual
approach to measuring human accuracy. Many researchers assume that
the construct of human accuracy exists unambiguously and it is whatever
number comes out of some ad-hoc testing protocol for some set of human
beings. These ad-hoc protocols often result in anecdotal comparisons of
questionable scientific value.

There is a broader issue with the idea of human accuracy. The notion
presupposes that we have already accepted the prediction task to be the
definitive task that we ought to solve, thus forgoing alternative solutions.
But in many cases the problem formulation in itself is the subject of norma-
tive debate.

Consider the case of predicting failure to appear in court. This prediction
problem is at the center of an ongoing criminal justice reform in the United
states. Many proponents seek to replace, or at least augment, human judges
by statistical models that predict whether or not a defendant would fail to

171

appear in court, if released ahead of a future trial in court. Defendants of
high risk are jailed, often for months without a verdict, until their court
appointment. An alternative to prediction is to understand the causes of
failure to appear in court, and to specifically address these. We will turn to
causality in subsequent chapters, where we will see that it often provides
an important alternative to prediction.

As it turns out, defendants often fail to appear in court for lack of
transportation, lack of childcare, inflexible work hours, or simply too many
court appointments. Addressing these fundamental problems, in fact, is
part of a settlement in Harris County, Texas.

To conclude, invalid judgments about human performance relative to
machines are not just a scientific error, they also have the potential to create
narratives that support poor policy choices in high stakes policy questions
around the use of predictive models in consequential decisions.

Toward better data practices

The practices of data collection and dataset creation in the machine learning
community leave much room for improvement. We close this chapter
highlighting a few practices that can be immediately adopted.

Data annotation

Many existing datasets in machine learning are poorly documented, and
details about their creation are often missing. This leads to a range of issues
from lack of reproducibility and concerns of scientific validity to misuse and
ethical concerns. Fortunately, there is some emerging literature on how to
better execute and document the creation of datasets for machine learning.

Datasheets for datasets is an initiative to promote a more detailed and
systematic annotation for datasets.167 A datasheet requires the creator of
a dataset to answer questions relating to several areas of interest: Moti-
vation, composition, collection process, preprocessing/cleaning/labeling,
uses, distribution, maintenance.

One goal is that process of creating a datasheet will help anticipate
ethical issues with the dataset. But datasheets also aim to make data
practices more reproducible, and help practitioners select more adequate
data sources.

Going a step beyond datasheets, researchers Jo and Gebru168 draw
lessons from archival and library sciences for the construction and docu-
mentation of machine learning datasets. These lessons draw attention to
issues of consent, inclusivity, power, transparency, ethics and privacy.

172

Lessons from measurement

Measurement theory is an established science with ancient roots. In short,
measurement is about assigning numbers to objects in the real world in a
way that reflects relationships between these objects. Measurement draws an
important distinction between a construct that we wish to measure and the
measurement procedure that we used to create a numerical representation
of the construct.

For example, we can think of a well-designed math exam as measuring
the mathematical abilities of a student. A student with greater mathematical
ability than another is expected to score higher on the exam. Viewed this
way, an exam is a measurement procedure that assigns numbers to students.
The mathematical ability of a student is the construct we hope to measure.
We desire that the ordering of these numbers reflects the sorting of students
by their mathematical abilities. A measurement procedure operationalizes
a construct.

Recall that in a prediction problem we have covariates X from which
we’re trying to predict a variable Y. This variable Y is what we call the
target variable in our prediction problem. The definition and choice of a
target variable is one way that measurement theory becomes relevant to
machine learning practice.

Consider a machine learning practitioner who attempts to classify the
sentiment of a paragraph of text as “toxic” or not. In the language of
measurement, “toxicity” is a construct. Whatever labeling procedure the
practitioner comes up with can be thought of as a measurement procedure
that implicitly or explicitly operationalizes this construct. Before resorting
to ad-hoc labeling or survey procedures, machine learning practitioners
should survey available research.

A poor target variable cannot be ironed out with additional data. In fact,
the more data we feed into our model, the better it gets at capturing the
flawed target variable. Improved data quality or diversity are no cure either.

All formal fairness criteria that involve the target variable, separation and
sufficiency are two prominent examples are either meaningless or downright
misleading when the target variable itself is the locus of discrimination.
Recall from Chapter 2 that separation requires the protected attribute to be
independent of the prediction conditional on the target variable. Sufficiency
requires the target variable to be independent of the protected attribute
given the prediction.

To get a better grasp of what makes a target variable more or less
problematic, consider a few examples.

1. Predicting the value of the Standard and Poor 500 Index (S&P 500) at
the close of the New York Stock Exchange tomorrow.

173

2. Predicting whether an individual is going to default on a loan.
3. Predicting whether an individual is going to commit a crime.

The first example is rather innocuous. It references a fairly robust target
variable, even though it relies on a number of social facts.

The second example is a common application of statistical modeling
that underlies much of modern credit scoring in the United States. At first
sight a default event seems like a clean cut target variable. But the reality
is different. In a public dataset released by the Federal Reserve169 default
events are coded by a so-called performance variable that measures a serious
delinquency in at least one credit line of a certain time period. More specifically,
the report states that the

measure is based on the performance of new or existing accounts
and measures whether individuals have been late 90 days or
more on one or more of their accounts or had a public record
item or a new collection agency account during the performance
period.169

Our third example runs into the most concerning measurement problem.
How do we determine if an individual committed a crime? What we can
determine with certainty is whether or not an individual was arrested and
found guilty of a crime. But this depends crucially on who is likely to be
policed in the first place and who is able to maneuver the criminal justice
system successfully following an arrest.

Sorting out what a good target variable is, in full generality, can involve
the whole apparatus of measurement theory. The scope of measurement
theory, however, goes beyond defining reliable and valid target variables
for prediction. Measurement comes in whenever we create features for a
machine learning problem and should therefore be an essential part of the
data creation process.

Judging the quality of a measurement procedure is a difficult task.
Measurement theory has two important conceptual frameworks for arguing
about what makes measurement good. One is reliability. The other is validity.

Reliability describes the differences observed in multiple measurements
of the same object under identical conditions. Thinking of the measurement
variable as a random variable, reliability is about the variance between
independent identically distributed measurements. As such, reliability can
be analogized with the statistical notion of variance.

Validity is concerned with how well the measurement procedure in
principle captures the concept that we try to measure. If reliability is
analogous to variance, it is tempting to see validity as analogous to bias. But
the situation is a bit more complicated. There is no simple formal criterion

174

that we could use to establish validity. In practice, validity is based to a
large extent on human expertise and subjective judgments.

One approach to formalize validity is to ask how well a score predicts
some external criterion. This is called external validity. For example, we
could judge a measure of creditworthiness by how well it predicts default
in a lending scenario. While external validity leads to concrete technical
criteria, it essentially identifies good measurement with predictive accuracy.
However, that’s certainly not all there is to validity.

Construct validity is a framework for discussing validity that includes
numerous different types of evidence. Messick highlights six aspects of
construct validity:

• Content: How well does the content of the measurement instrument,
such as the items on a questionnaire, measure the construct of interest?

• Substantive: Is the construct supported by a sound theoretical founda-
tion?

• Structural: Does the score express relationships in the construct do-
main?

• Generalizability: Does the score generalize across different popula-
tions, settings, and tasks?

• External: Does the score successfully predict external criteria?
• Consequential: What are the potential risks of using the score with

regards to bias, fairness, and distributive justice?

Of these different criteria, external validity is the one most familiar to
the machine learning practitioner. But machine learning practice would
do well to embrace the other, more qualitative, criteria as well. Ultimately,
measurement forces us to grapple with the often surprisingly uncomfortable
question: What are we even trying to do when we predict something?

Limits of data and prediction

Machine learning fails in many scenarios and it’s important to understand
the failure cases as much as the success stories.

The Fragile Families Challenge was a machine learning competition
based on the Fragile Families and Child Wellbeing study (FFCWS).170

Starting from a random sample of hospital births between 1998 and 2000,
the FFCWS followed thousand of American families over the course of 15

years, collecting detailed information, about the families’ children, their
parents, educational outcomes, and the larger social environment. Once
a family agreed to participate in the study, data were collected when the
child was born, and then at ages 1, 3, 5, 9, and 15.

175

The Fragile Families Challenge took concluded in 2017. The underlying
dataset for the competition contains 4242 rows, one for each family, and
12943 columns, one for each variable plus an ID number of each family.
Of the 12942 variables, 2358 are constant (i.e., had the same value for all
rows), mostly due to redactions for privacy and ethics concerns. Of the
approximately 55 million (4242 x 12942) entries in the dataset, about 73%
do not have a value. Missing values have many possible reasons, including
non-response of surveyed families, drop out of study participants, as well as
logical relationships between features that imply certain fields are missing
depending on how others are set. There are six outcome variables, measured
at age 15: 1) child grade point average (GPA), 2) child grit, 3) household eviction,
4) household material hardship, 5) caregiver layoff, and 6) caregiver participation
in job training.

The goal of the competition was to predict the value of the outcome
variables at age 15 given the data from age 1 through 9. As is common
for competitions, the challenge featured a three-way data split: training,
leaderboard, and test sets. The training set is publicly available to all
participants, the leaderboard data support a leaderboard throughout the
competition, and the test set is used to determine a final winner.

Despite significant participation from hundreds of researchers submit-
ting thousands of models over the course of five months, the outcome
of the prediction challenge was disappointing. Even the winning model
performed hardly better than a simple baseline and predicted little more
than the average outcome value.

What caused the poor performance of machine learning on the fragile
families data? There are a number of technical possibilities, the sample size,
the study design, the missing values. But there is also a more fundamental
reason that remains plausible. Perhaps the dynamics of life trajectories are
inherently unpredictable over the six year time delay between measurement
of the covariates and measurement of the outcome. Machine learning works
best in a static and stable world where the past looks like the future. Predic-
tion alone can be a poor choice when we’re anticipating dynamic changes,
or when we are trying to reason about the effect that hypothetical actions
would have in the real world. In subsequent chapters, we will develop
powerful conceptual tools to engage more deeply with this observation.

Chapter notes

This chapter overlaps significantly with a chapter on datasets and measure-
ment in the context of fairness and machine learning in the book by Barocas,
Hardt, and Narayanan.19

176

The study of adaptivity in data reuse was subject of work by Dwork,
Hardt, Pitassi, Reingold and Roth,171, 172 showing how tools from differential
privacy lead to statistical guarantees under adaptivity. Much subsequent
work in the area of adaptive data analysis extended these works. A concern
closely related to adaptivity goes under the name of inference after selection
in the statistics community, where it was recognized by Freedman in a 1983

paper.173

The notion of leaderboard error and the Ladder algorithm come from
a work by Blum and Hardt.174 The replication study for CIFAR-10 and
ImageNet is due to Recht, Roelofs, Schmidt, and Shankar.166

The collection and use of large ad-hoc datasets (once referred to as
“big data”) has been scrutinized in several important works, especially
from critical scholars, historians, and social scientists outside the computer
science community. See, for example, boyd and Crawford,175 Tufekci,176, 177

and Onuoha.178 An excellent survey by Paullada, Raji, Bender, Denton,
and Hanna provides a wealth of additional background and references.179

Olteanu, Castillo, Diaz, and Kiciman discuss biases, methodological pitfalls,
and ethical questions in the context of social data analysis.180 In particular,
the article provides comprehensive taxonomies of biases and issues that
can arise in the sourcing, collection, processing, and analysis of social data.
Recently, Couldry and Mejias use the term data colonialism to emphasize the
processes by which data are appropriated and marginalized communities
are exploited through data collection.181

For an introduction to measurement theory, not specific to the social
sciences, see the books by Hand.47, 48 The comprehensive textbook by
Bandalos49 focuses on applications to the social science, including a chapter
on fairness.

177

9
Causality

Our starting point is the difference between an observation and an action.
What we see in passive observation is how individuals follow their routine
behavior, habits, and natural inclination. Passive observation reflects the
state of the world projected to a set of features we chose to highlight. Data
that we collect from passive observation show a snapshot of our world as it
is.

There are many questions we can answer from passive observation alone:
Do 16 year-old drivers have a higher incidence rate of traffic accidents than
18 year-old drivers? Formally, the answer corresponds to a difference of
conditional probabilities. We can calculate the conditional probability of
a traffic accident given that the driver’s age is 16 years and subtract from
it the conditional probability of a traffic accident given the age is 18 years.
Both conditional probabilities can be estimated from a large enough sample
drawn from the distribution, assuming that there are both 16 year old and
18 year old drivers. The answer to the question we asked is solidly in the
realm of observational statistics.

But important questions often are not observational in nature. Would
traffic fatalities decrease if we raised the legal driving age by two years?
Although the question seems similar on the surface, we quickly realize that
it asks for a fundamentally different insight. Rather than asking for the
frequency of an event in our manifested world, this question asks for the
effect of a hypothetical action.

As a result, the answer is not so simple. Even if older drivers have a
lower incidence rate of traffic accidents, this might simply be a consequence
of additional driving experience. There is no obvious reason why an 18 year
old with two months on the road would be any less likely to be involved
in an accident than, say, a 16 year-old with the same experience. We can
try to address this problem by holding the number of months of driving
experience fixed, while comparing individuals of different ages. But we
quickly run into subtleties. What if 18 year-olds with two months of driving

178

experience correspond to individuals who are exceptionally cautious and
hence—by their natural inclination—not only drive less, but also more
cautiously? What if such individuals predominantly live in regions where
traffic conditions differ significantly from those in areas where people feel a
greater need to drive at a younger age?

We can think of numerous other strategies to answer the original ques-
tion of whether raising the legal driving age reduces traffic accidents. We
could compare countries with different legal driving ages, say, the United
States and Germany. But again, these countries differ in many other possibly
relevant ways, such as, the legal drinking age.

At the outset, causal reasoning is a conceptual and technical framework
for addressing questions about the effect of hypothetical actions or interven-
tions. Once we understand what the effect of an action is, we can turn the
question around and ask what action plausibly caused an event. This gives
us a formal language to talk about cause and effect.

The limitations of observation

Before we develop any new formalism, it is important to understand why
we need it in the first place.

To see why we turn to the venerable example of graduate admissions at
the University of California, Berkeley in 1973.182 Historical data show that
12763 applicants were considered for admission to one of 101 departments
and inter-departmental majors. Of the 4321 women who applied roughly 35

percent were admitted, while 44 percent of the 8442 men who applied were
admitted. Standard statistical significance tests suggest that the observed
difference would be highly unlikely to be the outcome of sample fluctuation
if there were no difference in underlying acceptance rates.

A similar pattern exists if we look at the aggregate admission decisions of
the six largest departments. The acceptance rate across all six departments
for men is about 44%, while it is only roughly 30% for women, again, a
significant difference. Recognizing that departments have autonomy over
who to admit, we can look at the gender bias of each department.

Table 6: UC Berkeley admissions data from 1973.

Men Women

Department Applied Admitted (%) Applied Admitted (%)
A 825 62 108 82
B 520 60 25 68
C 325 37 593 34

179

Men Women

D 417 33 375 35
E 191 28 393 24

F 373 6 341 7

What we can see from the table is that four of the six largest departments
show a higher acceptance ratio among women, while two show a higher
acceptance rate for men. However, these two departments cannot account
for the large difference in acceptance rates that we observed in aggregate.
So, it appears that the higher acceptance rate for men that we observed in
aggregate seems to have reversed at the department level.

Such reversals are sometimes called Simpson’s paradox, even though
mathematically they are no surprise. It’s a fact of conditional probability
that there can be events Y (here, acceptance), A (here, female gender taken
to be a binary variable) and a random variable Z (here, department choice)
such that:

1. P[Y | A] < P[Y | ¬A]
2. P[Y | A, Z = z] > P[Y | ¬A, Z = z] for all values z that the random

variable Z assumes.

Simpson’s paradox nonetheless causes discomfort to some, because
intuition suggests that a trend which holds for all subpopulations should
also hold at the population level.

The reason why Simpson’s paradox is relevant to our discussion is
that it’s a consequence of how we tend to misinterpret what information
conditional probabilities encode. Recall that a statement of conditional
probability corresponds to passive observation. What we see here is a
snapshot of the normal behavior of women and men applying to graduate
school at UC Berkeley in 1973.

What is evident from the data is that gender influences department
choice. Women and men appear to have different preferences for different
fields of study. Moreover, different departments have different admission
criteria. Some have lower acceptance rates, some higher. Therefore, one
explanation for the data we see is that women chose to apply to more
competitive departments, hence getting rejected at a higher rate than men.

Indeed, this is the conclusion the original study drew:

The bias in the aggregated data stems not from any pattern of dis-
crimination on the part of admissions committees, which seems quite
fair on the whole, but apparently from prior screening at earlier levels
of the educational system. Women are shunted by their socialization

180

and education toward fields of graduate study that are generally more
crowded, less productive of completed degrees, and less well funded,
and that frequently offer poorer professional employment prospects.182

In other words, the article concluded that the source of gender bias
in admissions was a pipeline problem: Without any wrongdoing by the
departments, women were “shunted by their socialization” that happened
at an earlier stage in their lives.

It is difficult to debate this conclusion on the basis of the available data
alone. The question of discrimination, however, is far from resolved. We can
ask why women applied to more competitive departments in the first place.
There are several possible reasons. Perhaps less competitive departments,
such as engineering schools, were unwelcoming of women at the time. This
may have been a general pattern at the time or specific to the university.
Perhaps some departments had a track record of poor treatment of women
that was known to the applicants. Perhaps the department advertised the
program in a manner that discouraged women from applying.

The data we have also shows no measurement of qualification of an appli-
cant. It’s possible that due to self-selection women applying to engineering
schools in 1973 were over-qualified relative to their peers. In this case, an
equal acceptance rate between men and women might actually be a sign of
discrimination.

There is no way of knowing what was the case from the data we have.
We see that at best the original analysis leads to a number of follow-up
questions.

At this point, we have two choices. One is to design a new study and
collect more data in a manner that might lead to a more conclusive outcome.
The other is to argue over which scenario is more likely based on our beliefs
and plausible assumptions about the world.

Causal inference is helpful in either case. On the one hand, it can be used
as a guide in the design of new studies. It can help us choose which variables
to include, which to exclude, and which to hold constant. On the other hand,
causal models can serve as a mechanism to incorporate scientific domain
knowledge and exchange plausible assumptions for plausible conclusions.

Causal models

We choose structural causal models as the basis of our formal discussion as
they have the advantage of giving a sound foundation for various causal
notions we will encounter. The easiest way to conceptualize a structural
causal model is as a program for generating a distribution from independent
noise variables through a sequence of formal instructions. Imagine instead

181

of samples from a distribution, somebody gave you a step-by-step computer
program to generate samples on your own starting from a random seed. The
process is not unlike how you would write code. You start from a simple
random seed and build up increasingly more complex constructs. That is
basically what a structural causal model is, except that each assignment
uses the language of mathematics rather than any concrete programming
syntax.

A first example

Let’s start with a toy example not intended to capture the real world. Imag-
ine a hypothetical population in which an individual exercises regularly
with probability 1/2. With probability 1/3, the individual has a latent
disposition to develop overweight that manifests in the absence of regular
exercise. Similarly, in the absence of exercise, heart disease occurs with
probability 1/3. Denote by X the indicator variable of regular exercise,
by W that of excessive weight, and by H the indicator of heart disease.
Below is a structural causal model to generate samples from this hypothet-
ical population. Recall a Bernoulli random variable B(p) with bias p is a
biased coin toss that assumes value 1 with probability p and value 0 with
probability 1− p.

1. Sample independent Bernoulli random variables U1 ∼ B(1/2), U2 ∼
B(1/3), U3 ∼ B(1/3).

2. X := U1
3. W := if X = 1 then 0 else U2
4. H := if X = 1 then 0 else U3

Contrast this generative description of the population with a usual
random sample drawn from the population that might look like this:

X W H

0 1 1

1 0 0

1 1 1

1 1 0

0 1 0

.

From the program description, we can immediately see that in our
hypothetical population exercise averts both overweight and heart disease, but
in the absence of exercise the two are independent. At the outset, our

182

program generates a joint distribution over the random variables (X, W, H).
We can calculate probabilities under this distribution. For example, the
probability of heart disease under the distribution specified by our model
is 1/2 · 1/3 = 1/6. We can also calculate the conditional probability of heart
diseases given overweight. From the event W = 1 we can infer that the
individual does not exercise so that the probability of heart disease given
overweight increases to 1/3 compared with the baseline of 1/6.

Does this mean that overweight causes heart disease in our model? The
answer is no as is intuitive given the program to generate the distribution.
But let’s see how we would go about arguing this point formally. Having a
program to generate a distribution is substantially more powerful than just
having sampling access. One reason is that we can manipulate the program
in whichever way we want, assuming we still end up with a valid program.
We could, for example, set W := 1, resulting in a new distribution. The
resulting program looks like this:

2. X := U1
3. W := 1
4. H := if X = 1 then 0 else U3

This new program specifies a new distribution. We can again calculate
the probability of heart disease under this new distribution. We still get 1/6.
This simple calculation reveals a significant insight. The substitution W := 1
does not correspond to a conditioning on W = 1. One is an action, albeit
inconsequential in this case. The other is an observation from which we
can draw inferences. If we observe that an individual is overweight, we
can infer that they have a higher risk of heart disease (in our toy example).
However, this does not mean that lowering body weight would avoid heart
disease. It wouldn’t in our example. The active substitution W := 1 in
contrast creates a new hypothetical population in which all individuals are
overweight with all that it entails in our model.

Let us belabor this point a bit more by considering another hypothetical
population, specified by the equations:

2. W := U2
3. X := if W = 0 then 0 else U1
4. H := if X = 1 then 0 else U3

In this population exercise habits are driven by body weight. Overweight
individuals choose to exercise with some probability, but that’s the only
reason anyone would exercise. Heart disease develops in the absence of
exercise. The substitution W := 1 in this model leads to an increased
probability of exercise, hence lowering the probability of heart disease. In

183

this case, the conditioning on W = 1 has the same affect. Both lead to a
probability of 1/6.

What we see is that fixing a variable by substitution may or may not
correspond to a conditional probability. This is a formal rendering of our
earlier point that observation isn’t action. A substitution corresponds to an
action we perform. By substituting a value we break the natural course of
action our model captures. This is the reason why the substitution operation
is sometimes called the do-operator, written as do(W := 1).

Structural causal models give us a formal calculus to reason about the
effect of hypothetical actions. We will see how this creates a formal basis
for all the different causal notions that we will encounter in this chapter.

Structural causal models, more formally

Formally, a structural causal model is a sequence of assignments for gen-
erating a joint distribution starting from independent noise variables. By
executing the sequence of assignments we incrementally build a set of
jointly distributed random variables. A structural causal model therefore
not only provides a joint distribution, but also a description of how the joint
distribution can be generated from elementary noise variables. The formal
definition is a bit cumbersome compared with the intuitive notion.

Definition 13. A structural causal model M is given by a set of variables
X1, ..., Xd and corresponding assignments of the form

Xi := fi(Pi, Ui), i = 1, ..., d .

Here, Pi ⊆ {X1, ..., Xd} is a subset of the variables that we call the parents
of Xi. The random variables U1, ..., Ud are called noise variables, which we require
to be jointly independent.

The directed graph corresponding to the model has one node for each variable Xi,
which has incoming edges from all the parents Pi. We will call such a graph the
causal graph corresponding to the structural causal model.

The noise variables that appear in the definition model exogenous factors
that influence the system. Consider, for example, how the weather influences
the delay on a traffic route you choose. Due to the difficulty of modeling
the influence of weather more precisely, we could take the weather induced
to delay to be an exogenous factor that enters the model as a noise variable.
The choice of exogenous variables and their distribution can have important
consequences for what conclusions we draw from a model.

The parent nodes Pi of node i in a structural causal model are often
called the direct causes of Xi. Similarly, we call Xi the direct effect of its direct

184

causes Pi. Recall our hypothetical population in which weight gain was
determined by lack of exercise via the assignment W := min{U1, 1− X}.
Here we would say that exercise (or lack thereof) is a direct cause of weight
gain.

Structural causal model are a collection of formal assumptions about how
certain variables interact. Each assignment specifies a response function. We
can think of nodes as receiving messages from their parents and acting
according to these messages as well as the influence of an exogenous noise
variable.

To which extent a structural causal model conforms to reality is a sepa-
rate and difficult question that we will return to in more detail later. For
now, think of a structural causal model as formalizing and exposing a set of
assumptions about a data generating process. As such different models can
expose different hypothetical scenarios and serve as a basis for discussion.
When we make statements about cause and effect in reference to a model,
we don’t mean to suggest that these relationship necessarily hold in the real
world. Whether they do depends on the scope, purpose, and validity of our
model, which may be difficult to substantiate.

It’s not hard to show that a structural causal model defines a unique
joint distribution over the variables (X1, ..., Xd) such that Xi = fi(Pi, Ui). It’s
convenient to introduce a notion for probabilities under this distribution.
When M denotes a structural causal model, we will write the probability
of an event E under the entailed joint distribution as PM{E}. To gain
familiarity with the notation, let M denote the structural causal model for
the hypothetical population in which both weight gain and heart disease
are directly caused by an absence of exercise. We calculated earlier that the
probability of heart disease in this model is PM{H} = 1/6.

In what follows we will derive from this single definition of a structural
causal model all the different notions and terminology that we’ll need in
this chapter.

Throughout, we restrict our attention to acyclic assignments. Many real-
world systems are naturally described as stateful dynamical system with
feedback loops. For example, often cycles can be broken up by introducing
time dependent variables, such as, investments at time 0 grow the economy
at time 1 which in turn grows investments at time 2, continuing so forth
until some chosen time horizon t. We will return to a deeper dive into
dynamical systems and feedback in later chapters.

185

W

X

H W

X

H

Figure 34: Causal diagrams for the heart disease examples.

X

Z

Y

Figure 35: Example of a fork.

Causal graphs

We saw how structural causal models naturally give rise to causal graphs that
represent the assignment structure of the model graphically. We can go the
other way as well by simply looking at directed graphs as placeholders for
an unspecified structural causal model which has the assignment structure
given by the graph. Causal graphs are often called causal diagrams. We’ll
use these terms interchangeably.

Below we see causal graphs for the two hypothetical populations from
our heart disease example.

The scenarios differ in the direction of the link between exercise and
weight gain.

Causal graphs are convenient when the exact assignments in a structural
causal models are of secondary importance, but what matters are the paths
present and absent in the graph. Graphs also let us import the established
language of graph theory to discuss causal notions. We can say, for example,
that an indirect cause of a node is any ancestor of the node in a given causal
graph. In particular, causal graphs allow us to distinguish cause and effect
based on whether a node is an ancestor or descendant of another node.

Let’s take a first glimpse at a few important graph structures.

Forks

A fork is a node Z in a graph that has outgoing edges to two other variables X
and Y. Put differently, the node Z is a common cause of X and Y.

We already saw an example of a fork in our weight and exercise example:
W ← X → H. Here, exercise X influences both weight and heart disease.

186

X

Z

Y

Figure 36: Example of a mediator.

We also learned from the example that Z has a confounding effect: Ignoring
exercise X, we saw that W and H appear to be positively correlated. How-
ever, the correlation is a mere result of confounding. Once we hold exercise
levels constant (via the do-operation), weight has no effect on heart disease
in our example.

Confounding leads to a disagreement between the calculus of conditional
probabilities (observation) and do-interventions (actions).

Real-world examples of confounding are a common threat to the validity
of conclusions drawn from data. For example, in a well known medical
study a suspected beneficial effect of hormone replacement therapy in reducing
cardiovascular disease disappeared after identifying socioeconomic status as
a confounding variable.183

Mediators

The case of a fork is quite different from the situation where Z lies on a
directed path from X to Y:

In this case, the path X → Z → Y contributes to the total effect of X on Y.
It’s a causal path and thus one of the ways in which X causally influences Y.
That’s why Z is not a confounder. We call Z a mediator instead.

We saw a plausible example of a mediator in our UC Berkeley admissions
example. In one plausible causal graph, department choice mediates the
influences of gender on the admissions decision.

Colliders

Finally, let’s consider another common situation: the case of a collider.
Colliders aren’t confounders. In fact, in the above graph, X and Y are

unconfounded, meaning that we can replace do-statements by conditional
probabilities. However, something interesting happens when we condition
on a collider. The conditioning step can create correlation between X and Y,
a phenomenon called explaining away. A good example of the explaining
away effect, or collider bias, is known as Berkson’s paradox.184 Two indepen-
dent diseases can become negatively correlated when analyzing hospitalized

187

X

Z

Y

Figure 37: Example of a collider.

patients. The reason is that when either disease (X or Y) is sufficient for
admission to the hospital (indicated by variable Z), observing that a patient
has one disease makes the other statistically less likely. Berkson’s paradox
is a cautionary tale for statistical analysis when we’re studying a cohort that
has been subjected to a selection rule.

Interventions and causal effects

Structural causal models give us a way to formalize the effect of hypothetical
actions or interventions on the population within the assumptions of our
model. As we saw earlier all we needed was the ability to do substitutions.

Substitutions and the do-operator

Given a structural causal model M we can take any assignment of the form

X := f (P, U)

and replace it by another assignment. The most common substitution is to
assign X a constant value x:

X := x

We will denote the resulting model by M′ = M[X := x] to indicate the
surgery we performed on the original model M. Under this assignment we
hold X constant by removing the influence of its parent nodes and thereby
any other variables in the model.

Graphically, the operation corresponds to eliminating all incoming edges
to the node X. The children of X in the graph now receive a fixed message x
from X when they query the node’s value.

The assignment operator is also called the do-operator to emphasize
that it corresponds to performing an action or intervention. We already
have notation to compute probabilities after applying the do-operator,
namely, PM[X:=x](E).

188

P1 P2 P3

X

Q2Q1 Q3

P1 P2 P3

X

Q2Q1 Q3

Figure 38: Graph before and after substitution.

Another notation is popular and common:

P{E | do(X := x)} = PM[X:=x](E)

This notation analogizes the do-operation with the usual notation for
conditional probabilities, and is often convenient when doing calculations
involving the do-operator. Keep in mind, however, that the do-operator
(action) is fundamentally different from the conditioning operator (observa-
tion).

Causal effects

The causal effect of an action X := x on a variable Y refers to the distribution
of the variable Y in the model M[X := x]. When we speak of the causal
effect of a variable X on another variable Y we refer to all the ways in which
setting X to any possible value x affects the distribution of Y.

Often times X denotes the presence or absence of an intervention or
treatment. In such case, X is a binary variable and are interested in a quantity
such as

EM[X:=1][Y]−EM[X:=0][Y] .

This quantity is called the average treatment effect. It tells us how much
treatment (action X := 1) increases the expectation of Y relative to no
treatment (action X := 0).

Causal effects are population quantities. They refer to effects averaged
over the whole population. Often the effect of treatment varies greatly from
one individual or group of individuals to another. Such treatment effects
are called heterogeneous.

Confounding

Important questions in causality relate to when we can rewrite a do-
operation in terms of conditional probabilities. When this is possible,

189

we can estimate the effect of the do-operation from conventional conditional
probabilities that we can estimate from data.

The simplest question of this kind asks when a causal effect P{Y =
y | do(X := x)} coincides with the condition probability P{Y = y |
X = x}. In general, this is not true. After all, the difference between
observation (conditional probability) and action (interventional calculus) is
what motivated the development of causality.

The disagreement between interventional statements and conditional
statements is so important that it has a well-known name: confounding. We
say that X and Y are confounded when the causal effect of action X := x
on Y does not coincide with the corresponding conditional probability.

When X and Y are confounded, we can ask if there is some combination
of conditional probability statements that give us the desired effect of a do-
intervention. This is generally possible given a causal graph by conditioning
on the parent nodes PA of the node X:

P{Y = y | do(X := x)} = ∑
z

P{Y = y | X = x, PA = z}P{PA = z}

This formula is called the adjustment formula. It gives us one way of estimat-
ing the effect of a do-intervention in terms of conditional probabilities.

The adjustment formula is one example of what is often called controlling
for a set of variables: We estimate the effect of X on Y separately in every
slice of the population defined by a condition Z = z for every possible
value of z. We then average these estimated sub-population effects weighted
by the probability of Z = z in the population. To give an example, when
we control for age, we mean that we estimate an effect separately in each
possible age group and then average out the results so that each age group
is weighted by the fraction of the population that falls into the age group.

Controlling for more variables in a study isn’t always the right choice.
It depends on the graph structure. Let’s consider what happens when we
control for the variable Z in the three causal graphs we discussed above.

• Controlling for a confounding variable Z in a fork X ← Z → Y will
deconfound the effect of X on Y.

• Controlling for a mediator Z will eliminate some of the causal influ-
ence of X on Y.

• Controlling for a collider will create correlation between X and Y.
That is the opposite of what controlling for Z accomplishes in the case
of a fork. The same is true if we control for a descendant of a collider.

190

X

Z

Y X

Z W

Y

Figure 39: Two cases of unobserved confounding.

The backdoor criterion

At this point, we might worry that things get increasingly complicated.
As we introduce more nodes in our graph, we might fear a combinatorial
explosion of possible scenarios to discuss. Fortunately, there are simple
sufficient criteria for choosing a set of deconfounding variables that is safe
to control for.

A well known graph-theoretic notion is the backdoor criterion.185 Two
variables are confounded if there is a so-called backdoor path between them.
A backdoor path from X to Y is any path starting at X with a backward edge
“←” into X such as:

X ← A→ B← C → Y

Intuitively, backdoor paths allow information flow from X to Y in a way that
is not causal. To deconfound a pair of variables we need to select a backdoor
set of variables that “blocks” all backdoor paths between the two nodes. A
backdoor path involving a chain A→ B→ C can be blocked by controlling
for B. Information by default cannot flow through a collider A→ B← C.
So we only have to be careful not to open information flow through a
collider by conditioning on the collider, or descendant of a collider.

Unobserved confounding

The adjustment formula might suggest that we can always eliminate con-
founding bias by conditioning on the parent nodes. However, this is only
true in the absence of unobserved confounding. In practice often there are
variables that are hard to measure, or were simply left unrecorded. We can
still include such unobserved nodes in a graph, typically denoting their
influence with dashed lines, instead of solid lines.

The above figure shows two cases of unobserved confounding. In the
first example, the causal effect of X on Y is unidentifiable. In the second
case, we can block the confounding backdoor path X ← Z → W → Y by
controlling for W even though Z is not observed. The backdoor criterion
lets us work around unobserved confounders in some cases where the
adjustment formula alone wouldn’t suffice.

191

Unobserved confounding nonetheless remains a major obstacle in prac-
tice. The issue is not just lack of measurement, but often lack of anticipation
or awareness of a confounding variable. We can try to combat unobserved
confounding by increasing the number of variables under consideration.
But as we introduce more variables into our study, we also increase the
burden of coming up with a valid causal model for all variables under con-
sideration. In practice, it is not uncommon to control for as many variables
as possible in a hope to disable confounding bias. However, as we saw,
controlling for mediators or colliders can be harmful.

Randomization and the backdoor criterion

The backdoor criterion gives a non-experimental way of eliminating con-
founding bias given a causal model and a sufficient amount of observational
data from the joint distribution of the variables. An alternative experimental
method of eliminating confounding bias randomization.

The idea is simple. If a treatment variable T is an unbiased coin toss,
nothing but mere chance influenced it assignment. In particular, there
cannot be a confounding variable exercising influence on both the treatment
variable and a desired outcome variable.

A different way to think about is that randomization breaks natural
inclination. Rather than letting treatment take on its natural value, we
assign it randomly. Thinking in terms of causal models, what this means
is that we eliminate all incoming edges into the treatment variable. In
particular, this closes all backdoor paths and hence avoids confounding bias.
Because randomization is such an important part of causal inference, we
now turn to it in greater detail.

Experimentation, randomization, potential outcomes

Let’s think about experimentation from first principles. Suppose we have
a population of individuals and we have devised some treatment that can
be applied to each individual. We would like to know the effect of this
treatment on some measurable quantity.

As a simple example, and one which has had great utility, consider
the development of a vaccine for a disease. How can we tell if a vaccine
prevents disease? If we give everyone the vaccine, we’d never be able to
disentangle whether the treatment caused the associated change in disease
we observe or not. The common and widely accepted solution in medicine
is to restrict our attention to a subset of the population, and leverage
randomized assignment to eliminate isolate the effect of the treatment.

192

The simplest mathematical formulation underlying randomized experi-
ment design is as follows. We assume a group of n individuals i = 1, . . . , n.
Suppose for an individual, if we apply a treatment, the quantity of interest
is equal to a value Y1(i). If we don’t apply the treatment, the quantity
of interest is equal to Y0(i). We define an outcome Y(i) which is equal
to Y1(i) if the treatment is applied and equal to Y0(i) if the treatment is not
applied. In our vaccine example, Y1(i) indicates whether a person contracts
the disease in a specified time period following a vaccination and Y0(i)
indicates whether a person contracts the disease in the same time period
absent vaccination. Now, obviously, one person can only take one of these
paths. Nonetheless, we can imagine two potential outcomes: one potential
outcome Y1(i) if the treatment is applied and another potential outcome
Y0(i) if the treatment is not applied. Throughout this section, we assume
that the potential outcomes are fixed deterministic values.

We can write the relationship between observed outcome and potential
outcomes as a mathematical equation by introducing the boolean treatment
indicator T(i) which is equal to 1 if subject i receives the treatment and 0
otherwise. In this case, the outcome for individual i equals

Y(i) = T(i)Y1(i) + (1− T(i))Y0(i) .

That is, if the treatment is applied, we observe Y1(i) and if the treatment is
not applied we observe Y0(i). While this potential outcomes formulation is
tautological, it lets us apply the same techniques we use for estimating the
mean to the problem of estimating treatment effects.

The individual treatment effect is a relation between the quantities Y1(i)
and Y0(i), commonly just the difference Y1(i)− Y0(i). If the difference is
positive, we see that applying the treatment increases the outcome variable
for this individual. But, as we’ve discussed, our main issue is that we can
never simultaneously observe Y1(i) and Y0(i). Once we choose whether to
apply the treatment or not, we can only measure the corresponding treated
or untreated condition.

While it may be daunting to predict the treatment effect at the level of
each individual, statistical algorithms can be applied to estimate average
treatment effects across the population. There are many ways to define
a measure of the effect of a treatment on a population. For example, we
earlier define the notion of an average treatment effect. Let Ȳ1 and Ȳ0 denote
the means of Y1(i) and Y0(i), respectively, averaged over i = 1, . . . , n. We
can write

Average Treatment Effect = Ȳ1 − Ȳ0

In the vaccine example, this would be the difference in the probability of
contracting the illness if one was vaccinated vs if one was not vaccinated.

193

The odds that an individual catches the disease is the number of people
who catch the disease divided by the number who do not. The odds ratio
for a treatment is the odds when every person receives the vaccine divided
by the odds when no one receives the vaccine. We can write this out as a
formula in terms of our quantities Ȳ1 and Ȳ0. When the potential outcomes
take on values 0 or 1, the average Ȳ1 is the number of individuals for
which Y1(i) = 1 divided by the total number of individuals. Hence, we can
write the odds ratio as

Odds Ratio =
Ȳ1

1− Ȳ1
· 1− Ȳ0

Ȳ0
.

This measures the decrease (or increase!) of the odds of a bad event
happening when the treatment is applied. When the odds ratio is less than
1, the odds of a bad event are lower if the treatment is applied. When
the odds ratio is greater than 1, the odds of a bad event are higher if the
treatment is applied.

Similarly, the risk that an individual catches the disease is the ratio of
the number of people who catch the disease to the total population size.
Risk and odds are similar quantities, but some disciplines prefer one to the
other by convention. The risk ratio is the the fraction of bad events when a
treatment is applied divided by the fraction of bad events when not applied:

Risk Ratio =
Ȳ1

Ȳ0

The risk ratio measures the increase or decrease of relative risk of a bad
event when the treatment is applied. In the recent context of vaccines, this
ratio is popularly reported differently. The effectiveness of a treatment is one
minus the risk ratio. This is precisely the number used when people say
a vaccine is 95% effective. It is equivalent to saying that the proportion of
those treated who fell ill was 20 times less than the proportion of those not
treated who fell ill. Importantly, it does not mean that one has a 5% chance
of contracting the disease.

Estimating treatment effects using randomization

Let’s now analyze how to estimate these effects using a randomized proce-
dure. In a randomized controlled trial a group of n subjects is randomly
partitioned into a control group and a treatment group. We assume partic-
ipants do not know which group they were assigned to and neither do
the staff administering the trial. The treatment group receives an actual
treatment, such as a drug that is being tested for efficacy, while the control

194

group receives a placebo identical in appearance. An outcome variable is
measured for all subjects.

Formally, this means each T(i) is an unbiased coin toss. Because we
randomly assign treatments we have

E[Y(i) | T(i) = 1] = Y1(i) and E[Y(i) | T(i) = 0] = Y0(i) .

Therefore, for treatment value t ∈ {0, 1},

E

[
1
n

n

∑
i=1

Y(i) | T(i) = t

]
= Ȳt .

In other words, to get an unbiased estimate of Ȳt we just have to average
out all outcomes for subjects with treatment assignment t. This in turn
gives us various causal effects we discussed previously. We can also apply
more statistics to this estimate to get confidence bounds and large deviation
bounds. Various things we know for estimating the mean of a population
carry over. For example, we need the outcome variables to have bounded
range in order for our estimates to have low variance. Similarly, if we are
trying to detect a tiny causal effect, we must choose n sufficiently large.

Typically in a randomized control trial, the n subjects are supposed to a
uniformly random sample from a larger target population of N individuals.
The group average Ȳt is therefore itself only an estimate of the population
mean. Here, too, conventional statistics applies in reasoning about how
close Ȳt is to the population average.

Uniform sampling from a population is an idealization that is hard
to achieve in experimental practice. It is not only hard to independently
sample individuals in a large population, but we also need to be able to set
up identical scenarios to test interventions. For medical treatments, what if
there is variance between the treatment effect at 9AM in the Mayo Clinic
on a Tuesday and at 11PM in the Alta Bates Medical Center on a Saturday?
If there are temporal or spatial or other variabilities, the effective size of
the population and the corresponding variance grow. Accounting for such
variability is a daunting challenge of modern medical and social research
that can be at the root of many failures of replication.

The formulation here also assumes that the potential outcomes Yt(i) do
not vary over time. The framework could be generalized to account for
temporal variation, but such a generalization will not illuminate the basic
issues of statistical methods and modeling. We return to the practice of
causal inference and its challenges in the next chapter. But before we do so,
we will relate what we just learned to the structural causal models that we
saw earlier.

195

X Y

Figure 40: Causal diagram for our traffic scenario.

Counterfactuals

Fully specified structural causal models allow us to ask causal questions
that are more delicate than the mere effect of an action. Specifically, we can
ask counterfactual questions such as: Would I have avoided the traffic jam
had I taken a different route this morning?

Formally, counterfactuals are random variables that generalize the po-
tential outcome variables we saw previously. Counterfactuals derive from a
structural causal model, which gives as another useful way to think about
potential outcomes. The procedure for extracting counterfactuals from a
structural causal model is algorithmic, but it can look a bit subtle at first. It
helps to start with a simple example.

A simple counterfactual

Assume every morning we need to decide between two routes T = 0 and
T = 1. On bad traffic days, indicated by U = 1, both routes are bad. On
good days, indicated by U = 0, the traffic on either route is good unless
there was an accident on the route.

Let’s say that U ∼ B(1/2) follows the distribution of an unbiased coin
toss. Accidents occur independently on either route with probability 1/2.
So, choose two Bernoulli random variables U0, U1 ∼ B(1/2) that tell us if
there is an accident on route 0 and route 1, respectively. We reject all external
route guidance and instead decide on which route to take uniformly at
random. That is, T := UT ∼ B(1/2) is also an unbiased coin toss.

Introduce a variable Y ∈ {0, 1} that tells us whether the traffic on the
chosen route is good (Y = 0) or bad (Y = 1). Reflecting our discussion
above, we can express Y as

Y := T ·max{U, U1}+ (1− T)max{U, U0} .

In words, when T = 0 the first term disappears and so traffic is determined
by the larger of the two values U and U0. Similarly, when T = 1 traffic is
determined by the larger of U and U1.

Now, suppose one morning we have T = 1 and we observe bad traf-
fic Y = 1. Would we have been better off taking the alternative route this
morning?

196

A natural attempt to answer this question is to compute the likeli-
hood of Y = 0 after the do-operation T := 0, that is, PM[T:=0](Y = 0). A
quick calculation reveals that this probability is 1

2 · 1
2 = 1/4. Indeed, given

the substitution T := 0 in our model, for the traffic to be good we need
that max{U, U0} = 0. This can only happen when both U = 0 (probabil-
ity 1/2) and U0 = 0 (probability 1/2).

But this isn’t the correct answer to our question. The reason is that we
took route T = 1 and observed that Y = 1. From this observation, we can
deduce that certain background conditions did not manifest for they are
inconsistent with the observed outcome. Formally, this means that certain
settings of the noise variables (U, U0, U1) are no longer feasible given the
observed event {Y = 1, T = 1}. Specifically, if U and U1 had both been
zero, we would have seen no bad traffic on route T = 1, but this is contrary
to our observation. In fact, the available evidence {Y = 1, T = 1} leaves
only the following settings for U and U1:

Table 8: Possible noise settings after observing evidence.
We leave out U0 from the table, since its distribution is
unaffected by our observation.

U U1

0 1

1 1

1 0

Each of these three cases is equally likely, which in particular means that
the event U = 1 now has probability 2/3. In the absence of any additional
evidence, recall, U = 1 had probability 1/2. What this means is that the
observed evidence {Y = 1, T = 1} has biased the distribution of the noise
variable U toward 1. Let’s use the letter U′ to refer to this biased version of U.
Formally, U′ is distributed according to the distribution of U conditional on
the event {Y = 1, T = 1}.

Working with this biased noise variable, we can again entertain the
effect of the action T := 0 on the outcome Y. For Y = 0 we need
that max{U′, U0} = 0. This means that U′ = 0, an event that now has
probability 1/3, and U0 = 0 (probability 1/2 as before). Hence, we get
the probability 1/6 = 1/2 · 1/3 for the event that Y = 0 under our do-
operation T := 0, and after updating the noise variables to account for the
observation {Y = 1, T = 1}.

To summarize, incorporating available evidence into our calculation
decreased the probability of no traffic (Y = 0) when choosing route 0

197

from 1/4 to 1/6. The intuitive reason is that the evidence made it more
likely that it was generally a bad traffic day, and even the alternative route
would’ve been clogged. More formally, the event that we observed biases
the distribution of exogenous noise variables.

We think of the result we just calculated as the counterfactual of choosing
the alternative route given the route we chose had bad traffic.

The general recipe

We can generalize our discussion of computing counterfactuals from the
previous example to a general procedure. There were three essential steps.
First, we incorporated available observational evidence by biasing the ex-
ogenous noise variables through a conditioning operation. Second, we
performed a do-operation in the structural causal model after we substi-
tuted the biased noise variables. Third, we computed the distribution of a
target variable.

These three steps are typically called abduction, action, and prediction, as
can be described as follows.

Definition 14. Given a structural causal model M, an observed event E, an
action T := t and target variable Y, we define the counterfactual YT:=t(E) by the
following three step procedure:

1. Abduction: Adjust noise variables to be consistent with the observed event.
Formally, condition the joint distribution of U = (U1, ..., Ud) on the event
E. This results in a biased distribution U′.

2. Action: Perform do-intervention T := t in the structural causal model M
resulting in the model M′ = M[T := t].

3. Prediction: Compute target counterfactual YT:=t(E) by using U′ as the
random seed in M′.

It’s important to realize that this procedure defines what a counterfactual
is in a structural causal model. The notation YT:=t(E) denotes the outcome
of the procedure and is part of the definition. We haven’t encountered this
notation before.

Put in words, we interpret the formal counterfactual YT:=t(E) as the
value Y would’ve taken had the variable T been set to value t in the
circumstances described by the event E.

In general, the counterfactual YT:=t(E) is a random variable that varies
with U′. But counterfactuals can also be deterministic. When the event E
narrows down the distribution of U to a single point mass, called unit,
the variable U′ is constant and hence the counterfactual YT:=t(E) reduces

198

to a single number. In this case, it’s common to use the shorthand nota-
tion Yt(u) = YT:=t({U = u}), where we make the variable t implicit, and
let u refer to a single unit. The counterfactual random variable Yt refers
to Yt(u) for a random draw of the noise variables u.

The motivation for the name unit derives from the common situation
where the structural causal model describes a population of entities that
form the atomic units of our study. It’s common for a unit to be an
individual (or the description of a single individual). However, depending
on application, the choice of units can vary. In our traffic example, the noise
variables dictate which route we take and what the road conditions are.

Answers to counterfactual questions strongly depend on the specifics
of the structural causal model, including the precise model of how the
exogenous noise variables come into play. It’s possible to construct two
models that have identical graph structures, and behave identically under
interventions, yet give different answers to counterfactual queries.186

Potential outcomes

Let’s return to the potential outcomes framework that we introduced when
discussing randomized experiments. Rather than deriving potential out-
comes from a structural causal model, we assume their existence as ordinary
random variables, albeit some unobserved. Specifically, we assume that for
every unit u there exist random variables Yt(u) for every possible value of
the assignment t. This potential outcome turns out to equal the correspond-
ing counterfactual derived from the structrual equation model:

potential outcome Yt(u) = YT:=t({u}) structural counterfactual

In particular, there is no harm in using our potential outcome notation Yt(u)
as a shorthand for the corresponding counterfactual notation.

In the potential outcomes model, it’s customary to think of a binary
treatment variable T that assumes only two values, 0 for untreated, and 1 for
treated. This gives us two potential outcome variables Y0(u) and Y1(u) for
each unit u. There is some potential for notational confusion here. Readers
already familiar with the potential outcomes model may be used to the
notation “Yi(0), Yi(1)” for the two potential outcomes corresponding to unit
i. In our notation the unit (or, more generally, set of units) appears in the
parentheses and the subscript denotes the substituted value for the variable
we intervene on.

The key point about the potential outcomes model is that we only ob-
serve the potential outcome Y1(u) for units that were treated. For untreated
units we observe Y0(u). In other words, we can never simultaneously
observe both, although they’re both assumed to exist in a formal sense.

199

Formally, the outcome Y(u) for unit u that we observe depends on the
binary treatment T(u) and is given by the expression:

Y(u) = Y0(u) · (1− T(u)) + Y1(u) · T(u)

We can revisit our traffic example in this framework. The next table
summarizes what information is observable in the potential outcomes model.
We think of the route we choose as the treatment variable, and the observed
traffic as reflecting one of the two potential outcomes.

Table 9: Traffic example in the potential outcomes
model

Route T Outcome Y0 Outcome Y1 Probability

0 0 ? 1/8

0 1 ? 3/8

1 ? 0 1/8

1 ? 1 3/8

Often this information comes in the form of samples. For example, we
might observe the traffic on different days. With sufficiently many samples,
we can estimate the above frequencies with arbitrary accuracy.

Table 10: Traffic data in the potential outcomes model

Day Route T Outcome Y0 Outcome Y1

1 0 1 ?
2 0 0 ?
3 1 ? 1

4 0 1 ?
5 1 ? 0

.

In our original traffic example, there were 16 units corresponding to
the background conditions given by the four binary variables U, U0, U1, UT.
When the units in the potential outcome model agree with those of a
structural causal model, then causal effects computed in the potential
outcomes model agree with those computed in the structural equation
model. The two formal frameworks are perfectly consistent with each other.

As is intuitive from the table above, causal inference in the potential
outcomes framework can be thought of as filling in the missing entries (“?”)

200

in the table above. This is sometimes called missing data imputation and there
are numerous statistical methods for this task. If we could reveal what’s
behind the question marks, many quantities would be readily computable.
For instance, estimating the average treatment effect would be as easy as
counting rows.

When we were able to directly randomize the treatment variable, we
showed that treatment effects could be imputed from samples. When we
are working with observational data, there is a set of established conditions
under which causal inference becomes possible:

1. Stable Unit Treatment Value Assumption (SUTVA): The treatment
that one unit receives does not change the effect of treatment for any
other unit.

2. Consistency: Formally, Y(u) = Y0(u)(1− T(u)) + Y1(u)T(u). That is,
Y(u) = Y0(u) if T(u) = 0 and Y(u) = Y1(u) if T(u) = 1. In words,
the outcome Y(u) agrees with the potential outcome corresponding to
the treatment indicator.

3. Ignorability: The potential outcomes are independent of treatment
given some deconfounding variables Z, i.e., T ⊥ (Y0, Y1) | Z. In words,
the potential outcomes are conditionally independent of treatment
given some set of deconfounding variables.

The first two assumptions automatically hold for counterfactual variables
derived from structural causal models according to the procedure described
above. This assumes that the units in the potential outcomes framework
correspond to the atomic values of the background variables in the structural
causal model.

The third assumption is a major one. The assumption on its own cannot
be verified or falsified, since we never have access to samples with both
potential outcomes manifested. However, we can verify if the assumption is
consistent with a given structural causal model, for example, by checking if
the set Z blocks all backdoor paths from treatment T to outcome Y.

There’s no tension between structural causal models and potential out-
comes and there’s no harm in having familiarity with both. It nonetheless
makes sense to say a few words about the differences of the two approaches.

We can derive potential outcomes from a structural causal model as we
did above, but we cannot derive a structural causal model from potential
outcomes alone. A structural causal model in general encodes more assump-
tions about the relationships of the variables. This has several consequences.
On the one hand, a structural causal model gives us a broader set of formal
concepts (causal graphs, mediating paths, counterfactuals for every variable,
and so on). On the other hand, coming up with a plausibly valid structural
causal model is often a daunting task that might require knowledge that is

201

simply not available. Difficulty to come up with a plausible causal model
often exposes unsettled substantive questions that require resolution first.

The potential outcomes model, in contrast, is generally easier to apply.
There’s a broad set of statistical estimators of causal effects that can be
readily applied to observational data. But the ease of application can also
lead to abuse. The assumptions underpinning the validity of such estimators
are experimentally unverifiable. Our next chapter dives deeper into the
practice of causal inference and some of its limitations.

Chapter notes

This chapter was developed and first published by Barocas, Hardt, and
Narayanan in the textbook Fairness and Machine Learning: Limitations and
Opportunities.19 With permission from the authors, we include a large part
of the original text here with only slight modifications. We removed a
significant amount of material on discrimination and fairness and added an
extended discussion on randomized experiments.

There are several excellent introductory textbooks on the topic of causal-
ity. For an introduction to causality with an emphasis on causal graphs and
structural equation models turn to Pearl’s primer,187 or the more comprehen-
sive textbook.185 Our exposition of Simpson’s paradox and the UC Berkeley
data was influenced by Pearl’s discussion, updated for a new popular au-
dience book.188 The example has been heavily discussed in various other
writings, such as Pearl’s recent discussion.188 We retrieved the Berkeley
data from http://www.randomservices.org/random/data/Berkeley.html.
There is some discrepancy with the data available on the Wikipedia page
for Simpson’s paradox that we retrieved on Dec 27, 2018.

For further discussion regarding the popular interpretation of Simpson’s
original article,189 see the article by Hernán, Clayton, and Keiding,190 as
well as Pearl’s text.185

The technically-minded reader will enjoy complementing Pearl’s book
with the recent open access text by Peters, Janzing, and Schölkopf186 that
is available online. The text emphasizes two variable causal models and
applications to machine learning. See Spirtes, Glymour and Scheines191 for
a general introduction based on causal graphs with an emphasis on graph
discovery, i.e., inferring causal graphs from observational data. An article by
Schölkopf provides additional context about the development of causality
in machine learning.192

The classic formulation of randomized experiment design due to Jerzy
Neyman is now subsumed by and commonly referred to as the framework
of potential outcomes.193, 194 Imbens and Rubin195 give a comprehensive

202

introduction to the technical repertoire of causal inference in the potential
outcomes model. Angrist and Pischke196 focus on causal inference and
potential outcomes in econometrics. Hernán and Robins197 give another
detailed introduction to causal inference that draws on the authors’ experi-
ence in epidemiology. Morgan and Winship198 focus on applications in the
social sciences.

203

10
Causal inference in practice

The previous chapter introduced the conceptual foundations of causality, but
there’s a lot more to learn about how these concepts play out in practice. In
fact, there’s a flourishing practice of causal inference in numerous scientific
disciplines. Increasingly, ideas from machine learning show up in the
design of causal estimators. Conversely, ideas from causal inference can
help machine learning practitioners run better experiments.

In this chapter we focus on estimating the average treatment effect, often
abbreviated as ATE, of a binary treatment T on an outcome variable Y:

E[Y | do(T := 1)]−E[Y | do(T := 0)] .

Causal effects are population quantities that involve two hypothetical ac-
tions, one holding the treatment variable constant at the treatment value 1,
the other holding the treatment constant at its baseline value 0.

The central question in causal inference is how we can estimate causal
quantities, such as the average treatment effect, from data.

Confounding between the outcome and treatment variable is the main
impediment to causal inference from observational data. Recall that random
variables Y and T are confounded, if the conditional probability distribution
of Y given T does not equal its interventional counterpart:

P{Y = y | do(T := t)} 6= P{Y = y | T = t}

If these expressions were equal, we could estimate the average treatment
effect in a direct way by estimating the difference E[Y | T = 1]−E[Y | T =
0] from samples. Confounding makes the estimation of treatment effects
more challenging, and sometimes impossible. Note that the main challenge
here is to arrive at an expression for the desired causal effect that is free
of any causal constructs, such as the do-operator. Once we have a plain
probability expression at hand, tools from statistics allow us to relate the
population quantity with a finite sample estimate.

204

Design and inference

There are two important components to causal inference, one is design, the
other is inference.

In short, design is about sorting out various substantive questions about
the data generating process. Inference is about the statistical apparatus that
we unleash on the data in order to estimate a desired causal effect.

Design requires us to decide on a population, a set of variables to include,
and a precise question to ask. In this process we need to engage substan-
tively with relevant scientific domain knowledge in order to understand
what assumptions we can make about the data.

Design can only be successful if the assumptions we are able to make
permit the estimation of the causal effect we’re interested in. In partic-
ular, this is where we need to think carefully about potential sources of
confounding and how to cope with them.

There is no way statistical estimators can recover from poor design. If
the design does not permit causal inference, there is simply no way that
a clever statistical trick could remedy the shortcoming. It’s therefore apt
to think of causal insights as consequences of the substantive assumptions
that we can make about the data, rather than as products of sophisticated
statistical ideas.

Hence, we emphasize design issues throughout this chapter and inten-
tionally do not dwell on technical statements about rates of estimation. Such
mathematical statements can be valuable, but design must take precedence.

Experimental and observational designs

Causal inference distinguishes between experimental and observational de-
signs. Experimental designs generally are active in the sense of adminis-
tering some treatment to some set of experimental units. Observational
designs do not actively assign treatment, but rather aim to make it possible
to identify causal effects from collected data without implementing any
interventions.

The most common and well-established experimental design is a random-
ized controlled trial (RCT). The main idea is to assign treatment randomly.
A randomly assigned treatment, by definition, is not influenced by any other
variable. Hence, randomization eliminates any confounding bias between
treatment and outcome.

In a typical implementation of a randomized controlled trial, subjects
are randomly partitioned into a treatment group and a control group. The
treatment group receives the treatment, the control group receives no treat-
ment. It is important that subjects do not know which group they were

205

assigned to. Otherwise knowledge of their assignment may influence the
outcome. To ensure this, subjects in the control group receive what is called
a placebo, a device or procedure that looks indistinguishable from treatment
to the study subject, but lacks the treatment ingredient whose causal powers
are in question. Adequate placebos may not exist depending on what the
treatment is, for example, in the case of a surgery.

Randomized controlled trials have a long history with many success
stories. They’ve become an important source of scientific knowledge.

Sometimes randomized controlled trials are difficult, expensive, or im-
possible to administer. Treatment might be physically or legally impossible,
too costly, or too dangerous. Nor are they free of issues and pitfalls.199 In
this chapter, we will see observational alternatives to randomized controlled
trials. However, these are certainly not without their own set of difficulties
and shortcomings.

The machine learning practitioner is likely to encounter randomization
in the form of so-called A/B tests. In an A/B test we randomly assign one of
two treatments to a set of individuals. Such experiments are common in
the tech industry to find out which of two changes to a product leads to a
better outcome.

The observational basics: adjustment and controls

For the remainder of the chapter we focus on observational causal inference
methods. In the previous chapter we saw that there are multiple ways to
cope with confounding between treatment and outcome. One of them is to
adjust (or control) for the parents (i.e., direct causes) of T via the adjustment
formula.

The extra variables that we adjust for are also called controls, and we
take the phrase controlling for to mean the same thing as adjusting for.

We then saw that we could use any set of random variables satisfying
the graphical backdoor criterion. This is helpful in cases where some
direct causes are unobserved so that we cannot use them in the adjustment
formula.

Let’s generalize this idea even further and call a set of variables admissible
if it satisfies the adjustment formula.

Definition 15. We say that a discrete random variable X is admissible if it
satisfies the adjustment formula:

P[Y = y | do(T := t)] = ∑
x

P[Y = y | T = t, X = x]P[X = x]

Here we sum over all values x in the support of X.

206

The definition directly suggests a basic estimator for the do-intervention.

Basic adjustment estimator.

1. Collect samples n samples (ti, yi, xi)
n
i=1.

2. Estimate each of the conditional probabilities P[Y = y | T =
t, X = x] from the collected samples.

3. Compute the sum ∑x P[Y = y | T = t, X = x]P[X = x].

This estimator can only work if all slices {T = t, X = x} have nonzero
probability, an assumption often called overlap or positivity in causal infer-
ence.

But the basic estimator also fails when the adjustment variable X can take
on too many possible values. In general, the variable X could correspond
to a tuple of features, such as, age, height, weight, etc. The support of X
grows exponentially with the number of features. This poses an obvious
computational problem, but more importantly a statistical problem as well.
By a counting argument some of the events {T = t, X = x} must have
probability as small as the inverse of size of the support X. To estimate
a probability p > 0 from samples to within small relative error, we need
about O(1/p2) samples.

Much work in causal inference deals with overcoming the statistical in-
efficiency of the basic estimator. Conceptually, however, most sophisticated
estimators work from the same principle. We need to assume that we have
an admissible variable X and that positivity holds. Different estimators
then use this assumption in different ways.

Potential outcomes and ignorability

The average treatment effect often appears in the causal inference literature
equivalently in its potential outcome notation E[Y1−Y0]. This way of going
about it is mathematically equivalent and either way works for us.

When talking about potential outcomes, it’s customary to replace the
assumption that X is admissible with another essentially equivalent as-
sumption called ignorability or unconfoundedness. To recall from the previous
chapter, this assumption requires that the potential outcomes variables are
conditionally independent of treatment given X. Formally, T ⊥ (Y0, Y1) | X.
It’s not hard to show that ignorability implies that X is admissible.

207

Reductions to model fitting

Adjustment gives a simple and general way to estimate causal effects given
an admissible set of variables. The primary shortcoming that we discussed
is the sample inefficiency of the formula in high-dimensional settings.

There’s a vast literature of causal estimators that aim to address this
central shortcoming in a range of different settings. While the landscape
of causal estimators might seem daunting to newcomers, almost all causal
inference methods share a fundamental idea. This idea is reduce causal
inference to standard supervised machine learning tasks.

Let’s see how this central idea plays out in a few important cases.

Propensity scores

Propensity scores are one popular way to cope with adjustment variables
that have large support. Let T ∈ {0, 1} be a binary treatment variable. The
quantity

e(x) = E[T | X = x]
is known as the propensity score and gives the likelihood of treatment in the
subpopulation defined by the condition X = x.

Theorem 10. Suppose that X is admissible, and the propensity scores are positive
e(x) 6= 0 for all X. Then,

E[Y | do(T := 1)] = E

[
YT

e(X)

]
Proof. Applying the adjustment formula for a fixed y, we have

P[Y = y | do(T := 1)] = ∑
x

P[Y = y | T = 1, X = x]P[X = x]

= ∑
x

P[Y = y | T = 1, X = x]P[X = x]P[T = 1 | X = x]
P[T = 1 | X = x]

= ∑
x

P[Y = y, T = 1, X = x]
P[T = 1 | X = x]

= ∑
x,t∈{0,1}

t P[Y = y, T = t, X = x]
P[T = 1 | X = x]

.

Here, we used that e(x) = P[T = 1 | X = x] 6= 0. Completing the proof,

E[Y | do(T := 1)] = ∑
y

y P[Y = y | do(T := 1)]

= ∑
y,x,t∈{0,1}

yt P[Y = y, T = t, X = x]
P[T = 1 | X = x]

= E

[
YT

e(X)

]
.

208

The same theorem also shows that

E[Y | do(T := 0)] = E

[
Y(1− T)
1− e(X)

]
and thus the average treatment effect of X on Y is given by

E[Y | do(T := 1)]−E[Y | do(T := 0)] = E

[
Y
(

T
e(X)

− 1− T
1− e(X)

)]
.

This formula for the average treatment effect is called inverse propensity score
weighting. Let’s understand what it buys us compared with the adjustment
formula when working with a finite sample.

One way to approximate the expectation given the theorem above is to
collect many samples from which we estimate the propensity score e(x)
separately for each possible setting X. However, this way of going about it
runs into the very same issues as the basic estimator. Practitioners therefore
choose a different route.

In a first step, we fit a model ê to the propensity scores hoping that our
model ê approximates the propensity score function e uniformly well. We
approach this step as we would any other machine learning problem. We
create a dataset of observations (xi, ei) where ei is an empirical estimate
of e(xi) that we compute from our sample. We then fit a model to these
data points using our favorite statistical technique, be it logistic regression
or something more sophisticated.

In a second step, we then use our model’s estimated propensity scores
in our sample estimate instead of the true propensity scores:

1
n

n

∑
i=1

tiyi

ê(xi)
.

The appeal of this idea is that we can use the entire repertoire of model
fitting to get a good function approximation of the propensity scores. De-
pending on what the features are we could use logistic regression, kernel
methods, random forests, or even deep models. Effectively we’re reducing
the problem of causal inference to that of model fitting, which we know
how to do.

Double machine learning

Our previous reduction to model fitting has a notable shortcoming. The
propensity score estimate ê(xi) appears in the denominator of our estimator.
This has two consequences. First, unbiased estimates of propensity scores
do not imply an unbiased estimate of the causal effect. Second, when

209

propensity scores are small and samples aren’t too plentiful, this can lead
to substantial variance.

There’s a popular way to cope, called double machine learning, that works
in a partially linear structural causal model:

Y = τT + g(X) + U , T = f (X) + V

In this model, the variable X is an observed confounder between treatment
and outcome. We allow the functions g and f to be arbitrary, but note
that g only depends on X but not on T as it could in general. The random
variables U, V are independent exogenous noise variables with mean 0.
In this model, the effect of treatment on the outcome is linear and the
coefficient τ is the desired average treatment effect.

The trick behind double machine learning is to subtract E[Y | X] from
each side of the first equation and to use the fact that E[Y | X] = τ E[T |
X] + g(X). We therefore get the equation

Y−E[Y | X] = τ(T −E[T | X]) + U .

Denoting Ỹ = Y − E[Y | X] and T̃ = T − E[T | X] we can see that the
causal effect τ is the solution to the regression problem Ỹ = τT̃ + U.

The idea now is to solve two regression problems to find good function
approximations of the conditional expectations E[Y | X] and E[T | X],
respectively. We can do this using data drawn from the joint distribution
of (X, T, Y) by solving two subsequent model fitting problems, hence the
name double machine learning.

Suppose then that we find two function approximations q(X, Y) ≈ E[Y |
X] and r(X, T) ≈ E[T | X]. We can define the random variables Ŷ =
Y − q(X, Y) and T̂ = T − r(X, T). The final step is to solve the regression
problem Ŷ = τ̂T̂ + U for the parameter τ̂.

Compared with inverse propensity score weighting, we can see that finite
sample errors in estimating the conditional expectations have a more benign
effect on the causal effect estimate τ̂. In particular, unbiased estimates of the
conditional expectations lead to an unbiased estimate of the causal effect.

Heterogeneous treatment effects

In many applications, treatment effects can vary by subpopulation. In such
cases we may be interested in the conditional average treatment effect (CATE)
in the subpopulation defined by X = x:

τ(x) = E[Y | do(T := 1), X = x]−E[Y | do(T := 0), X = x] .

210

We’re in luck, because the same proof we saw earlier shows that we can
estimate these so-called heterogeneous treatment effects with the propensity
score formula:

τ(x) = E

[
Y
(

T
e(X)

− 1− T
1− e(X)

)
| X = x

]
We can also extend double machine learning easily to the heterogeneous

case by replacing the coefficient τ in the first structural equation with a
function τ(X) that depends on X. The argument remains the same except
that in the end we need to solve the problem Ŷ = τ̂(X)T̂ + Y, which
amounts to optimizing over a function τ̂ in some model family rather than
a constant τ̂.

Both inverse propensity score weighting and the double machine learn-
ing can, in principle, estimate heterogeneous treatment effects. These aren’t
the only reductions to model fitting, however. Another popular method,
called causal forests, constructs decision trees whose leaves correspond co-
variate settings that deconfound treatment and outcome.200

Quasi-experiments

The idea behind quasi-experimental designs is that sometimes processes in
nature or society are structured in a way that enables causal inference. The
three most widely used quasi-experimental designs are regression discontinu-
ities, instrumental variables, and differences in differences. We will review the
first two briefly to see where machine learning comes in.

Regression discontinuity

Many consequential interventions in society trigger when a certain score
R exceeds a threshold value t. The idea behind a regression discontinuity
design is that units that fall just below the threshold are indistinguishable
from units just above threshold. In other words, whether or not a unit is
just above or just below the threshold is a matter of pure chance. We can
then hope to identify a causal effect of an intervention by comparing units
just below and just above the threshold.

To illustrate the idea, consider an intervention in a hospital setting that
is assigned to newborn children just below a birth weight of 1500g. We can
ask if the intervention has a causal effect on wellbeing of the child at a later
age as reflected in an outcome variable, such as, mortality or cumulative
hospital cost in their first year. We expect various factors to influence both
birth weight and outcome variable. But we hope that these confounding

211

0.00 0.25 0.50 0.75 1.00
0.2

0.4

0.6

0.8
true fit below threshold
least squares fit
true fit above threshold
least squares fit

Figure 41: Illustration of an idealized regression discontinuity. Real exam-
ples are rarely this clear cut.

factors are essentially held constant right around the threshold weight of
1500g. Regression discontinuity designs have indeed been used to answer
such questions for a number of different outcome variables.201, 202

Once we have identified the setup for a regression discontinuity, the
idea is to perform two regressions. One fits a model to the data below the
threshold. The other fits the model to data above the threshold. We then
take the difference of the values that the two models predict at the threshold
as our estimate of the causal effect. As usual, the idea works out nicely in
an idealized linear setting and can be generalized in various ways.

There are numerous subtle and not so subtle ways a regression dis-
continuity design can fail. One subtle failure mode is when intervention
incentivizes people to strategically make efforts to fall just below or above
the threshold. Manipulation or gaming of the running variable is a well-
known issue for instance when it comes to social program eligibility.203

But there are other less obvious cases. For example, school class sizes in
data from Chile exhibit irregularities that void regression discontinuity
designs.204 In turn, researchers have come up with tests designed to catch
such problems.

Instrumental variables

Instrumental variables are a popular quasi-experimental method for causal
inference. The starting point is confounding between a treatment T and
our outcome of interest Y. We are in a situation where we’re unable to
resolve confounding via the adjustment formula. However, what we have is
the existence of a special variable Z called an instrument that will help us

212

Z T

W

Y

Figure 42: Typical graphical model for an instrumental variable setup

estimate the treatment effect.
What makes Z a valid instrument is nicely illustrated with the following

causal graph.
The graph structure encodes two key assumptions:

1. The instrument Z and the outcome Y are unconfounded.
2. The instrument Z has no direct effect on the outcome Y.

Let’s walk through how this works out in the one-dimensional linear
structural equation for the outcome:

Y = α + βT + γW + N

Here, N is an independent noise term. For convenience, we denote the error
term U = γW + N. What we’re interested in is the coefficient β since we
can easily verify that it corresponds to the average treatment effect:

β = E[Y | do(T := 1)]−E[Y | do(T := 0)]

To find the coefficient β, we cannot directly solve the regression problem Y =
α + βT + U, because the error term U is not independent of T due to the
confounding influence of W.

However, there’s a way forward after we make a few additional assump-
tions:

1. The error term is zero mean: E[U] = 0
2. The instrument is uncorrelated with the error term: Cov(Z, U) = 0
3. Instrument and treatment have nonzero correlation: Cov(Z, T) 6= 0

The first two assumptions directly imply

E[Y− α− βT] = 0 and E[Z(Y− α− βT)] = 0 .

This leaves us with two linear equations in α and β so that we can solve for
both parameters. Indeed, α = E[Y]− β E[T]. Plugging this into the second
equation, we have

E[Z((Y−E[Y])− β(T −E[T]))] = 0,

213

which implies, via our third assumption Cov(T, Z) 6= 0,

β =
Cov(Z, Y)
Cov(T, Z)

.

There’s a different intuitive way to derive this solution by solving a two step
least squares procedure:

1. Predict the treatment from the instrument via least squares regression,
resulting in the predictor T̂ = cZ.

2. Predict the outcome from the predicted treatment using least squares
regression, resulting in the predictor Ŷ = β′T̂.

A calculation reveals that indeed β′ = β, the desired treatment effect. To
see this note that

c =
Cov(Z, T)

Var(Z)
and hence

β′ =
Cov(Y, T̂)

Var(T̂)
=

Cov(Y, Z)
c Var(Z)

=
Cov(Z, Y)
Cov(T, Z)

= β .

This solution directly generalizes to the multi-dimensional linear case. The
two stage regression approach is in fact the way instrumental variables is
often introduced operationally. We see that again instrumental variables is
a clever way of reducing causal inference to prediction.

One impediment to instrumental variables is a poor correlation between
the instrument and the treatment. Such instruments are called weak instru-
ments. In this case, the denominator Cov(T, Z) in our expression for β is
small and the estimation problem is ill-conditioned. The other impediment
is that the causal graph corresponding to instrumental variables is not
necessarily easy to come by in applications. What’s delicate about the graph
is that we want the instrument to have a significant causal effect on the
treatment, but at the same time have no other causal powers that might
influence the outcome in a way that’s not mediated by the treatment.

Nonetheless, researchers have found several intriguing applications of
instrumental variables. One famous example goes by the name judge in-
struments. The idea is that within the United States, at least in certain
jurisdictions and courts, defendants may be assigned randomly to judges.
Different judges then assign different sentences, some perhaps more lenient,
others harsher. The treatment here could be the sentence length and the
outcome may indicate whether or not the defendant went on to commit
another crime upon serving the prison sentence. A perfectly random as-
signment of judges implies that the judge assignment and the outcome are

214

unconfounded. Moreover, the assignment of a judge has a causal effect on
the treatment, but plausibly no direct causal effect on the outcome. The as-
signment of judges then serves as an instrumental variable. The observation
that judge assignments may be random has been the basis of much causal
inference about the criminal justice system. However, the assumption of
randomness in judge assignments has also been challenged.205

Limitations of causal inference in practice

It’s worth making a distinction between causal modeling broadly speaking
and the practice of causal inference today. The previous chapter covered
the concepts of causal modeling. Structural causal models make it painfully
clear that the model necessarily specifies strong assumptions about the
data generating process. In contrast, the practice of causal inference we
covered in this chapter seems almost model-free in how it reduces to pattern
classification via technical assumptions. This appears to free the practitioner
from difficult modeling choices.

The assumptions that make this all work, however, are not verifiable
from data. Some papers seek assurance in statistical robustness checks,
but these too are sample-based estimates. Traditional robustness checks,
such as resampling methods or leave-one-out estimates, may get at issues
of generalization, but cannot speak to the validity of causal assumptions.

As a result, a certain pragmatic attitude has taken hold. If we cannot
verify the assumption from data anyway, we might as well make it in
order to move forward. But this is a problematic position. Qualitative
and theoretical ways of establishing substantive knowledge remain relevant
where the limitations of data set in. The validity of a causal claim cannot
be established solely based on a sample. Other sources of substantive
knowledge are required.

Validity of observational methods

The empirical evidence regarding the validity of observational causal infer-
ence studies is mixed and depends on the domain of application.

A well known article compared observational studies in the medical
domain between 1985 and 1998 to the results of randomized controlled
trials.206 The conclusion was good news for observational methods:

We found little evidence that estimates of treatment effects in
observational studies reported after 1984 are either consistently
larger than or qualitatively different from those obtained in
randomized, controlled trials.

215

Another study around the same time came to a similar conclusion:

The results of well-designed observational studies (with either a
cohort or a case–control design) do not systematically overesti-
mate the magnitude of the effects of treatment as compared with
those in randomized, controlled trials on the same topic.207

One explanation, however, is that medical researchers may create obser-
vational designs with great care on the basis of extensive domain knowledge
and prior investigation.

Freedman’s paper Statistical Models and Shoe Leather illustrates this point
through the famous example of Jon Snow’s discovery from the 1850s that
cholera is a waterborne disease.208 Many associate Snow with an early
use of quantitative methods. But the application of those followed years
of substantive investigation and theoretical considerations that formed the
basis of the quantitative analysis.

In other domains, observational methods have been much less successful.
Online advertising, for example, generates hundreds of billions of dollars in
yearly global revenue, but the causal effects of targeted advertising remain
a subject of debate.209 Randomized controlled trials in this domain are
rare for technical and cultural reasons. Advertising platforms are highly
optimized toward a particular way of serving ads that can make true
randomization difficult to implement. As a result, practitioners rely on a
range of observational methods to determine the causal effect of showing an
ad. However, these methods tend to perform poorly as a recent large-scale
study reveals:

The observational methods often fail to produce the same ef-
fects as the randomized experiments, even after conditioning
on extensive demographic and behavioral variables. We also
characterize the incremental explanatory power our data would
require to enable observational methods to successfully measure
advertising effects. Our findings suggest that commonly used
observational approaches based on the data usually available in
the industry often fail to accurately measure the true effect of
advertising.210

Interference, interaction, and spillovers

Confounding is not the only threat to the validity of causal studies. In a
medical setting, it’s often relatively easy to ensure that treatment of one
subject does not influence the treatment assignment or outcome of any other
unit. We called this the Stable Unit Treatment Value Assumption (SUTVA)

216

in the previous chapter and noted that it holds by default for the units in a
structural causal models. Failures of SUTVA, however, are common and go
by many names, such as, interference, interaction, and spill-over effects.

Take the example of an online social network. Interaction between
units is the default in all online platforms, whose entire purpose is that
people interact. Administering treatment to a subset of the platform’s users
typically has some influence on the control group. For example, if our
treatment exposes a group of users to more content of a certain kind, those
users might share the content with others outside the treatment group. In
other words, treatment spills over to the control group. In certain cases, this
problem can be mitigated by assigning treatment to a cluster in the social
network that has a boundary with few outgoing edges thus limiting bias
from interaction.211

Interference is also common in the economic development context. To
borrow an example from economist John Roemer,212 suppose we want to
know if better fishing nets would improve the yield of fishermen in a town.
We design a field experiment in which we give better fishing nets to a
random sample of fishermen. The results show a significantly improved
yield for the treated fishermen. However, if we scale the intervention to
the entire population of fishermen, we might cause overfishing and hence
reduced yield for everyone.

Chapter notes

Aside from the introductory texts from the previous chapter, there are a few
more particularly relevant in the context of this chapter.

The textbook by Angrist and Pischke196 covers causal inference with an
emphasis on regression analysis an applications in econometrics. See Athey
and Imbens213 for a more recent survey of the state of causal inference in
econometrics.

Marinescu et al.214 give a short introduction to quasi-experiments and
their applications to neuroscience with a focus on regression discontinuity
design, instrumental variables, and differences in differences.

217

11
Sequential decision making and dy-
namic programming

As the previous chapters motivated we don’t just make predictions for their
own sake, but rather use data to inform decision making and action. This
chapter examines sequential decisions and the interplay between predictions
and actions in settings where our repeated actions are directed towards
a concrete end-goal. It will force us to understand statistical models that
evolve over time and the nature of dependencies in data that is temporally
correlated. We will also have to understand feedback and its impact on
statistical decision-making problems.

In machine learning, the subfield of using statistical tools to direct actions
in dynamic environments is commonly called “reinforcement learning” (RL).
However, this blanket term tends to lead people towards specific solution
techniques. So we are going to try to maintain a broader view of the area
of sequential decision making, including perspectives from related fields of
predictive analytics and optimal control. These multiple perspectives will
allow us to highlight how RL is different from the machine learning we are
most familiar with.

This chapter will follow a similar flow to our study of prediction. We will
formalize a temporal mathematical model of sequential decision making
involving notions from dynamical systems. We will then present a common
optimization framework for making sequential decisions when models
are known: dynamic programming. Dynamic programming will enable
algorithms for finding or approximating optimal decisions under a variety
of scenarios. In the sequel, we will turn to the learning problem of how to
best make sequential decisions when the mechanisms underlying dynamics
and costs are not known in advance.

218

From predictions to actions

Let’s first begin with a discussion of how sequential decision making differs
from static prediction. In our study of decision theory, we laid out a
framework for making optimal predictions of a binary covariate Y when we
had access to data X, and probabilistic models of how X and Y were related.
Supervised learning was the resulting problem of making such decisions
from data rather than probabilistic models.

In sequential decision making, we add two new variables. First, we
incorporate actions denoted U that we aim to take throughout a procedure.
We also introduce rewards R that we aim to maximize. In sequential decision
making, the goal is to analyze the data X and then subsequently choose U
so that R is large. We have explicit agency in choosing U and are evaluated
based on some quality scoring of U and X. There are an endless number of
problems where this formulation is applied from supply chain optimization
to robotic planning to online engagement maximization. Reinforcement
learning is the resulting problem of taking actions so as to maximize rewards
where our actions are only a function of previously observed data rather
than probabilistic models. Not surprisingly, the optimization problem
associated with sequential decision making is more challenging than the
one that arises in decision theory.

Dynamical systems

In addition to the action variable in sequential decision making, another
key feature of sequential decision making problems is the notion of time
and sequence. We assume data is collected in an evolving process, and our
current actions influence our future rewards.

We begin by bringing all of these elements together in the general
definition of a discrete time dynamical system. The definitions both simple
and broad. We will illustrate with several examples shortly.

A dynamical system model has a state Xt, exogenous input Ut modeling
our control action, and reward Rt. The state evolves in discrete time steps
according to the equation

Xt+1 = ft(Xt, Ut, Wt)

where Wt is a random variable and ft is a function. The reward is assumed
to be a function of these variables as well:

Rt = gt(Xt, Ut, Wt)

219

for some function gt. To simplify our notation throughout, we will com-
monly write R explicitly as a function of (X, U, W), that is, Rt[Xt, Ut, Wt].

Formally, we can think of this definition as a structural equation model
that we also used to define causal models. After all, the equations above
give us a way to incrementally build up a data-generating process from
noise variables. Whether or not the dynamical system is intended to capture
any causal relationships in the real world is a matter of choice. Practitioners
might pursue this formalism for reward maximization without modeling
causal relationships. A good example is the use of sequential decision
making tools for revenue maximization in targeted advertising. Rather than
modeling causal relationships between, say, preferences and clicks, targeted
advertising heavily relies on all sorts of signals, be they causal or not.

Concrete examples

Grocery shopping. Bob really likes to eat cheerios for breakfast every
morning. Let the state Xt denotes the amount of Cheerios in Bob’s kitchen
on day t. The action Ut denotes the amount of Cheerios Bob buys on day t
and Wt denotes the amount of Cheerios he eats that day. The random
variable Wt varies with Bob’s hunger. This yields the dynamical system

Xt+1 = Xt + Ut −Wt .

While this example is a bit cartoonish, it turns out that such simple models
are commonly used in managing large production supply chains. Any
system where resources are stochastically depleted and must be replenished
can be modeled comparably. If Bob had a rough model for how much he
eats in a given day, he could forecast when his supply would be depleted.
And he could then minimize the number of trips he’d need to make to the
grocer using optimal control.

Moving objects. Consider a physical model of a flying object. The
simplest model of the dynamics of this system are given by Newton’s
laws of mechanics. Let Zt denote the position of the vehicle (this is a
three-dimensional vector). The derivative of position is velocity

Vt =
∂Zt

∂t
,

and the derivative of velocity is acceleration

At =
∂Vt

∂t
.

220

Now, we can approximate the rules in discrete time with the simple Taylor
approximations

Zt+1 = Zt + ∆Vt

Vt+1 = Vt + ∆At

We also know by Newton’s second law, that acceleration is equal to the
total applied force divided by the mass of the object: F = mA. The flying
object will be subject to external forces such as gravity and wind Wt and it
will also receive forces from its propellers Ut. Then we can add this to the
equations to yield a model

Zt+1 = Zt + ∆Vt

Vt+1 = Vt +
∆
m
(Wt + Ut) .

Oftentimes, we only observe the acceleration through an accelerometer.
Then estimating the position and velocity becomes a filtering problem.
Optimal control problems for this model include flying the object along a
given trajectory or flying to a desired location in a minimal amount of time.

Markov decision processes

Our definition in terms of structural equations is not the only dynamical
model used in machine learning. Some people prefer to work directly with
probabilistic transition models and conditional probabilities. In a Markov
Decision Process, we again have a state Xt and input Ut, and they are linked
by a probabilistic model

P[Xt+1 | Xt, Ut] .
This is effectively the same as the structural equation model above except
we hide the randomness in this probabilistic notation.

Example: machine repair. The following example illustrates the ele-
gance of the conditional probability models for dynamical systems. This ex-
ample comes from Bertsekas.215 Suppose we have a machine with ten states
of repair. State 10 denotes excellent condition and 1 denotes the inability to
function. Every time one uses the machine in state j, it has a probability of
falling into disrepair, given by the probabilities P[Xt+1 = i | Xt = j] , where
P[Xt+1 = i | Xt = j] = 0 if i > j. The action a one can take at any time is to
repair the machine, resetting the system state to 10. Hence

P[Xt+1 = i | Xt = j, Ut = 0] = P[Xt+1 = i | Xt = j]

and
P[Xt+1 = i | Xt = j, Ut = 1] = 1 {i = 10} .

While we could write this dynamical system as a structural equation model,
it is more conveniently expressed by these probability tables.

221

Optimal sequential decision making

Just as risk minimization was the main optimization problem we studied in
static decision theory, there is an abstract class of optimization problems
that underlie most sequential decision making (SDM) problems. The main
problem is to find a sequence of decision policies that maximize a cumulative
reward subject to the uncertain, stochastic system dynamics. At each time,
we assign a reward Rt(Xt, Ut, Wt) to the current state-action pair. The goal
is to find a sequence of actions to make the summed reward as large as
possible:

maximize{ut} EWt

[
∑T

t=0 Rt(Xt, ut, Wt)
]

subject to Xt+1 = ft(Xt, ut, Wt)
(x0 given)

Here, the expected value is over the sequence of stochastic disturbance
variables Wt. Note here, Wt is a random variable and Xt are is hence also
a random variable. The sequence of actions {ut} is our decision variable.
It could be chosen via a random or deterministic procedure as a matter of
design. But it is important to understand what information is allowed to be
used in order to select ut.

Since the dynamics are stochastic, the optimal SDM problem typically
allows a policy to observe the state before deciding upon the next action.
This allows a decision strategy to continually mitigate uncertainty through
feedback. This is why we optimize over policies rather than over a deter-
ministic sequence of actions. That is, our goal is to find functions of the
current state πt such that Ut = πt(Xt, Xt−1, . . .) is optimal in expected value.
By a control policy (or simply “a policy”) we mean a function that takes a
trajectory from a dynamical system and outputs a new control action. In
order for πt to be implementable, it must only have access only to previous
states and actions.

The policies πt are the decision variables of the problem:

maximizeπt EWt

[
∑T

t=0 Rt(Xt, Ut, Wt)
]

subject to Xt+1 = f (Xt, Ut, Wt)
Ut = πt(Xt, Xt−1, . . .)
(x0 given)

Now, Ut is explicitly a random variable as it is a function of the state Xt.
This SDM problem will be the core of what we study in this chapter.

And our study will follow a similar path to the one we took with decision
theory. We will first study how to solve these SDM problems when we
know the model. There is a general purpose solution for these problems
known as dynamic programming.

222

Dynamic programming

The dynamic programming solution to the SDM problem is based on the
principle of optimality: if you’ve found an optimal control policy for a time
horizon of length T, π1, . . . , πT, and you want to know the optimal strategy
starting at state x at time t, then you just have to take the optimal policy
starting at time t, πt, . . . , πT. The best analogy for this is based on driving
directions: if you have mapped out an optimal route from Seattle to Los
Angeles, and this path goes through San Francisco, then you must also
have the optimal route from San Francisco to Los Angeles as the tail end of
your trip. Dynamic programming is built on this principle, allowing us to
recursively find an optimal policy by starting at the final time and going
backwards in time to solve for the earlier stages.

To proceed, define the Q-function to be the mapping:

Qa→b(x, u) = max
{ut}

E
Wt

[
b

∑
t=a

Rt(Xt, ut, Wt)

]
s.t. Xt+1 = ft(Xt, ut, Wt), (Xa, ua) = (x, u)

The Q-function determines the best achievable value of the SDM problem
over times a to b when the action at time a is set to be u and the initial
condition is x. It then follows that the optimal value of the SDM problem is
maxuQ0→T(x0, u), and the optimal policy is π(x0) = arg maxuQ0→T(x0, u).
If we had access to the Q-function for the horizon 0, T, then we’d have
everything we’d need to know to take the first step in the SDM problem.
Moreover, the optimal policy is only a function of the current state of the
system. Once we see the current state, we have all the information we need
to predict future states, and hence we can discard the previous observations.

We can use dynamic programming to compute this Q-function and the
Q-function associated with every subsequent action. That is, clearly we
have that the terminal Q-function is

QT→T(x, u) = E
WT

[RT(x, u, WT)] ,

and then compute recursively

Qt→T(x, u) = E
Wt

[
Rt(x, u, Wt) + max

u′
Qt+1→T(ft(x, u, Wt), u′)

]
.

This expression is known as Bellman’s equation. We also have that for
all times t, the optimal policy is ut = arg maxuQt→T(xt, u) and the policy
depends only on the current state.

223

To derive this form of the Q-function, we assume inductively that this
form is true for all times beyond t + 1 and then have the chain of identities

Qt→T(x, u) = max
πt+1,...,πT

E
w

[
Rt(x, u, Wt) +

T

∑
s=t+1

Rs(Xs, πs(Xs), Ws)

]

= E
Wt

[
Rt(x, u, Wt) + max

πt+1,...,πT
E

Wt+1,...,WT

{
T

∑
s=t+1

Rs(Xs, πs(Xs), Ws)

}]

= E
Wt

[
Rt(x, u, Wt) + max

πt+1
Q { f (x, u, Wt), πt+1(f (x, u, Wt))}

]
= E

Wt

[
Rt(x, u, Wt) + max

u′
Q(f (x, u, Wt), u′)

]
.

Here, the most important point is that the maximum can be exchanged
with the expectation with respect to the first Wt. This is because the policies
are allowed to make decisions based on the history of observed states, and
these states are deterministic functions of the noise process.

Infinite time horizons and stationary policies

The Q-functions we derived for these finite time horizons are time varying.
One applies a different policy for each step in time. However, on long
horizons with time invariant dynamics and costs, we can get a simpler
formula. First, for example, consider the limit:

maximize limN→∞ EWt [
1
N ∑N

t=0 R(Xt, Ut, Wt)]
subject to Xt+1 = f (Xt, Ut, Wt), Ut = πt(Xt)

(x0 given).

Such infinite time horizon problems are referred to as average cost dynamic
programs. Note that there are no subscripts on the rewards or transition
functions in this model.

Average cost dynamic programming is deceptively difficult. These
formulations are not directly amenable to standard dynamic programming
techniques except in cases with special structure. A considerably simpler
infinite time formulation is known as discounted dynamic programming, and
this is the most popular studied formulation. Discounting is a mathematical
convenience that dramatically simplifies algorithms and analysis. Consider
the SDM problem

maximize (1− γ)EWt [∑
∞
t=0 γtR(Xt, Ut, Wt)]

subject to Xt+1 = f (Xt, Ut, Wt), Ut = πt(Xt)
(x0 given).

224

where γ is a scalar in (0, 1) called the discount factor. For γ close to 1, the
discounted reward is approximately equal to the average reward. However,
unlike the average cost model, the discounted cost has particularly clean
optimality conditions. If we define Qγ(x, u) to be the Q-function obtained
from solving the discounted problem with initial condition x, then we
have a discounted version of dynamic programming, now with the same
Q-functions on the left and right hand sides:

Qγ(x, u) = E
W

[
R(x, u, W) + γ max

u′
Qγ(f (x, u, W), u′)

]
.

The optimal policy is now for all times to let

ut = arg max
u
Qγ(xt, u) .

The policy is time invariant and one can execute it without any knowledge
of the reward or dynamics functions. At every stage, one simply has to
maximize a function to find the optimal action. Foreshadowing to the next
chapter, the formula additionally suggest that the amount that needs to
be “learned” in order to “control” is not very large for these infinite time
horizon problems.

Computation

Though dynamic programming is a beautiful universal solution to the very
general SDM problem, the generality also suggests computational barriers.
Dynamic programming is only efficiently solvable for special cases, and we
now describe a few important examples.

Tabular MDPs

Tabular MDPs refer to Markov Decision Processes with small number
of states and actions. Say that there are S states and A actions. Then
the the transition rules are given by tables of conditional probabili-
ties P[Xt+1|Xt, Ut], and the size of such tables are S2A. The Q-functions for
the tabular case are also tables, each of size SA, enumerating the cost-to-go
for all possible state action pairs. In this case, the maximization

max
u′
Qa→b(x, u′)

corresponds to looking through all of the actions and choosing the largest
entry in the table. Hence, in the case that the rewards are deterministic

225

functions of x and u, Bellman’s equation simplifies to

Qt→T(x, u) = Rt(x, u)+∑
x′

P[Xt+1 = x′|Xt = x, Ut = u]max
u′
Qt+1→T(x′, u′) .

This function can be computed by elementary matrix-vector operations:
the Q-functions are S× A arrays of numbers. The “max” operation can be
performed by operating over each row in such an array. The summation
with respect to x′ can be implemented by multiplying a SA× S array by
an S-dimensional vector. We complete the calculation by summing the
resulting expression with the S× A array of rewards. Hence, the total time
to compute Qt→T is O(S2A).

Linear quadratic regulator

The other important problem where dynamic programming is efficiently
solvable is the case when the dynamics are linear and the rewards are
quadratic. In control design, this class of problems is generally referred to as
the problem of the Linear Quadratic Regulator (LQR):

minimize EWt

[
1
2 ∑T

t=0 XT
t ΦtXt + UT

t ΨtUt

]
,

subject to Xt+1 = AtXt + BtUt + Wt, Ut = πt(Xt)
(x0 given).

Here, Φt and Ψt are most commonly positive semidefinite matrices. wt is
noise with zero mean and bounded variance, and we assume Wt and Wt′

are independent when t 6= t′. The state transitions are governed by a linear
update rule with At and Bt appropriately sized matrices. We also abide
by the common convention in control textbooks to pose the problem as a
minimization—not maximization—problem.

As we have seen above, many systems can be modeled by linear dy-
namics in the real world. However, we haven’t yet discussed cost functions.
It’s important to emphasize here that cost functions are designed not given.
Recall back to supervised learning: though we wanted to minimize the
number of errors made on out-of-sample data, on in-sample data we min-
imized convex surrogate problems. The situation is exactly the same in
this more complex world of dynamical decision making. Cost functions are
designed by the engineer so that the SDM problems are tractable but also
so that the desired outcomes are achieved. Cost function design is part of
the toolkit for online decision making, and quadratic costs can often yield
surprisingly good performance for complex problems.

Quadratic costs are also attractive for computational reasons. They are
convex as long as Φt and Ψt are positive definite. Quadratic functions are

226

closed under minimization, maximization, addition. And for zero mean
noise Wt with covariance Σ, we know that the noise interacts nicely with
the cost function. That is, we have

EW [(x + W)T M(x + W)] = xT Mx + Tr(QΣ)

for any vector x and matrix M. Hence, when we run dynamic programming,
every Q-function is necessarily quadratic. Moreover, since the Q-functions
are quadratic, the optimal action is a linear function of the state

Ut = −KtXt

for some matrix Kt.
Now consider the case where there are static costs Φt = Φ and Ψt = Ψ,

and time invariant dynamics such that At = A and Bt = B for all t. One
can check that the Q-function on a finite time horizon satisfies a recursion

Qt→T(x, u) = xTΦx + uTΨu + (Ax + Bu)T Mt+1(Ax + Bu) + ct .

for some positive definite matrix Mt+1. In the limit as the time horizon
tends to infinity, the optimal control policy is static, linear state feedback:

ut = −Kxt .

Here the matrix K is defined by

K = (Ψ + BT MB)−1BT MA

and M is a solution to the Discrete Algebraic Riccati Equation

M = Φ + AT MA− (AT MB)(Ψ + BT MB)−1(BT MA) .

Here, M is the unique solution of the Riccati equation where all of the
eigenvalues of A− BK have magnitude less than 1. Finding this specific
solution is relatively easy using standard linear algebraic techniques. It is
also the limit of the Q-functions computed above.

Policy and value iteration

Two of the most well studied methods for solving such discounted infinite
time horizon problems are value iteration and policy iteration. Value iteration
proceeds by the steps

Qk+1(x, u) = E
W

[
R(x, u, W) + γ max

u′
Qk(f (x, u, W), u′)

]
.

227

That is, it simply tries to solve the Bellman equation by running a fixed
point operation. This method succeeds when the iteration is a contraction
mapping, and this occurs in many contexts.

On the other hand, Policy Iteration is a two step procedure: policy
evaluation followed by policy improvement. Given a policy πk, the policy
evaluation step is given by

Qk+1(x, u) = E [R(x, u, W) + γQk(f (x, πk(x), W), πk(x))] .

And then the policy is updated by the rule

πk+1(x) = arg max
u
Qk+1(x, u) .

Often times, several steps of policy evaluation are performed before updat-
ing the policy.

For both policy and value iteration, we need to be able to compute
expectations efficiently and must be able to update all values of x and u in
the associated Q functions. This is certainly doable for tabular MDPs. For
general low dimensional problems, policy iteration and value iteration can
be approximated by gridding state space, and then treating the problem as
a tabular one. Then, the resulting Q function can be extended to other (x, u)
pairs by interpolation. There are also special cases where the maxima and
minima yield closed form solutions and hence these iterations reduce to
simpler forms. LQR is a canonical example of such a situation.

Model predictive control

If the Q-functions in value or policy iteration converge quickly, long-term
planning might not be necessary, and we can effectively solve infinite
horizon problem with short-term planning. This is the key idea behind
one of the most powerful techniques for efficiently and effectively finding
quality policies for SDM problems called model predictive control.

Suppose that we aim to solve the infinite horizon average reward prob-
lem:

maximize limT→∞ EWt [
1
T ∑T

t=0 Rt(Wt, Ut)]
subject to Xt+1 = ft(Xt, Ut, Wt)

Ut = πt(Xt)
(x0 given).

Model Predictive Control computes an open loop policy on a finite horizon H

maximizeut EWt [∑
H
t=0 Rt(Xt, ut)]

subject to Xt+1 = ft(Xt, ut, Wt)
(X0 = x).

228

This gives a sequence u0(x), . . . , uH(x). The policy is then set to be π(x) =
u0(x). After this policy is executed, we observe a new state, x′, based on
the dynamics. We then recompute the optimization, now using x0 = x′ and
setting the action to be π(x′) = u0(x′).

MPC is a rather intuitive decision strategy. The main idea is to plan
out a sequence of actions for a given horizon, taking into account as much
uncertainty as possible. But rather than executing the entire sequence, we
play the first action and then gain information from the environment about
the noise. This direct feedback influences the next planning stage. For
this reason, model predictive control is often a successful control policy
even when implemented with inaccurate or approximate models. Model
Predictive Control also allows us to easily add a variety of constraints to
our plan at little cost, such as bounds on the magnitude of the actions. We
just append these to the optimization formulation and then lean on the
computational solver to make us a plan with these constraints.

To concretely see how Model Predictive Control can be effective, it’s
helpful to work through an example. Let’s suppose the dynamics and
rewards are time invariant. Let’s suppose further that the reward function is
bounded above, and there is some state-action pair (x?, u?) which achieves
this maximal reward Rmax.

Suppose we solve the finite time horizon problem where we enforce that
(x, u) must be at (x?, u?) at the end of the time horizon:

maximize EWt [∑
H
t=0 R(Xt, ut)]

subject to Xt+1 = f (Xt, ut, Wt)
(XH, UH) = (x?, u?)
(X0 = x).

We replan at every time step by solving this optimization problem and
taking the first action.

The following proposition summarizes how this policy performs

Proposition 11. Assume that all rewards are bounded above by Rmax. Then with
the above MPC policy, we have for all T that

E

[
1
T

T

∑
t=0

R(xt, ut)

]
≥ Q0→H(x0, u0)− HRmax

T
+ EW [R(f (x?, u?, W), 0)] .

The proposition asserts that there is a “burn in” cost associated with
the initial horizon length. This term goes to zero with T, but will have
different values for different H. The policy converges to a residual average
cost due to the stochasticity of the problem and the fact that we try to force
the system to the state (x?, u?).

229

Proof. To analyze how the policy performs, we turn to Bellman’s equation.
For any time t, the MPC policy is

ut = arg max
u
Q0→H(xt, u)

Now,
Q0→H(xt, u) = R(xt, u) + E[max

u′
Q1→H(Xt+1, u′)] .

Now consider what to do at the time t + 1. A suboptimal strategy at this
time is to try to play the optimal strategy on the horizon 1→ H, and then
do nothing on the last step. That is,

max
u
Q0→H(xt+1, u) ≥ max

u′
Q1→H(xt+1, u′) + E[R(f (x?, u?, Wt+H), 0)] .

The last expression follows because the action sequence from 1 → H
enforces (xt+H, ut+H) = (x?, u?). The first term on the right hand side was
computed in expectation above, hence we have

E[max
u
Q0→H(Xt+1, u)] ≥ E[Q0→H(xt, ut)]−E[R(xt, ut, W)]+E[R(f (x?, u?, W), 0)] .

Unwinding this recursion, we find

E[max
u
Q0→H(XT+1, u)] ≥ Q0→H(x0, u0)−E

[
T

∑
t=0

R(xt, ut, Wt)

]
+ TE[R(f (x?, u?, W), 0)] .

Since the rewards are bounded above, we can upper bound the left hand
side by RmaxH. Rearranging terms then proves the theorem.

The main caveat with this argument is that there may not exist a policy
that drives x to x? from an arbitrary initial condition and any realization of
the disturbance signal. Much of the analysis of MPC schemes is devoted to
guaranteeing that the problems are recursively feasible, meaning that such
constraints can be met for all time.

This example also shows how it is often helpful to have some sort of
recourse at the end of the planning horizon to mitigate the possibility of
being too greedy and driving the system into a bad state. The terminal
condition of forcing xH = 0 adds an element of safety to the planning, and
ensures stable execution for all time. More general, adding some terminal
condition to the planning horizon C(xH) is part of good Model Predictive
Control design and is often a powerful way to balance performance and
robustness.

230

Partial observation and the separation heuristic

Let’s now move to the situation where instead of observing the state directly,
we observe an output Yt:

Yt = ht(Xt, Ut, Wt) .

All of the policies we derived from optimization formulations above re-
quired feeding back a function of the state. When we can only act on
outputs, SDM problems are considerably more difficult.

1. Static Output Feedback is NP-hard. Consider the case of just building a
static policy from the output Yt. Let’s suppose our model is just the
simple linear model:

Xt+1 = AXt + BUt

Yt = CXt

Here, A, B and C are matrices. Suppose we want to find a feedback
policy Ut = KYt (where K is a matrix) and all we want to guarantee
is that for any initial x0, the system state converges to zero. This
problem is called static state feedback and is surprisingly NP-Hard. It
turns out that the problem is equivalent to finding a matrix K such
that A + BKC has all of its eigenvalues inside the unit circle in the
complex plane.216 Though in the MDP case, static state feedback was
not only optimal, but computable for tabular MDPs and certain other
SDM problems, static output feedback is computationally intractable.

2. POMDPs are PSPACE hard. Papadimitriou and Tsitsiklis showed
that optimization of general POMDPs, even on small state spaces, was
in all likelihood completely intractable.217 They reduced the problem
of quantifier elimination in logical satisfiability problems (QSAT) to
POMDPs. QSAT seeks to determine the validity of statements like
“there exists x such that for all y there exists z such that for all w this
logical formula is true.” Optimal action in POMDPs essentially have to
keep track of all of the possible true states that might have been visited
given the partial observation and make actions accordingly. Hence,
the policies have a similar flavor to quantifier elimination as they seek
actions that are beneficial to all possible occurrences of the unobserved
variables. Since these policies act over long time horizons, the number
of counterfactuals that must be maintained grows exponentially large.

Despite these challenges, engineers solve POMDP problems all of the
time. Just because the problems are hard in general, doesn’t mean they are
intractable on average. It only means that we cannot expect to have general

231

purpose optimal algorithms for these problems. Fortunately, suboptimal
solutions are oftentimes quite good for practice, and there are many useful
heuristics for decision making with partial information. The most com-
mon approach to the output feedback problem is the following two-stage
strategy:

1. Filtering. Using all of your past data {ys} for s = 0, . . . , t, build an
estimate, x̂t, of your state.

2. Action based on certainty equivalence. Solve the desired SDM prob-
lem as if you had perfect observation of the state Xt, using x̂t wherever
you would have used an observation Xt = xt. At run time, plug in the
estimator x̂t as if it were a perfect measurement of the state.

This strategy uses a separation principle between prediction and action.
For certain problems, this two-staged approach is actually optimal. Notably,
if the SDM problem has quadratic rewards/costs, if the dynamics are
linear, and if the noise process is Gaussian, then the separation between
prediction and action is optimal. More commonly, the separation heuristic
is suboptimal, but this abstraction also enables a simple heuristic that is
easy to debug and simple to design.

While we have already covered algorithms for optimal control, we have
not yet discussed state estimation. Estimating the state of a dynamical
system receives the special name filtering. However, at the end of the day,
filtering is a prediction problem. Define the observed data up to time t as

τt := (yt, . . . , y1, ut−1, . . . , u1) .

The goal of filtering is to estimate a a function h(τt) that predicts Xt. We
now describe two approaches to filtering.

Optimal filtering

Given a model of the state transition function and the observation function,
we can attempt to compute the maximum a posteriori estimate of the state
from the data. That is, we could compute p(xt|τt) and then estimate the
mode of this density. Here, we show that such an estimator has a relatively
simple recursive formula, though it is not always computationally tractable
to compute this formula.

To proceed, we first need a calculation that takes advantage of the
conditional independence structure of our dynamical system model. Note

232

that

p(yt, xt,xt−1, ut−1|τt−1) =

p(yt|xt, xt−1, ut−1, τt−1)p(xt|xt−1, ut−1, τt−1)

× p(xt−1|τt−1)p(ut−1|τt−1)

= p(yt|xt)p(xt|xt−1, ut−1)p(xt−1|τt−1)p(ut−1|τt−1) .

This decomposition is into terms we now recognize. p(xt|xt−1, ut−1)
and p(yt|xt) define the POMDP model and are known. p(ut|τt) is our policy
and it’s what we’re trying to design. The only unknown here is p(xt−1|τt−1),
but this expression gives us a recursive formula to p(xt|τt) for all t.

To derive this formula, we apply Bayes rule and then use the above
calculation:

p(xt|τt) =

∫
xt−1

p(xt, yt, xt−1, ut−1|τt−1)∫
xt,xt−1

p(xt, yt, xt−1, ut−1|τt−1)

=

∫
xt−1

p(yt|xt)p(xt|xt−1, ut−1)p(xt−1|τt−1)p(ut−1|τt−1)∫
xt,xt−1

p(yt|xt)p(xt|xt−1, ut−1)p(xt−1|τt−1)p(ut−1|τt−1)

=

∫
xt−1

p(yt|xt)p(xt|xt−1, ut−1)p(xt−1|τt−1)∫
xt,xt−1

p(yt|xt)p(xt|xt−1, ut−1)p(xt−1|τt−1)
. (4)

Given a prior for x0, this now gives us a formula to compute a MAP
estimate of xt for all t, incorporating data in a streaming fashion. For tabular
POMDP models with small state spaces, this formula can be computed
simply by summing up the conditional probabilities. In POMDPs without
inputs—also known as hidden Markov models—this formula gives the forward
pass of Viterbi’s decoding algorithm. For models where the dynamics are
linear and the noise is Gaussian, these formulas reduce into an elegant
closed form solution known as Kalman filtering. In general, this optimal
filtering algorithm is called belief propagation and is the basis of a variety of
algorithmic techniques in the field of graphical models.

Kalman filtering

For the case of linear dynamical systems, the above calculation has a simple
closed form solution that looks similar to the solution of LQR. This estimator
is called a Kalman filter, and is one of the most important tools in signal
processing and estimation. The Kalman filter assumes a linear dynamical
system driven by Gaussian noise with observations corrupted by Gaussian
noise

Xt+1 = AXt + BUt + Wt

Yt = CXt + Vt .

233

Here, assume Wt and Vt are independent for all time and Gaussian with
means zero and covariances ΣW and ΣV respectively. Because of the joint
Gaussianity, we can compute a closed form formula for the density of Xt
conditioned on the past observations and actions, p(xt|τt). Indeed, Xt is a
Gaussian itself.

On an infinite time horizon, the Kalman filter takes a simple and eluci-
dating form:

x̂t+1 = Ax̂t + But − L(yt − ŷt)

ŷt = Cx̂t

where
L = APCT(CPCT + ΣV)

−1

and P is the positive semidefinite solution to the discrete algebraic Riccati
equation

P = APAT + ΣW − (APCT)(CPCT + ΣV)
−1(CΣAT) .

The derivation of this form follows from the calculation in Equation 4.
But the explanation of the formulas tend to be more insightful than the
derivation. Imagine the case where L = 0. Then our estimate x̂t simulates
the same dynamics as our model with no noise corruption. The matrix L
computes a correction for this simulation based on the observed yt. This
feedback correction is chosen in such a way such that P is the steady state
covariance of the error Xt − x̂t. P ends up being the minimum variance
possible with an estimator that is unbiased in the sense that E[x̂t − Xt] = 0.

Another interesting property of this calculation is that the L matrix is
the LQR gain associated with the LQR problem

minimize limT→∞ EWt

[
1
2 ∑T

t=0 XT
t ΣW Xt + UT

t ΣVUt

]
,

subject to Xt+1 = ATXt + BTUt + Wt, Ut = πt(Xt)
(x0 given).

Control theorists often refer to this pairing as the duality between estimation
and control.

Feedforward prediction

While the optimal filter can be computed in simple cases, we often do not
have simple computational means to compute the optimal state estimate.
That said, the problem of state estimation is necessarily one of prediction,
and the first half of this course gave us a general strategy for building such

234

estimators from data. Given many simulations or experimental measure-
ments of our system, we can try to estimate a function h such that Xt ≈ h(τt).
To make this concrete, we can look at time lags of the history

τt−s→t := (yt, . . . , yt−s, ut−1, . . . , ut−s) .

Such time lags are necessarily all of the same length. Then estimating

minimizeh ∑t loss(h(τt−s→t), xt)

is a supervised learning problem, and standard tools can be applied to
design architectures for and estimate h.

Chapter notes

This chapter and the following chapter overlap significantly with a survey of
reinforcement learning by Recht,218 which contains additional connections
to continuous control. Those interested in learning more about continuous
control from an optimization viewpoint should consult the book by Borrelli
et al.219 This book also provides an excellent introduction to model predic-
tive control. Another excellent introduction to continuous optimal control
and filtering is Boyd’s lecture notes.220

An invaluable introduction to the subject of dynamic programming
is by Bertsekas, who has done pioneering research in this space and has
written some of the most widely read texts.215 For readers interested in
a mathematical introduction to dynamic programming on discrete pro-
cesses, we recommend Puterman’s text.221 Puterman also explains the
linear programming formulation of dynamic programming.

235

12
Reinforcement learning

Dynamic programming and its approximations studied thus far all require
knowledge of the probabilistic mechanisms underlying how data and re-
wards change over time. When these mechanisms are unknown, appropriate
techniques to probe and learn about the underlying dynamics must be em-
ployed in order to find optimal actions. We shall refer to the solutions to
sequential decision making problems when the dynamics are unknown
as reinforcement learning. Depending on context, the term may refer to a
body of work in artificial intelligence, the community of researchers and
practitioners who apply a certain set of tools to sequential decision making,
and data-driven dynamic programming. That said, it is a useful name
to collect a set of problems of broad interest to machine learning, control
theory, and robotics communities.

A particularly simple and effective strategy for reinforcement learning
problems is to estimate a predictive model for the dynamical system and
then to use the fit model as if it were the true model in the optimal control
problem. This is an application of the principle of certainty equivalence, an idea
tracing back to the dynamic programming literature of the 1950s.222, 223 Cer-
tainty equivalence is a general solution strategy for the following problem.
Suppose you want to solve some optimization problem with a parameter ϑ
that is unknown. However, suppose we can gather data to estimate ϑ. Then
the certainty equivalent solution is to use a point estimate for ϑ as if it were
the true value. That is, you act as if you were certain of the value of ϑ,
even though you have only estimated ϑ from data. We will see throughout
this chapter that such certainty equivalent solutions are powerfully simple
and effective baseline for sequential decision making in the absence of well
specified models.

Certainty equivalence is a very general principle. We can apply it to
the output of a filtering scheme that predicts state, as we described in our
discussion of partially observed Markov Decision Processes. We can also
apply this principle in the study of MDPs with unknown parameters. For

236

every problem in this chapter, our core baseline will always be the certainty
equivalent solution. Surprisingly, we will see that certainty equivalent
baselines are typically quite competitive and give a clear illustration of the
best quality one can expect in many reinforcement learning problems.

Exploration-exploitation tradeoffs: Regret and PAC learn-
ing

In order to compare different approaches to reinforcement learning, we
need to decide on some appropriate rules of comparison. Though there
are a variety of important metrics for engineering practice that must be
considered including ease of implementation and robustness, a first-order
statistical comparison might ask how many samples are needed to achieve
a policy with high reward.

For this question, there are two predominant conventions to compare
methods: PAC-error and regret. PAC is a shorthand for probably approximately
correct. It is a useful notion when we spend all of our time learning about a
system, and then want to know how suboptimal our solution will be when
built from the data gathered thus far. Regret is more geared towards online
execution where we evaluate the reward accrued at all time steps, even if we
are spending that time probing the system to learn about its dynamics. Our
focus in this chapter will be showing that these two concepts are closely
related.

Let us formalize the two notions. As in the previous chapter, we will be
concerned with sequential decision making problems of the form

maximizeπt EWt

[
∑T

t=0 Rt(Xt, Ut, Wt)
]

subject to Xt+1 = f (Xt, Ut, Wt)
Ut = πt(Xt, Xt−1, . . .)
(x0 given.)

Let π? denote the optimal policy of this problem.
For PAC, let’s suppose we allocate N samples to probe the system and

use them in some way to build a policy πN . We can define the optimization
error of this policy to be

E(πN) = E

[
T

∑
t=1

Rt[X′t, π?(X′t), Wt]

]
−E

[
T

∑
t=1

Rt[Xt, πN(Xt), Wt]

]
.

Our model has (δ, ε)-PAC error if E(πN) ≤ ε with probability at least 1− δ.
The probability here is measured with respect to the sampling process and
dynamics of the system.

237

Regret is defined similarly, but is subtly different. Suppose we are now
only allowed T total actions and we want to understand the cumulative
award achieved after applying these T actions. In this case, we have to
balance the number of inputs we use to find a good policy (exploration)
against the number of inputs used to achieve the best reward (exploitation).

Formally, suppose we use a policy πt at each time step to choose our
action. Suppose π? is some other fixed policy. Let Xt denote the states
induced by the policy sequence πt and X′t denote the states induced by π?.
Then the regret of {πt} is defined to be

RT({πt}) = E

[
T

∑
t=1

Rt[X′t, π?(X′t), Wt]

]
−E

[
T

∑
t=1

Rt[Xt, πt(Xt), Wt]

]
.

It is simply the expected difference in the rewards generated under policy π?

as compared to those generated under policy sequence πt. One major way
that regret differs from PAC-error is the policy can change with each time
step.

One note of caution for both of these metrics is that they are comparing
to a policy π?. It’s possible that the comparison policy π? is not very good.
So we can have small regret and still not have a particularly useful solution
to the SDM problem. As a designer it’s imperative to understand π? to
formalize the best possible outcome with perfect information. That said,
regret and PAC-error are valuable ways to quantify how much exploration is
necessary to find nearly optimal policies. Moreover, both notions have pro-
vided successful frameworks for algorithm development: many algorithms
with low regret or PAC-error are indeed powerful in practice.

Multi-armed bandits

The multi-armed bandit is one of the simplest reinforcement learning prob-
lems, and studying this particular problem provides many insights into
exploration-exploitation tradeoffs.

In the multi-armed bandit, we assume no state whatsoever. There are K to-
tal actions, and the reward is a random function of which action you choose.
We can model this by saying there are i.i.d. random variables Wt1, . . . , Wtk,
and your reward is the dot product

Rt = [Wt1, . . . , WtK]eut

where ei is a standard basis vector. Here Wti take values in the range [0, 1].
We assume that all of the Wti are independent, and that Wti and Wsi are
identically distributed. Let µi = E[Wti]. Then the expected reward at time t
is precisely µut .

238

The multi-armed bandit problem is inspired by gambling on slot ma-
chines. Indeed, a “bandit” is a colloquial name for a slot machine. Assume
that you have K slot machines. Each machine has some probability of
paying out when you play it. You want to find the machine that has the
largest probability of paying out, and then play that machine for the rest of
time. The reader should take an opportunity to ponder the irony that much
of our understanding of statistical decision making comes from gambling.

First let’s understand what the optimal policy is if we know the model.
The total reward is equal to

E
Wt

[
T

∑
t=0

Rt(ut, Wt)

]
=

T

∑
t=1

µut .

The optimal policy is hence to choose a constant action ut = k where k =
arg maxi µi.

When we don’t know the model, it makes sense that our goal is to
quickly find the action corresponding to the largest mean. Let’s first do a
simple PAC analysis, and then turn to the slightly more complicated regret
analysis. Our simple baseline is one of certainty equivalence. We will try
each action N/K times, and compute the empirical return. The empirical
means are:

µ̂k =
K
N

N/K

∑
i=1

R(k)
i

Our policy will be to take the action with the highest observed empirical
return.

To estimate the value of this policy, let’s assume that the best action
is u = 1. Then define

∆i = µ1 − µi .

Then we have

E(πN) =
K

∑
i=1

T∆i P[∀i : µ̂k ≥ µ̂i] .

We can bound the probability that action k is selected as follows. First,
if action k has the largest empirical mean, it must have a larger empirical
mean than the true best option, action 1:

P[∀i : µ̂k ≥ µ̂i] ≤ P[µ̂k ≥ µ̂1] .

We can bound this last term using Hoeffding’s inequality. Let m = N/K.
Since each reward corresponds to an independent draw of some random
process, we have µ̂k − µ̂1 is the mean of 2m independent random variables

239

in the range [−1, 1]:

1
2
(µ̂k − µ̂1) =

1
2m

(
m

∑
i=1

R(k)
i +

m

∑
i=1
−R(1)

i

)
.

Now writing Hoeffding’s inequality for this random variable gives the tail
bound

P[µ̂k ≥ µ̂1] = P[1
2(µ̂k − µ̂1) ≥ 0] ≤ exp

(
−m∆2

k
4

)
which results in an optimization error

E(πN) ≤
K

∑
i=1

T∆i exp

(
−N∆2

i
4K

)
.

with probability 1. This expression reveals that the multi-armed bandit
problem is fairly simple. If ∆i are all small, then any action will yield about
the same reward. But if all of the ∆i are large, then finding the optimal
action only takes a few samples. Naively, without knowing anything about
the gaps at all, we can use the fact that xe−x2/2 ≤ 1

2 for nonnegative x to
find

E(πN) ≤
K3/2T√

N
.

This shows that no matter what the gaps are, as long as N is larger than K3,
we would expect to have a high quality solution.

Let’s now turn to analyzing regret of a simple certainty equivalence
baseline. Given a time horizon T, we can spend the first m time steps
searching for the best return. Then we can choose this action for the
remaining T −m time steps. This strategy is called explore-then-commit.

The analysis of the explore-then-commit strategy for the multi-armed
bandit is a straightforward extension of the PAC analysis. If at round t, we
apply action k, the expected gap between our policy and the optimal policy
is ∆k. So if we let Tk denote the number of times action k is chosen by our
policy then we must have

RT =
K

∑
k=1

E[Tk]∆k .

Tk are necessarily random variables: what the policy learns about the
different means will depend on the observed sequence xk which are all
random variables.

Suppose that for exploration, we mimic our offline procedure, trying
each action m times and record the observed rewards for that action r(k)i

240

for i = 1, . . . , m. At the end of these mk actions, we compute the empirical
mean associated with each action as before. Then we must have that

E[Tk] = m + (T −mK)P[∀i : µ̂k ≥ µ̂i] .

The first term just states that each action is performed m times. The second
term states that action k is chosen for the commit phase only if its empirical
mean is larger than all of the other empirical means.

Using Hoeffding’s inequality again to bound these probabilities, we can
put everything together bound the expected regret as

RT ≤
K

∑
k=1

m∆k + (T −mK)∆k exp

(
−m∆2

k
4

)
.

Let’s specialize to the case of two actions to see what we can take away
from this decomposition:

1. Gap dependent regret. First, assume we know the gap between the
means, ∆2, but we don’t know which action leads to the higher mean.
Suppose that

m0 =

⌈
4

∆2
2

log

(
T∆2

2
4

)⌉
≥ 1 .

Then using m = m0, we have

RT ≤ m∆2 + T∆2 exp

(
−m∆2

2
4

)

≤ ∆2 +
4

∆2

(
log

(
T∆2

2
4

)
+ 1

)
.

If m0 < 1, then ∆2 < 2√
T

, then choosing a random arm yields total
expected regret at most

RT =
T
2

∆2 ≤
√

T .

If ∆2 is very small, then we might also just favor the bound

RT ≤ 1
2 ∆2T .

Each of these bounds applies in different regimes and tells us different
properties of this algorithm. The first bound shows that with appro-
priate choice of m, explore-then-commit incurs regret asymptotically

241

bounded by log(T). This is effectively the smallest asymptotic growth
achievable and is the gold standard for regret algorithms. However,
this logarithmic regret bound depends on the gap ∆2. For small ∆2,
the second bound shows the regret is never worse than

√
T for any

value of the gap.
√

T is one of the more common values for regret,
and though it is technically asymptotically worse than logarithmic,
algorithms with

√
T regret tend to be more stable and robust than

their logarithmic counterparts. Finally, we note that a very naive
algorithm will incur regret that grows linearly with the horizon T.
Though linear regret is not typically an ideal situation, there are many
applications where it’s acceptable. If ∆2 is tiny to the point where it is
hard to observe the difference between µ1 and µ2, then linear regret
might be completely satisfactory for an application.

2. Gap independent regret. We can get a gap independent,
√

T regret
for explore then commit for any value of ∆2. This just requires a bit of
calculus:

4
∆2

(
log
(

T∆2

4

)
+ 1
)
= 2
√

T
(

2
∆2
√

T

(
log
(

T∆2

4

)
+ 1
))

= 2
√

T sup
x≥0

2 log(x) + 1
x

≤ 4e−1/2
√

T ≤ 2.5
√

T .

Hence,
RT ≤ ∆2 + 2.5

√
T

no matter the size of ∆2 the gap is. Often times this unconditional
bound is smaller than the logarithmic bound we derived above.

3. Gap independent policy. The stopping rule we described thus far
requires knowing the value of ∆2. However, if we set m = T2/3 then
we can achieve sublinear regret no matter what the value of ∆2 is. To
see this again just requires some calculus:

RT ≤ T2/3∆2 + T∆2 exp

(
−T2/3∆2

2
4

)

= T2/3

(
∆2 + T1/3∆2 exp

(
−T2/3∆2

2
4

))

≤ T2/3

(
∆2 + 2 sup

x≥0
xe−x2

)
≤ 2T2/3 .

242

O(T2/3) regret is technically “worse” than an asymptotic regret
of O(T1/2), but often times such algorithms perform well in prac-
tice. This is because there is a difference between worst case and
average case behavior, and hence these worst-case bounds on regret
themselves do not tell the whole story. A practitioner has to weigh the
circumstances of their application to decide what sorts of worst-case
scenarios are acceptable.

Interleaving exploration and exploitation

Explore-then-commit is remarkably simple, and illustrates most of the
phenomena associated with regret minimization. There are essentially two
main shortcomings in the case of the multi-armed bandit:

1. For a variety of practical concerns, it would be preferable to interleave
exploration with exploitation.

2. If you don’t know the gap, you only get a T2/3 rate.

A way to fix this is called successive elimination. As in explore-then-
commit, we try all actions m times. Then, we drop the actions that are
clearly performing poorly. We then try the remaining actions 4m times,
and drop the poorly performing actions. We run repeated cycles of this
pruning procedure, yielding a collection of better actions on average, aiming
at convergence to the best return.

Successive Elimination Algorithm:

• Given number of rounds B and an increasing sequence of
positive integers {m`}.

• Initialize the active set of options A = {1, . . . , K}.
• For ` = 1, . . . , B:

1. Try every action in A for m` times.
2. Compute the empirical means µ̂k from this iteration only.
3. Remove from A any action j with µj + 2−` < maxk∈A µk.

The following theorem bounds the regret of successive elimination, and
was proven by Auer and Ortner.224

Theorem 11. With B = b1
2 log2

T
e c and m` = d22`+1 log T

4` e, the successive
elimination algorithm accrues expected regret

RT ≤ ∑
i : ∆i>λ

(
∆i +

32 log(T∆2
i) + 96

∆i

)
+ max

i : ∆i≤λ
∆iT

243

for any λ >
√

e/T.

Another popular strategy is known as optimism in the face of uncertainty.
This strategy is also often called “bet on the best.” At iteration t, take all of
the observations seen so far and form a set up upper confidence bounds Bi
such that

P[∀i : µi ≤ Bi(t)] ≤ 1− δ

This leads to the Upper Confidence Bound (UCB) algorithm.

UCB Algorithm

• For t = 1, . . . , T:

1. Choose action k = arg maxi Bi(t− 1).
2. Play action k and observe reward rt.
3. Update the confidence bounds.

For the simple case of the multi-armed bandit, we can use the bound
that would directly come from Hoeffding’s inequality:

Bi(t) = µ̂i(t) +

√
2 log(1/δ)

Ti(t)

where we remind the reader that Ti(t) denotes the number of times we have
tried action i up to round t. Though Ti(t) is a random variable, one can still
prove that this choice yields an algorithm with nearly optimal regret.

More generally, optimistic algorithms work by maintaining an uncer-
tainty set about the dynamics model underlying the SDM problem. The
idea is to maintain a set S where we have confidence our true model lies.
The algorithm then proceeds by choosing the model in S which gives the
highest expected reward. The idea here is that either we get the right model
in which case we get a large reward, or we learn quickly that we have a
suboptimal model and we remove it from our set S.

Contextual bandits

Contextual bandits provide a transition from multi-armed bandits to full-
fledged reinforcement learning, introducing state or context into the decision
problem. Our goal in contextual bandits is to iteratively update a policy to
maximize the total reward:

maximizeut E
Wt

[
T

∑
t=1

R(Xt, ut, Wt)

]
244

Here, we choose actions ut according to some policy that is a function of
the observations of the random variables Xt, which are called contexts or
states. We make no assumptions about how contexts evolve over time. We
assume that the reward function is unknown and, at every time step, the
received reward is given by

R(Xt, ut, Wt) = R(Xt, ut) + Wt

where Wt is a random variable with zero mean and independent from all
other variables in the problem.

Contextual bandits are a convenient way to abstractly model engagement
problems on the internet. In this example, contexts correspond to informa-
tion about a person. Every interaction a person has with the website can
be scored in term of some sort of reward function that encodes outcomes
such as whether the person clicked on an ad, liked an article, or purchased
an item. Whatever the reward function is, the goal will be to maximize the
total reward accumulated over all time. The Xt will be features describing
the person’s interaction history, and the action will be related to the content
served.

As was the case with the multi-armed bandit, the key idea in solving
contextual bandits is to reduce the problem to a prediction problem. In
fact we can upper bound our regret by our errors in prediction. The regret
accrued by a policy π is

E

{
T

∑
t=1

max
u

R(Xt, u)− R(Xt, π(Xt))

}
.

This is because if we know the reward function, then the optimal strategy is
to choose the action that maximizes R. This is equivalent to the dynamic
programming solution when the dynamics are trivial.

Let’s reduce this problem to one of prediction. Suppose that at time t
we have built an approximation of the reward function R that we denote
R̂t(x, u). Let’s suppose that our algorithm uses the policy

π(Xt) = arg max
u

R̂t(Xt, u) .

That is, we take our current estimate as if it was the true reward function,
and pick the action that maximizes reward given the context Xt.

To bound the regret for such an algorithm, note that we have for any
action u

0 ≤ R̂t(Xt, π(Xt))− R̂t(Xt, u)
≤ R(Xt, π(Xt))− R(Xt, u)

+
[

R̂t(Xt, π(Xt))− R(Xt, π(Xt))
]
+
[

R̂t(Xt, u)− R(Xt, u)
]

.
245

Hence,

T

∑
t=1

max
u

R(Xt, u)− R(Xt, π(Xt)) ≤ 2
T

∑
t=1

max
u
|R̂t(Xt, u)− R(Xt, u)| .

This final inequality shows that if the prediction error goes to zero, the
associated algorithm accrues sublinear regret.

While there are a variety of algorithms for contextual bandits, we focus
our attention on two simple solutions that leverage the above reduction
to prediction. These algorithms work well in practice and are by far the
most commonly implemented. Indeed, they are so common that most
applications don’t even call these implementations of contextual bandit
problems, as they take the bandit nature completely for granted.

Our regret bound naturally suggests the following explore-then-commit
procedure.

Explore-then-commit for contextual bandits

• For t = 1, 2, . . . , m:

1. Receive new context xt.
2. Choose a random action ut.
3. Receive reward rt.

• Find a function R̂m to minimize prediction error: R̂m :=
arg min f ∑m

s=1 loss(f (xs, us), rs) .
• Define the policy π(x) = arg maxu R̂m(xt, u).
• For t = m + 1, m + 2, . . .:

1. Receive new context xt.
2. Choose the action given by π(xt).
3. Receive reward rt.

Second, an even more popular method is the following greedy algorithm.
The greedy algorithm avoids the initial random exploration stage and
instead picks whatever is optimal for the data seen so far.

246

Greedy algorithm for contextual bandits

• For t = 1, 2, . . .

1. Find a function R̂t to minimize prediction error:

R̂t := arg min
f

t−1

∑
s=1

loss(f (xs, us), rs) .

2. Receive new context xt.
3. Choose the action given by the policy

πt(xt) := arg max
u

R̂t(xt, u) .

4. Receive reward rt.

In worst-case settings, the greedy algorithm may accrue linear regret.
However, worst-case contexts appear to be rare. In the linear contextual
bandits problem, where rewards are an unknown linear function of the
context, even slight random permutations of a worst-case instance lead to
sublinear regret.225

The success of the greedy algorithm shows that it is not always desirable
to be exploring random actions to see what happens. This is especially true
for industrial applications where random exploration is often costly and the
value of adding exploration seems limited.226, 227 This context is useful to
keep in mind as we move to the more complex problem of reinforcement
learning and approximate dynamic programming.

When the model is unknown: Approximate dynamic pro-
gramming

We now bring dynamics back into the picture and attempt to formalize how
to solve general SDM problems when we don’t know the dynamics model or
even the reward function. We turn to exploring the three main approaches in
this space: certainty equivalence fits a model from some collected data and
then uses this model as if it were true in the SDM problem. Approximate
Dynamic Programming uses Bellman’s principle of optimality and stochastic
approximation to learn Q-functions from data. Direct Policy Search directly
searches for policies by using data from previous episodes in order to
improve the reward. Each of these has their advantages and disadvantages
as we now explore in depth.

247

Certainty equivalence for sequential decision making

One of the simplest, and perhaps most obvious strategies to solve an SDM
problem when the dynamics are unknown is to estimate the dynamics from
some data and then to use this estimated model as if it were the true model
in the SDM problem.

Estimating a model from data is commonly called “system identification”
in the dynamical systems and control literature. System identification differs
from conventional estimation because one needs to carefully choose the
right inputs to excite various degrees of freedom and because dynamical
outputs are correlated over time with the parameters we hope to estimate,
the inputs we feed to the system, and the stochastic disturbances. Once
data is collected, however, conventional prediction tools can be used to find
the system that best agrees with the data and can be applied to analyze the
number of samples required to yield accurate models.

Let’s suppose we want to build a predictor of the state xt+1 from the
trajectory history of past observed states and actions. A simple, classic
strategy is simply to inject a random probing sequence ut for control and
then measure how the state responds. Up to stochastic noise, we should
have that

xt+1 ≈ ϕ(xt, ut) ,

where ϕ is some model aiming to approximate the true dynamics. ϕ might
arise from a first-principles physical model or might be a non-parametric
approximation by a neural network. The state-transition function can then
be fit using supervised learning. For instance, a model can be fit by solving
the least-squares problem

minimizeϕ ∑N−1
t=0 ||xt+1 − ϕ(xt, ut)||2 .

Let ϕ̂ denote the function fit to the collected data to model the dynamics.
Let ωt denote a random variable that we will use as a model for the noise
process. With such a point estimate for the model, we might solve the
optimal control problem

maximize Eωt [∑
N
t=0 R(xt, ut)]

subject to xt+1 = ϕ̂(xt, ut) + ωt, ut = πt(τt) .

In this case, we are solving the wrong problem to get our control policies πt.
Not only is the model incorrect, but this formulation requires some plau-
sible model of the noise process. But we emphasize that this is standard
engineering practice. Though more sophisticated techniques can be used
to account for the errors in modeling, feedback often can compensate for
these modeling errors.

248

Approximate dynamic programming

Approximate dynamic programming approaches the RL problem by di-
rectly approximating the optimal control cost and then solving this with
techniques from dynamic programming. Approximate Dynamic Program-
ming methods typically try to infer Q-functions directly from data. The
standard assumption in most practical implementations of Q-learning is
that the Q-functions are static, as would be the case in the infinite horizon,
discounted optimal control problem.

Probably the best known approximate dynamic programming method
is Q-learning.228 Q-learning simply attempts to solve value iteration using
stochastic approximation. If we draw a sample trajectory using the policy
given by the optimal policy, then we should have (approximately and in
expectation)

Qγ(xt, ut) ≈ R(xt, ut) + γ max
u′
Qγ(xt+1, u′) .

Thus, beginning with some initial guess Q(old)
γ for the Q-function, we can

update

Q(new)
γ (xt, ut) = (1− η)Q(old)

γ (xt, ut)+ η

(
R(xt, ut) + γ max

u′
Q(old)

γ (xt+1, u′)
)

where η is a step-size or learning rate.
The update here only requires data generated by the policy Qold

γ and
does not need to know the explicit form of the dynamics. Moreover, we
don’t even need to know the reward function if this is provided online
when we generate trajectories. Hence, Q-learning is often called “model
free.” We strongly dislike this terminology and do not wish to dwell on it.
Unfortunately, distinguishing between what is “model-free” and what is
“model-based” tends to just lead to confusion. All reinforcement learning
is inherently based on models, as it implicitly assumes data is generated
by some Markov Decision Process. In order to run Q-learning we need
to know the form of the Q-function itself, and except for the tabular case,
how to represent this function requires some knowledge of the underlying
dynamics. Moreover, assuming that value iteration is the proper solution of
the problem is a modeling assumption: we are assuming a discount factor
and time invariant dynamics. But the reader should be advised that when
they read “model-free,” this almost always means “no model of the state
transition function was used when running this algorithm.”

For continuous control problems methods like Q-learning appear to
make an inefficient use of samples. Suppose the internal state of the
system is of dimension d. When modeling the state-transition function, each

249

sample provides d pieces of information about the dynamics. By contrast,
Q-learning only uses 1 piece of information per time step. Such inefficiency
is often seen in practice. Also troubling is the fact that we had to introduce
the discount factor in order to get a simple form of the Bellman equation.
One can avoid discount factors, but this requires either considerably more
sophisticated analysis. Large discount factors do in practice lead to brittle
methods, and the discount factor becomes a hyperparameter that must be
tuned to stabilize performance.

We close this section by noting that for many problems with high dimen-
sional states or other structure, we might be interested in not representing
Q-functions as a look up table. Instead, we might approximate the Q-
functions with a parametric family: Q(x, u; ϑ). Though we’d like to update
the parameter ϑ using something like gradient descent, it’s not immedi-
ately obvious how to do so. The simplest attempt, following the guide of
stochastic approximation is to run the iterations:

δt = R(xt, ut) + γQ(xt+1, ut+1; ϑt)−Q(xt, ut; ϑt)

ϑt+1 = ϑt + ηδt∇Q(xt, ut, ϑt)

This algorithm is called Q-learning with function approximation. A typically
more stable version uses momentum to average out noise in Q-learning.
With δt as above, we add the modification

et = λet−1 +∇Q(xt, ut, ϑt)

ϑt+1 = ϑt + ηδtet

for λ ∈ [0, 1]. This method is known as SARSA(λ).229

Direct policy search

The most ambitious form of control without models attempts to directly
learn a policy function from episodic experiences without ever building a
model or appealing to the Bellman equation. From the oracle perspective,
these policy driven methods turn the problem of RL into derivative-free
optimization.

In turn, let’s first begin with a review of a general paradigm for leverag-
ing random sampling to solve optimization problems. Consider the general
unconstrained optimization problem

maximizez∈Rd R(z) .

Any optimization problem like this is equivalent to an optimization over
probability densities on z:

maximizep(z) Ep[R(z)] .

250

If z? is the optimal solution, then we’ll get the same value if we put a δ-
function around z?. Moreover, if p is a density, it is clear that the expected
value of the reward function can never be larger than the maximal reward
achievable by a fixed z. So we can either optimize over z or we can optimize
over densities over z.

Since optimizing over the space of all probability densities is intractable,
we must restrict the class of densities over which we optimize. For example,
we can consider a family parameterized by a parameter vector ϑ: p(z; ϑ)
and attempt to optimize

maximizeϑ Ep(z;ϑ)[R(z)] .

If this family of densities contains all of the Delta functions, then the optimal
value will coincide with the non-random optimization problem. But if the
family does not contain the Delta functions, the resulting optimization
problem only provides a lower bound on the optimal value no matter how
good of a probability distribution we find.

That said, this reparameterization provides a powerful and general
algorithmic framework for optimization. In particular, we can compute the
derivative of J(ϑ) := Ep(z;ϑ)[R(z)] using the following calculation (called
“the log-likelihood trick”):

∇ϑ J(ϑ) =
∫

R(z)∇ϑ p(z; ϑ)dz

=
∫

R(z)
(∇ϑ p(z; ϑ)

p(z; ϑ)

)
p(z; ϑ)dz

=
∫

(R(z)∇ϑ log p(z; ϑ)) p(z; ϑ)dz

= Ep(z;ϑ) [R(z)∇ϑ log p(z; ϑ)] .

This derivation reveals that the gradient of J with respect to ϑ is the expected
value of the function

G(z, ϑ) = R(z)∇ϑ log p(z; ϑ)

Hence, if we sample z from the distribution defined by p(z; ϑ), we can
compute G(z, ϑ) and will have an unbiased estimate of the gradient of J.
We can follow this direction and will be running stochastic gradient descent
on J, defining the following algorithm:

251

REINFORCE algorithm:

• Input Hyperparameters: step-sizes αj > 0.
• Initialize: ϑ0 and k = 0.
• Until the heat death of the universe, do:

1. Sample zk ∼ p(z; ϑk).
2. Set ϑk+1 = ϑk + αkR(zk)∇ϑ log p(zk; ϑk).
3. k← k + 1.

The main appeal of the REINFORCE Algorithm is that it is not hard
to implement. If you can efficiently sample from p(z; ϑ) and can easily
compute ∇ log p, you can run this algorithm on essentially any problem.
But such generality must and does come with a significant cost. The
algorithm operates on stochastic gradients of the sampling distribution,
but the function we cared about optimizing—R—is only accessed through
function evaluations. Direct search methods that use the log-likelihood
trick are necessarily derivative free optimization methods, and, in turn,
are necessarily less effective than methods that compute actual gradients,
especially when the function evaluations are noisy. Another significant
concern is that the choice of distribution can lead to very high variance
in the stochastic gradients. Such high variance in turn implies that many
samples need to be drawn to find a stationary point.

That said, the ease of implementation should not be readily discounted.
Direct search methods are easy to implement, and oftentimes reasonable
results can be achieved with considerably less effort than custom solvers
tailored to the structure of the optimization problem. There are two primary
ways that this sort of stochastic search arises in reinforcement learning:
Policy gradient and pure random search.

Policy gradient

Though we have seen that the optimal solutions of Bellman’s equations
are deterministic, probabilistic policies can add an element of exploration
to a control strategy, hopefully enabling an algorithm to simultaneously
achieve reasonable awards and learn more about the underlying dynamics
and reward functions. Such policies are the starting point for policy gradient
methods.230

Consider a parametric, randomized policy such that ut is sampled from a
distribution p(u|τt; ϑ) that is only a function of the currently observed trajec-
tory and a parameter vector ϑ. A probabilistic policy induces a probability

252

distribution over trajectories:

p(τ; ϑ) =
L−1

∏
t=0

p(xt+1|xt, ut)p(ut|τt; ϑ) .

Moreover, we can overload notation and define the reward of a trajectory to
be

R(τ) =
N

∑
t=0

Rt(xt, ut)

Then our optimization problem for reinforcement learning takes the form
of stochastic search. Policy gradient thus proceeds by sampling a trajectory
using the probabilistic policy with parameters ϑk, and then updating using
REINFORCE.

Using the log-likelihood trick and the factored form of the probability
distribution p(τ; ϑ), we can see that the gradient of J with respect to ϑ is not
a function of the underlying dynamics. However, at this point this should not
be surprising: by shifting to distributions over policies, we push the burden
of optimization onto the sampling procedure.

Pure random search

An older and more widely applied method to solve the generic stochastic
search problem is to directly perturb the current decision variable z by
random noise and then update the model based on the received reward at
this perturbed value. That is, we apply the REINFORCE Algorithm with
sampling distribution p(z; ϑ) = p0(z− ϑ) for some distribution p0. Simplest
examples for p0 would be the uniform distribution on a sphere or a normal
distribution. Perhaps less surprisingly here, REINFORCE can again be run
without any knowledge of the underlying dynamics. The REINFORCE
algorithm has a simple interpretation in terms of gradient approximation.
Indeed, REINFORCE is equivalent to approximate gradient ascent of R

ϑt+1 = ϑt + αgσ(ϑk)

with the gradient approximation

gσ(ϑ) =
R(ϑ + σε)− R(ϑ− σε)

2σ
ε .

This update says to compute a finite difference approximation to the gra-
dient along the direction ε and move along the gradient. One can reduce

253

the variance of such a finite-difference estimate by sampling along multiple
random directions and averaging:

g(m)
σ (ϑ) =

1
m

m

∑
i=1

R(ϑ + σεi)− R(ϑ− σεi)

2σ
εi .

This is akin to approximating the gradient in the random subspace spanned
by the εi

This particular algorithm and its generalizations goes by many different
names. Probably the earliest proposal for this method is by Rastrigin.231

Somewhat surprisingly, Rastrigin initially developed this method to solve
reinforcement learning problems. His main motivating example was an
inverted pendulum. A rigorous analysis using contemporary techniques
was provided by Nesterov and Spokoiny.232 Random search was also
discovered by the evolutionary algorithms community and is called (µ, λ)-
Evolution Strategies.233, 234 Random search has also been studied in the
context of stochastic approximation235 and bandits.236, 237 Algorithms that
get invented by four different communities probably have something good
going for them.

Deep reinforcement learning

We have thus far spent no time discussing deep reinforcement learning.
That is because there is nothing conceptually different other than using
neural networks for function approximation. That is, if one wants to take
any of the described methods and make them deep, they simply need
to add a neural net. In model-based RL, ϕ is parameterized as a neural
net, in ADP, the Q-functions or Value Functions are assumed to be well-
approximated by neural nets, and in policy search, the policies are set to be
neural nets. The algorithmic concepts themselves don’t change. However,
convergence analysis certainly will change, and algorithms like Q-learning
might not even converge. The classic text Neurodynamic Programming by
Bertsekas and Tsitisklis discusses the adaptations needed to admit function
approximation.238

Certainty equivalence is often optimal for reinforcement
learning

In this section, we give a survey of the power of certainty equivalence in se-
quential decision making problems. We focus on the simple cases of tabular
MDPs and LQR as they are illustrative of more general problems while still

254

being manageable enough to analyze with relatively simple mathematics.
However, these analyses are less than a decade old. Though the principle of
certainty equivalence dates back over 60 years, our formal understanding of
certainty equivalence and its robustness is just now solidifying.

Certainty equivalence for LQR

Consider the linear quadratic regulator problem

minimize limT→∞ EWt

[
1

2T ∑T
t=0 XT

t ΦXt + UT
t ΨUt

]
,

subject to Xt+1 = AXt + BUt + Wt, Ut = πt(Xt)
(x0 given).

We have shown that the solution to this problem is static state feedback Ut =
−K?Xt where

K? = (Ψ + BT MB)−1BT MA

and M is the unique stabilizing solution to the Discrete Algebraic Riccati
Equation

M = Φ + AT MA− (AT MB)(Ψ + BT MB)−1(BT MA) .

Suppose that instead of knowing (A, B, Φ, Ψ) exactly, we only have es-
timates (Â, B̂, Φ̂, Ψ̂). Certainty equivalence would then yield a control
policy Ut = −K̂Xt where K̂ can be found using (Â, B̂, Φ̂, Ψ̂) in place
of (A, B, Φ, Ψ) in the formulae above. What is the cost of this model?

The following discussion follows arguments due to Mania et al.239

Let J(K) denote that cost of using the policy K. Note that this cost may
be infinite, but it will also be differentiable in K. If we unroll the dynam-
ics and compute expected values, one can see that the cost is the limit of
polynomials in K, and hence is differentiable.

Suppose that

ε := max
{
‖Â− A‖, ‖B̂− B‖, ‖Φ̂−Φ‖, ‖Ψ̂−Ψ‖

}
If we Taylor expand the cost we find that for some t ∈ [0, 1],

J(K̂)− J? = 〈∇J(K?), K̂− K?〉+
1
2
(K̂− K?)

T∇2 J(K̃)(K̂− K?) .

where K̃ = (1− t)K? + tK̂. The first term is equal to zero because K? is
optimal. Since the map from (A, B, Φ, Ψ) to K? is differentiable, there must
be constants L and ε0 such that ‖K̂ − K?‖ ≤ Lε whenever ε ≤ ε0. This

255

means that as long as the estimates for (A, B, Φ, Ψ) are close enough to the
true values, we must have

J(K̂)− J? = O(ε2) .

Just how good should the estimates for these quantities be? Let’s focus
on the dynamics (A, B) as the cost matrices Φ and Ψ are typically design
parameters, not unknown properties of the system. Suppose A is d × d
and B is d × p. Basic parameter counting suggests that if we observe T
sequential states from the dynamical system, we observe a total of dT
numbers, one for each dimension of the state per time step. Hence, a naive
statistical guess would suggest that

max
{
‖Â− A‖, ‖B̂− B‖

}
≤ O

(√
d + p

T

)
.

Combining this with our Taylor series argument implies that

J(K̂)− J? = O
(

d + p
T

)
.

As we already described, this also suggests that certainty equivalent control
accrues a regret of

RT = O(
√

T) .

This argument can be made completely rigorous.239 The regret accrued
also turns out to be the optimal.240 Moreover, the Taylor series argument
here works for any model where the cost function is twice differentiable.
Thus, we’d expect to see similar behavior in more general SDM problems
with continuous state spaces.

Certainty equivalence for tabular MDPs

For discounted, tabular MDPs, certainty equivalence also yields an optimal
sample complexity. This result is elementary enough to be proven in a
few pages. We first state an approximation theorem that shows that if
you build a policy with the wrong model, the value of that policy can be
bounded in terms of the inaccuracy of your model. Then, using Hoeffding’s
inequality, we can construct a sample complexity bound that is nearly
optimal. The actual optimal rate follows using our main approximation
theorem coupled with slightly more refined concentration inequalities.
We refer readers interested in this more refined analysis to the excellent
reinforcement learning text by Agarwal et al.241

256

Let V?(x) denote the optimal expected reward attainable by some policy
on the discounted problem

maximize (1− γ)EWt [∑
∞
t=0 γtR(Xt, Ut, Wt)]

subject to Xt+1 = f (Xt, Ut, Wt), Ut = πt(Xt)
(x0 = x).

Note that V? is a function of the initial state. This mapping from initial
state to expected rewards is called the value function of the SDM problem.
Let Vπ(x) denote the expected reward attained when using some fixed,
static policy π. Our aim is to evaluate the reward of particular policies that
arise from certainty equivalence.

To proceed, first let Q̂ be any function mapping state-action pairs to
a real value. We can always define a policy πQ̂(x) = arg maxu Q̂(x, u).

The following theorem quantifies the value of πQ̂ when Q̂ is derived by
solving the Bellman equation with an approximate model of the MDP
dynamics. This theorem has been derived in numerous places in the RL
literature, and yet it does not appear to be particularly well known. As
pointed out by ’Avila Pires and Szepesvari,242 it appears as a Corollary to
Theorem 3.1 in Whitt243 (1978), as Corollary 2 in Singh and Yee244 (1994),
as a corollary of Proposition 3.1 in Bertsekas245 (2012). We emphasize it
here as it demonstrates immediately why certainty equivalence is such a
powerful tool in sequential decision making problems.

Theorem 12. Model-error for MDPs. Consider a γ-discounted MDP with
dynamics governed by a model p and a reward function r. Let Q̂ denote the Q-
function for the MDP with the same rewards but dynamics P̂. Then we have

V?(x)−VπQ̂(x) ≤ 2γ

(1− γ)2 sup
x,u

∣∣∣∣∣ E
P̂(·|x,u)

[V?]− E
P(·|x,u)

[V?]

∣∣∣∣∣ .

This theorem states that the values associated with the policy that we
derive using the wrong dynamics will be close to optimal if EP̂(·|x,u)[V?]

and EP(·|x,u)[V?] are close for all state-action pairs (x, u). This is a remark-
able result as it shows that we can control our regret by our prediction
errors. But the only prediction that matters is our predictions of the optimal
value vectors V?. Note further that this theorem makes no assumptions
about the size of the state spaces: it holds for discrete, tabular MDPs, and
more general discounted MDPs. A discussion of more general problems is
covered by Bertsekas.246

Focusing on the case of finite-state tabular MDPs, suppose the rewards
are in the range [0, 1] and there are S states and A actions. Then the values

257

are in the range V?(x) ∈ [0, (1− γ)−1]. Immediately from this result, we can
derive a sample-complexity bound. Let’s suppose that for each pair (x, u),
we collect n samples to estimate the conditional probabilities P[X′ = x′|x, u],
and define P̂(X′ = x′|x, u) to be the number of times we observe x′ divided
by n. Then by Hoeffding’s inequality

P

[∣∣∣∣∣ E
P̂[·|x,u]

[V?]− E
P[·|x,u]

[V?]

∣∣∣∣∣ ≥ ε

]
≤ 2 exp

(
−2nε2(1− γ)2

)
and therefore, by the union bound

sup
x,u

∣∣∣∣∣ E
P̂[·|x,u]

[V?]− E
P[·|x,u]

[V?]

∣∣∣∣∣ ≤
√√√√ log

(
2SA

δ

)
n(1− γ)2 .

with probability 1 − δ. If we let N = SAn denote the total number of
samples collected, we see that

V?(x)−VπQ̂(x) ≤ 2γ

(1− γ)3

√√√√SA log
(

2SA
δ

)
N

.

Our naive bound here is nearly optimal: the dependence on γ can be
reduced from (1− γ)−3 to (1− γ)−3/2 using more refined deviation in-
equalities, but the dependence on S, A, and N is optimal.241, 247 That
is, certainty equivalence achieves an optimal sample complexity for the
discounted tabular MDP problem.

Proof of the model-error theorem

The proof here combines arguments by Bertsekas245 and Agarwal.241 Let us
first introduce notation that makes the proof a bit more elegant. Let Q be
any function mapping state-action pairs to real numbers. Given a policy π
and a state-transition model P, denote TP to be the map from functions to
functions where

[TPQ](x, u) = r(x, u) + γ ∑
x′

max
u′

Q(x′, u′)P[X′ = x′|x, u] .

With this notation, the Bellman equation for the discounted MDP simply
becomes

Q? = TPQ? .

If we were to use P̂ instead of P, this would yield an alternative Q-
function, Q̂, that satisfies the Bellman equation Q̂ = T

P̂
Q̂.

258

The operator TP is a contraction mapping in the `∞ norm. To see this,
note that for any functions Q1 and Q2,

|[TPQ1 − TPQ2](x, u)| =
∣∣∣∣∣γ ∑

x′
(max

u1
Q1(x′, u1)−max

u2
Q2(x′, u2))P[X′ = x′|x, u]

∣∣∣∣∣
≤ γ ∑

x′
P[X′ = x′|x, u]

∣∣∣∣max
u1

Q1(x′, u1)−max
x2

Q2(x′, u2)

∣∣∣∣
≤ γ‖Q1 −Q2‖∞ .

Since TP is a contraction, the solution of the discounted Bellman equations
are unique and Q? = limk→∞ TP

kQ for any function Q. Similarly, Q̂ =

limk→∞ TP̂
kQ.

Now we can bound∥∥∥TP̂
kQ? −Q?

∥∥∥
∞
≤

k

∑
i=1
‖T

P̂
iQ? − TP̂

i−1Q?‖∞ ≤
k

∑
i=1

γk‖T
P̂

Q? −Q?‖∞ .

Taking limits of both sides as k→ ∞, we find∥∥∥Q̂−Q?

∥∥∥
∞
≤ 1

1− γ
‖T

P̂
Q? −Q?‖∞ .

But since Q? = TPQ?, and

[T
P̂

Q? − TPQ?](x, u)

=γ ∑
x′

max
u′

Q?(x′, u′)
(
P̂[X′ = x′|x, u]−P[X′ = x′|x, u]

)
,

we have the bound∥∥∥Q̂−Q?

∥∥∥
∞
≤ γ

1− γ
sup
x,u

∣∣∣∣∣ E
P̂[·|x,u]

[V?]− E
P[·|x,u]

[V?]

∣∣∣∣∣ .

To complete the proof, it suffices to use
∥∥∥Q̂−Q?

∥∥∥
∞

to upper bound

the difference between the values of the two policies. Let π?(x) =

arg maxu Q?(x, u) and π̂(x) = arg maxu Q̂?(x, u) denote the optimal poli-
cies for the models P and P̂ respectively. For any policy π, we have

Vπ(x) = r(x, π(x)) + γ ∑
x′

P[X′ = x′|x, π(x)]Vπ(x′) ,

259

and hence we can bound the optimality gap as

V?(x)−Vπ̂(x) = Q?(x, π?(x))−Vπ̂(x)

= Q?(x, π?(x))−Q?(x, π̂(x)) + Q?(x, π̂(x))−Vπ̂(x)
= Q?(x, π?(x))−Q?(x, π̂(x))

+ γ ∑
x′

P[X′ = x′|x, π̂(x)]
(

V?(x′)−Vπ̂(x′)
)

≤ Q?(x, π?(x))− Q̂(x, π?(x)) + Q̂(x, π̂(x))−Q?(x, π̂(x))

+ γ ∑
x′

P[X′ = x′|x, π̂(x)]
(

V?(x′)−Vπ̂(x′)
)

≤ 2‖Q? − Q̂‖∞ + γ‖V? −Vπ̂‖∞ .

Here, the first inequality holds because Q̂(x, π?(x)) ≤ maxu Q̂(x, u) =

Q̂(x, π̂(x)). Rearranging terms shows that

V?(x)−Vπ̂(x) ≤ 2
1− γ

‖Q? − Q̂‖∞ ,

which, when combined with our previous bound on ‖Q? − Q̂‖∞, completes
the proof.

Sample complexity of other RL algorithms

The sample complexity of reinforcement learning remains an active field,
with many papers honing in on algorithms with optimal complexity. Re-
searchers have now shown a variety of methods achieve the optimal com-
plexity of certainty equivalence including those based on ideas from ap-
proximate dynamic programming and Q-learning. For LQR on the other
hand, no other methods are currently competitive.

While sample complexity is important, there are not significant gains to
be made over simple baselines that echo decades of engineering practice.
And, unfortunately, though sample complexity is a well posed problem
which excites many researchers, it does not address many of the imped-
iments preventing reinforcement learning form being deployed in more
applications. As we will see in a moment, the optimization framework itself
has inherent weaknesses that cannot be fixed by better sample efficiency,
and these weaknesses must be addressed head-on when designing an SDM
system.

260

The limits of learning in feedback loops

Though we have shown the power of certainty equivalence, it is also a useful
example to guide how reinforcement learning—and optimal sequential
decision making more generally—can go wrong. First, we will show how
optimal decision making problems themselves can be set up to be very
sensitive to model-error. So treating a model as true in these cases can lead
to misguided optimism about performance. Second, we will adapt this
example to the case where the state is partially observed and demonstrate a
more subtle pathology. As we discussed in the last chapter, when state is
not perfectly observed, decision making is decidedly more difficult. Here
we will show an example where improving your prediction paradoxically
increases your sensitivity to model error.

Fragile instances of the linear quadratic regulator

Consider the following innocuous dynamics:

A =

[
0 1
0 0

]
, B =

[
0
1

]
.

This system is a simple, two-state shift register. Write the state out
with indexed components x = [x(1), x(2)]>. New states enter through the
control B into the second state. The first state x(1) is simply whatever was
in the second register at the previous time step. The open loop dynamics of
this system are as stable as you could imagine. Both eigenvalues of A are
zero.

Let’s say our control objective aims to try to keep the two components
of the state equal to each other. We can model this with the quadratic cost
matrices

Φ =

[
1 −1
−1 1

]
, Ψ = 0 .

Here, Ψ = 0 for simplicity, as the formulae are particularly nice for this
case. But, as we will discuss in a moment, the situation is not improved
simply by having R be positive. For the disturbance, assume that Wt is zero
mean, has bounded second moment, Σt = E[WtW>t], and is uncorrelated
with Xt and Ut.

The cost is asking to minimize

E

[
N

∑
t=1

(X(1)
t − X(2)

t)2

]

261

When Wt = 0, X(1)
t + X(2)

t = X(2)
t−1 + Ut−1, so the intuitive best action would

be to set Ut = X(2)
t . This turns out to be the optimal action, and one can

prove this directly using standard dynamic programming computations or
a Discrete Algebraic Riccati Equation. With this identification, we can write
closed loop dynamics by eliminating the control signal:

Xt+1 =

[
0 1
0 1

]
Xt + Wt .

This closed-loop system is marginally stable, meaning that while signals
don’t blow up, some states will persist forever and not converge to 0. The
second component of the state simply exhibits a random walk on the real
line. We can analytically see that the system is not stable by computing the
eigenvalues of the state-transition matrix, which are here 0 and 1. The 1
corresponds the state where the two components are equal, and such a state
can persist forever.

If we learned an incorrect model of the dynamics, how would that influ-
ence the closed loop behavior? The simplest scenario is that we identified B
from some preliminary experiments. If the true B? = αB, then the closed
loop dynamics are

Xt+1 =

[
0 1
0 α

]
Xt + Wt .

This system is unstable for any α > 1. That is, the system is arbitrarily
sensitive to misidentification of the dynamics. This lack of robustness has
nothing to do with the noise sequence. The structure of the cost is what
drives the system to fragility.

If Ψ > 0, we would get a slightly different policy. Again, using elemen-
tary dynamic programming shows that the optimal control is ut = βt(Ψ)x(2)t
for some βt(Ψ) ∈ (1/2, 1). The closed loop system will be a bit more stable,
but this comes at the price of reduced performance. You can also check
that if you add ε times the identity to Φ, we again get a control policy
proportional to the second component of the state, x(2)t .

Similar examples are fairly straightforward to construct. The state-
transition matrix of the closed loop dynamics will always be of the form A−
BK, and we can first find a K such that A − BK has an eigenvalue of
magnitude 1. Once this is constructed, it suffices to find a vector v such
that (v′B)−1v′A = K. Then the cost Φ = vv′ yields the desired pathological
example.

One such example that we will use in our discussion of partially observed
systems is the model:

A =

[
1 1
0 1

]
, B =

[
0
1

]
,

262

Φ =

[
1 1/2

1/2 1/4

]
, Ψ = 0 .

The dynamics here are our “Newton’s Law” dynamics studied in our
dynamic programming examples. One can check that the closed loop
dynamics of this system are

Xt+1 =

[
1 1
−2 −2

]
Xt + Wt .

The transition matrix here has eigenvalues 0 and −1, and the state x =
[1/2,−1] will oscillate in sign and persist forever.

Partially observed example

Recall the generalization of LQR to the case with imperfect state observation
is called “Linear Quadratic Gaussian” control (LQG). This is the simplest,
special case of a POMDP. We again assume linear dynamics:

Xt+1 = AXt + BUt + Wt .

where the state is now corrupted by zero-mean Gaussian noise, Wt. Instead
of measuring the state Xt directly, we instead measure a signal Yt of the
form

Yt = CXt + Vt .

Here, Vt is also zero-mean Gaussian noise. Suppose we’d still like to
minimize a quadratic cost function

lim
T→∞

E

[
1
T

T

∑
t=0

X>t ΦXt + U>t ΨUt

]
.

This problem is very similar to our LQR problem except for the fact that
we get an indirect measurement of the state and need to apply some sort of
filtering of the Yt signal to estimate Xt.

The optimal solution for LQG is strikingly elegant. Since the observation
of Xt is through a Gaussian process, the maximum likelihood estimation
algorithm has a clean, closed form solution. As we saw in the previous
chapter, our best estimate for Xt, denoted x̂t, given all of the data observed
up to time t is given by a Kalman Filter. The estimate obeys a difference
equation

x̂t+1 = Ax̂t + But + L(yt − Cx̂t) .

The matrix L that can be found by solving an discrete algebraic Riccati
equation that depends on the variance of vt and wt and on the matrices A
and C. In particular, it’s the DARE with data (A>, C>, Σw, Σv).

263

The optimal LQG solution takes the estimate of the Kalman Filter, x̂t,
and sets the control signal to be

ut = −Kx̂t .

Here, K is gain matrix that would be used to solve the LQR problem
with data (A, B, Φ, Ψ). That is, LQG performs optimal filtering to compute
the best state estimate, and then computes a feedback policy as if this
estimate was a noiseless measurement of the state. That this turns out
to be optimal is one of the more amazing results in control theory. It
decouples the process of designing an optimal filter from designing an
optimal controller, enabling simplicity and modularity in control design.
This decoupling where we treat the output of our state estimator as the
true state is yet another example of certainty equivalence, and yet another
example of where certainty equivalence turns out to be optimal. However,
as we will now see, LQG highlights a particular scenario where certainty
equivalent control leads to misplaced optimism about robustness.

Before presenting the example, let’s first dive into why LQG is likely less
robust than LQR. Let’s assume that the true dynamics are generated as:

Xt+1 = AXt + B?Ut + Wt ,

though we computed the optimal controller with the matrix B. Define an
error signal, Et = Xt − x̂t, that measures the current deviation between the
actual state and the estimate. Then, using the fact that ut = −Kx̂t, we get
the closed loop dynamics[

X̂t+1
Et+1

]
=

[
A− BK LC

(B− B?)K A− LC

] [
X̂t
Et

]
+

[
LVt

Wt − LVt

]
.

When B = B?, the bottom left block is equal to zero. The system is then
stable provided A − BK and A − LC are both stable matrices (i.e., have
eigenvalues with magnitude less than one). However, small perturbations in
the off-diagonal block can make the matrix unstable. For intuition, consider
the matrix [

0.9 1
0 0.8

]
.

The eigenvalues of this matrix are 0.9 and 0.8, so the matrix is clearly stable.
But the matrix [

0.9 1
t 0.8

]
has an eigenvalue greater than zero if t > 0.02. So a tiny perturbation
significantly shifts the eigenvalues and makes the matrix unstable.

264

Similar things happen in LQG. Let’s return to our simple dynamics
inspired by Newton’s Laws of Motion

A =

[
1 1
0 1

]
, B =

[
0
1

]
, C =

[
1 0

]
And let’s use any cost matrices Φ and Ψ. We assume that the noise variances
are

E
[
WtW>t

]
=

[
1 2
2 4

]
, E

[
V2

t

]
= σ2

The open loop system here is unstable, having two eigenvalues at 1.
We can stabilize the system only by modifying the second state. The state
disturbance is aligned along the direction of the vector [1/2; 1], and the state
cost only penalizes states aligned with this disturbance. The SDM goal is
simply to remove as much signal as possible in the [1; 1] direction without
using large inputs. We only are able to measure the first component of the
state, and this measurement is corrupted by Gaussian noise.

What does the optimal policy look like? Perhaps unsurprisingly, it
focuses all of its energy on ensuring that there is little state signal along the
disturbance direction. The optimal L matrix is

L =

[
3− d1
2− d2

]
.

where d1 and d2 are small positive numbers that go to zero as σ goes to
zero. The optimal K will have positive coefficients whenever we choose
for Φ and Ψ to be positive semidefinite: if K has a negative entry, it will
necessarily not stabilize (A, B).

Now what happens when we have model mismatch? Let’s assume for
simplicity that σ = 0. If we set B? = tB and use the formula for the closed
loop above, we see that closed loop state transition matrix is

Acl =

1 1 3 0
−k1 1− k2 2 0

0 0 −2 1
k1(1− t) k2(1− t) −2 1

 .

It’s straight forward to check that when t = 1 (i.e., no model mismatch),
the eigenvalues of A− BK and A− LC all have real parts with magnitude
less than or equal to 1. For the full closed loop matrix, analytically com-
puting the eigenvalues themselves is a pain, but we can prove instability
by looking at a characteristic polynomial. For a matrix to have all of its
eigenvalues in the left half plane, its characteristic polynomial necessarily
must have all positive coefficients. If we look at the linear term in the

265

characteristic polynomial, of −I − Acl we see that if t > 1, Acl must have an
eigenvalue with real part less than −1, and hence the closed loop is unstable.
This is a very conservative condition, and we could get a tighter bound if
we’d like, but it’s good enough to reveal some paradoxical properties of
LQG. The most striking is that if we build a sensor that gives us a better
and better measurement, our system becomes more and more fragile to
perturbation and model mismatch. For machine learning scientists, this
seems to go against all of our training. How can a system become less robust
if we improve our sensing and estimation?

Let’s look at the example in more detail to get some intuition for what’s
happening. When the sensor noise gets small, the optimal Kalman Filter
is more aggressive. The filter rapidly damps any errors in the disturbance
direction [1; 1/2] and, as σ decreases, it damps the [1; 1] direction less.
When t 6= 1, B− B? is aligned in the [0; 1] and can be treated as a disturbance
signal. This undamped component of the error is fed errors from the state
estimate, and these errors compound each other. Since we spend so much
time focusing on our control along the direction of the injected state noise,
we become highly susceptible to errors in a different direction and these
are the exact errors that occur when there is a gain mismatch between the
model and reality.

The fragility of LQG has many takeaways. It highlights that noiseless
state measurement can be a dangerous modeling assumption, because it
is then optimal to trust our model too much. Model mismatch must be
explicitly accounted for when designing the decision making policies.

This should be a cautionary tale for modern AI systems. Most papers
in reinforcement learning consider MDPs where we perfectly measure the
system state. Building an entire field around optimal actions with perfect
state observation builds too much optimism. Any realistic scenario is going
to have partial state observation, and such problems are much thornier.

A second lesson is that it is not enough to just improve the prediction
components in feedback systems that are powered by machine learning.
Improving prediction will increase sensitivity to a modeling errors in some
other part of the engineering pipeline, and these must all be accounted for
together to ensure safe and successful decision making.

Chapter notes

This chapter and the previous chapter overlap significantly with a survey of
reinforcement learning by Recht, which contains additional connections to
continuous control.218

Bertsekas has written several valuable texts on reinforcement learning

266

from different perspectives. His seminal book with Tsitsiklis established
the mathematical formalisms of Neurodynamic Programming that most
resemble contemporary reinforcement learning.238 The second volume
of his Dynamic Programming Book covers many of the advanced topics
in approximate dynamic programming and infinite horizon dynamic pro-
gramming.248 And his recent book on reinforcement learning builds ties
with his earlier work and recent advances in reinforcement learning post
AlphaGo.249

For more on bandits from a theoretical perspective, the reader is in-
vited to consult the comprehensive book by Lattimore and Szepesvari.250

Agarwal et al. provide a thorough introduction to the theoretical aspects of
reinforcement learning from the perspective of learning theory.241

The control theoretic perspective on reinforcement learning is called
dual control. Its originated at a similar time to reinforcement learning, and
many attribute Feldbaum’s work as the origin point.251 Wittenmark surveys
the history of this topic, its limitations, and its comparison to certainty
equivalence methods.252 For further exploration of the limits of classical
optimal control and how to think about robustness, Gunter Stein’s “Respect
the Unstable” remains a classic lecture on the subject.253

267

13
Epilogue

Unknown outcomes often follow patterns found in past observations. But
when do they not? As powerful as statistical patterns are, they are not with-
out limitations. Every discipline built on the empirical law also experiences
its failure.

In fact, Halley’s contemporaries already bore witness. Seeking to in-
crease revenue still despite the sale of life annuities, King William III desired
to tax his citizens in proportion to their wealth. An income tax appeared
too controversial and unpopular with his constituents so that the king’s
advisors had to come up with something else. In 1696, the king introduced
a property tax based on the number of windows in a house. It stands to
reason that the wealth of a family correlated strongly with the number of
windows in their home. So, the window tax looked quite reasonable from a
statistical perspective.

Although successful on the whole and adopted by many other countries,
the window tax had a peculiar side effect. People adjusted. Increasingly,
houses would have bricked-up window spaces. In Edinburgh an entire row
of houses featured no bedroom windows at all. The correlation between the
number of windows and wealth thus deteriorated.

The problem with the window tax foretold a robust limitation of pre-
diction. Datasets display a static snapshot of a population. Predictions on
the basis of data are accurate only under an unspoken stability assumption.
Future observations must follow the same data-generating process. It’s
the “more of the same” principle that we call generalization in supervised
learning.

However, predictions often motivate consequential actions in the real
world that change the populations we observe. Chemist and technology
critic Ursula Franklin summarizes the problem aptly in her 1989 book called
The Real World of Technology:

[T]echnologies are developed and used within a particular social,
economic, and political context. They arise out of a social struc-

268

ture, they are grafted on to it, and they may reinforce it or destroy
it, often in ways that are neither foreseen nor foreseeable.254

Franklin continues:

[C]ontext is not a passive medium but a dynamic counterpart.
The responses of people, individually, and collectively, and the
responses of nature are often underrated in the formulation of
plans and predictions.

Franklin understood that predictions are not made in a vacuum. They are
agents of change through the actions they prompt. Decisions are always part
of an evolving environment. It’s this dynamic environment that determines
the merit of a decision.

Predictions can fail catastrophically when the underlying population is
subject to unmodeled changes. Even benign changes to a population, some-
times called distribution shift, can sharply degrade the utility of statistical
models. Numerous results in machine learning are testament to the fragility
of even the best performing models under changing environments.

Other disciplines have run into the same problem. In his influential
critique from 1976, economist Robert Lucas argued that patterns found
in historical macroeconomic data are an inadequate basis of policy mak-
ing, since any policy would inevitably perturb those statistical patterns.
Subsequently, economists sought to ground macroeconomics in the microe-
conomic principles of utility theory and rational behavior of the individual,
an intellectual program known as microfoundations dominant to this day.
The hope was that microfoundations would furnish a more reliable basis of
economic policy making.

It is tempting to see dynamic modeling as a possible remedy to the prob-
lem Lucas describes. However, Lucas critique was about dynamic models.
Macroeconomists at the time were well aware of dynamic programming
and optimal control. A survey of control-theoretic tools in macroeconomics
from 1976 starts with the lines:

In the past decade, a number of engineers and economists have
asked the question: “If modern control theory can improve the
guidance of airplanes and spacecraft, can it also help in the
control of inflation and unemployment?”255

If anything, the 60s and 70s had been the heyday of dynamic modeling.
Entire disciplines, such as system dynamics, attempted to create dynamic
models of complex social systems, such as, corporations, cities, and even the
western industrial world. Proponents of system dynamics used simulations
of these models to motivate consequential policy propositions. Reflecting
on these times, economist Schumacher wrote in 1973:

269

There have never been so many futurologists, planners, forecast-
ers, and model-builders as there are today, and the most intrigu-
ing product of technological progress, the computer, seems to
offer untold new possibilities. [. . .] Are not such machines just
what we have been waiting for?256

It was not the lack of dynamic models that Lucas criticized, it was the fact
that policy may invalidate the empirical basis of the model. Lucas’ critique
puts pressure how we come to know a model. Taking action can invalidate
not just a particular model but also disrupt the social and empirical facts
from which we derived the model.

If economics reckoned with this problem decades ago, it’s worth taking
a look at how the field has developed since. Oversimplifying greatly, the
ambitious macroeconomic theorizing of the 20th century gave way to a
greater focus on microeconomics and empirical work. Field experiments
and causal inference, in particular, are now at the forefront of economic
research.

Fundamental limitations of dynamic models not only surfaced in eco-
nomics, they were also called out by control theorists themselves. In a
widely heralded plenary lecture at the 1989 IEEE Conference on Decision
and Control, Gunter Stein argued against “the increasing worship of abstract
mathematical results in control at the expense of more specific examinations
of their practical, physical consequences.” Stein warned that mathematical
and algorithmic formulations often elided fundamental physical limitations
and trade-offs that could lead to catastrophic consequences.

Unstable systems illustrate this point. A stable system has the property
that no matter how you disturb the system, it will always come back to
rest. If you heat water on the stove, it will always eventually return to room
temperature. An unstable system on the other hand can evolve away from
a natural equilibrium exponentially quickly, like a contagious pathogen.
From a computational perspective, however, there is no more difficulty in
mathematically solving a sequential decision making problem with unstable
dynamics than in solving one with stable dynamics. We can write down
and solve decision making problems in both cases, and they appear to
be of equal computational difficulty. But in reality, unstable systems are
dangerous in a way that stable systems are not. Small errors get rapidly
amplified, possibly resulting in catastrophe. Likely the most famous such
catastrophe is the Chernobyl disaster, which Stein described as the failure
to “respect the unstable” inherent in the reactor design.

As the artificial intelligence and machine learning communities increas-
ingly embrace dynamic modeling, they will inevitably relearn these cau-
tionary lessons of days past.

270

Beyond pattern classification?

Part of the recent enthusiasm for causality and reinforcement learning
stems from the hope that these formalisms might address some of the
inherent issues with the static pattern classification paradigm. Indeed, they
might. But neither causality nor reinforcement learning are a panacea.
Without hard earned substantive domain knowledge to guide modeling
and mathematical assumptions, there is little that sets these formalisms
apart from pattern classification. The reliance on subject matter knowledge
stands in contrast with the nature of recent advances in machine learning
that largely did without—and that was the point.

Looking ahead, the space of machine learning beyond pattern classifica-
tion is full of uncharted territory. In fact, even the basic premise that there
is such a space is not entirely settled.

Some argue that as a practical matter machine learning will proceed
in its current form. Those who think so would see progress coming from
faster hardware, larger datasets, better benchmarks, and increasingly clever
ways of reducing new problems to pattern classification. This position
isn’t unreasonable in light of historical or recent developments. Pattern
classification has reemerged several times over the past 70 years, and each
time it has shown increasingly impressive capabilities.

We can try to imagine what replaces pattern recognition when it falls
out of favor. And perhaps we can find some inspiration by returning one
last time to Edmund Halley. Halley is more well-known for astronomy than
for his life table. Much of astronomy before the 17th century was more
similar to pattern recognition than fundamental physics. Halley himself
had used curve-fitting methods to predict the paths of comets, but found
notable errors in his predictions for the comet Kirch. He discussed his
calculations with Isaac Newton, who solved the problem by establishing
a fundamental description of the laws of gravity and motion. Halley, so
excited by these results, paid to publish Newton’s magnum opus Philosophiæ
Naturalis Principia Mathematica.

Even if it may not be physics once again or on its own, similarly dis-
ruptive conceptual departures from pattern recognition may be viable and
necessary for machine learning to become a safe and reliable technology in
our lives.

We hope that our story about machine learning was helpful to those
who aspire to write its next chapters.

271

14
Mathematical background

The main mathematical tools of machine learning are optimization and
statistics. At their core are concepts from multivariate calculus and prob-
ability. Here, we briefly review some of the concepts from calculus and
probability that we will frequently make use of in the book.

Common notation

• Lowercase letters u, v, w, x, y, z, typically denote vectors. We use both
〈u, v〉 and uTv to denote the inner product between vectors u and v.

• Capital letters X, Y, Z typically denote random variables.
• The conditional probability P[A | B] of an event A conditional on an

event B
• The gradient ∇ f (x) of a function f : Rd → R at a point x ∈ Rd refers

to the vector of partial derivatives of f evaluated at x.
• Identity matrix I
• The first k positive integers [k] = {1, 2, . . . , k}.

Multivariable calculus and linear algebra

Positive definite matrices

Positive definite matrices are central to both optimization algorithms and
statistics. In this section, we quickly review some of the core properties that
we will use throughout the book.

A matrix M is positive definite (pd) if it is symmetric M = MT

and zT Mz > 0 for all nonzero z ∈ Rd. We denote this as M � 0 A
matrix M is positive semidefinite (psd) if it is symmetric and zT Mz ≥ 0 for all
nonzero z. We denote this as M � 0. All pd matrices are psd, but not vice
versa.

272

Some of the main properties of positive semidefinite matrices include.

1. If M1 � 0, and M2 � 0, then M1 + M2 � 0.

2. a ∈ R, a ≥ 0 implies aM � 0.

3. For any matrix F, FFT and FTF are both psd. Conversely, if M is psd
there exists an F such that M = FFT.

Note that (1) and (2) still hold if “psd” is replaced with “pd.”" That
is, the sum of two pd matrices is pd. And multiplying a pd matrix by a
positive scalar preserves positive definiteness.

Recall that λ is a eigenvalue of a square matrix M if there exists a
nonzero x ∈ Rd such that Mx = λx. Eigenvalues of psd matrices are all
non-negative. Eigenvalues of pd matrices are all positive. This follows by
multiplying the equation Ax = λx on the left by xT.

Gradients, Taylor’s Theorem and infinitesimal approximation

Let Φ : Rd → R. Recall from multivariable calculus that the gradient of Φ at
a point w is the vector of partial derivatives

∇Φ(w) =

∂Φ(w)

∂x1
∂Φ(w)

∂x2
...

∂Φ(w)
∂xd

 .

Sometimes we write ∇xΦ(w) to make clear which functional argument we
are referring to.

One of the most important theorems in calculus is Taylor’s Theorem,
which allows us to approximate smooth functions by simple polynomials.
The following simplified version of Taylor’s Theorem is used throughout
optimization. This form of Taylor’s theorem is sometimes called the multi-
variable mean-value theorem. We will use this at multiple points to analyze
algorithms and understand the local properties of functions.

Theorem 13. Taylor’s Theorem.

• If Φ is continuously differentiable, then, for some t ∈ [0, 1] ,

Φ(w) = Φ(w0) +∇Φ(tw + (1− t)w0)
T(w− w0) .

273

• If Φ is twice continuously differentiable, then

∇Φ(w) = ∇Φ(w0) +
∫ 1

0
∇2Φ(tw + (1− t)w0)(w− w0)dt

and, for some t ∈ [0, 1]

Φ(w) = Φ(w0) +∇Φ(w0)
T(w− w0)

+
1
2
(w− w0)

T∇2Φ(tw + (1− t)w0)
T(w− w0) .

Taylor’s theorem can be used to understand the local properties of
functions. For example,

Φ(w + εv) = Φ(w) + ε∇Φ(w)Tv +
ε2

2
vT∇2Φ(w + δv)Tv

for some 0 ≤ δ ≤ ε. This expression states that

Φ(w + εv) = Φ(w) + ε∇Φ(w)Tv + Θ(ε2) ,

So to first order, we can approximate Φ by a linear function.

Jacobians and the multivariate chain rule

The matrix of first order partial derivatives of a multivariate mapping
Φ : Rn → Rm is called Jacobian matrix. We define the Jacobian of Φ with
respect to a variable x evaluated at a value w as the m× n matrix

DxΦ(w) =

[
∂Φi(w)

∂xj

]
i=1...m,j=1...n

.

The i-th row of the Jacobian therefore corresponds to the transpose of
the familiar gradient ∇T

x Φi(w) of the i-th coordinate of Φ. In particular,
when m = 1 the Jacobian corresponds to the transpose of the gradient.

The first-order approximation given by Taylor’s theorem directly extends
to multivariate functions via the Jacobian matrix. So does the chain rule
from calculus for computing the derivatives of function compositions.

Let Φ : Rn → Rm and Ψ : Rm → Rk. Then, we have

DxΨ ◦Φ(w) = DΦ(w)Ψ(Φ(w))DxΦ(w) .

As we did with the gradient notation, when the variable x is clear from
context we may drop it from our notation and write DΦ(w)

274

Probability

Contemporary machine learning uses probability as its primary means of
quantifying uncertainty. Here we review some of the basics we will make
use of in this course. This will also allow us to fix notation.

We note that often times, mathematical rigor gets in the way of explain-
ing concepts. So we will attempt to only introduce mathematical machinery
when absolutely necessary.

Probability is a function on sets. Let X denote the sample set. For
every A ⊂ X , we have

0 ≤ P[A] ≤ 1 , P[X] = 1 , P[∅] = 0 ,

and
P[A ∪ B] + P[A ∩ B] = P[A] + P[B] .

This implies that
P[A ∪ B] = P[A] + P[B] .

if and only if P[A ∩ B] = 0. We always have the inequality

P[A ∪ B] ≤ P[A] + P[B] .

By induction, we get the union bound

P [
⋃

i Ai] ≤ ∑i P[Ai] .

Random variables and vectors

Random variables are a particular way of characterizing outcomes of ran-
dom processes. We will use capital letters like X, Y, and Z to denote such
random variables. The sample space of a random variable will be the set
where a variable can take values. Events are simply subsets of possible
values. Common examples we will encounter in this book are

• Probability that a random variable has a particular value. This will
be denoted as P[X = x]. Note here that we use a lower case letter to
denote the value that the random variable might take.

• Probability that a random variable satisfies some inequality. For
example, the probability that X is less than a scalar t will be denoted
as P[X ≤ t].

A random vector is a random variable whose sample space consists of Rd.
We will not use notation to distinguish between vectors and scalars in this
text.

275

Densities

Random vectors are often characterized by probability densities rather than
by probabilities. The density p of a random variable X is defined by its
relation to probabilities of sets:

P[X ∈ A] =
∫

x∈A
p(x)dx .

Expectations

If f is a function on Rd and X is a random vector, then the expectation of f
is given by

E[f (X)] =
∫

f (x)p(x)dx

If A is a set, the indicator function of the set is the function

IA(x) =

{
1 if x ∈ A
0 otherwise

Note that the expectation of an indicator function is a probability:

E[IA(X)] =
∫

x∈A
p(x)dx = P[X ∈ A] .

This expression links the three concepts of expectation, density, and proba-
bility together.

Note that the expectation operator is linear:

E[a f (X) + bg(X)] = a E[f (X)] + b E[g(x)] .

Two other important expectations are the mean and covariance. The
mean of a random variable is the expected value of the identity function:

µX := E[X] =
∫

xp(x)dx .

The covariance of a random variable is the matrix

ΣX := E[(X− µX)(X− µX)
T] .

Note that covariance matrices are positive semidefinite. To see this, take a
nonzero vector z and compute

zTΣXz := E[zT(X− µX)(X− µX)
Tz] = E[((X− µX)

Tz)2] .

Since the term inside the expectation is nonnegative, the expectation is
nonnegative as well.

276

Important examples of probability distributions

• Bernoulli random variables. A Bernoulli random variable X can take
two values, 0 and 1. In such a case P[X = 1] = 1−P[X = 0]

• Gaussian random vectors. Gaussian random vectors are the most
ubiquitous real valued random vectors. Their densities are parameter-
ized only by their mean and covariance:

p(x) =
1

det(2πΣ)1/2 exp
(
−1

2(x− µX)
TΣ−1(x− µX)

)
.

Gaussian random variables are often called “normal” random vari-
ables. We denote the distribution of a normal random variable with
mean µ and covariance Σ as

N (µ, Σ) .

The reason Gaussian random variables are ubiquitous is because of
the central limit theorem: averages of many independent random
variables tend to look like Gaussian random variables.

Conditional probability and Bayes’ Rule

Conditional probability is applied quite cavalierly in machine learning. It’s
actually very delicate and should only be applied when we really know
what we’re doing.

P[A|B] = P[A ∩ B]
P[B]

A and B are said to be independent if P[A|B] = P[A]. Note that from the
definition of conditional probability A and B are independent if and only if

P[A ∩ B] = P[A]P[B] .

Bayes’ Rule is an immediate corollary of the definition of conditional
probability. In some sense, it’s just a restatement of the definition.

P[A|B] = P[B|A]P[A]

P[B]

This is commonly applied when A is one of a set of several alternatives.
Suppose Ai are a collection of disjoint sets such that ∪i Ai = X then for
each i, Bayes’ Rule states

P[Ai|B] = P[B|Ai]P[Ai]

∑j P[B|Aj]P[Aj]
.

277

This shows that if we have models of the likelihood of B under each alter-
native Ai and if we have beliefs about the probability of each Ai, we can
compute the probability of observing Ai under the condition that B has
occurred.

Conditional densities

Suppose X and Z are random variables whose joint distribution is continu-
ous. If we try to write down the conditional distribution for X given Z = z,
we find

P[X ∈ A|Z = z] = P[X ∈ A ∩ Z = z]
P[Z = z]

Both the numerator and denominator are equal to zero. In order to have a
useful formula, we can appeal to densities.

P[x ∈ A|z ≤ Z ≤ z + ε] =

∫ z+ε
z

∫
x∈A p(x, z′)dxdz′∫ z+ε
z p(z′)dz′

≈ ε
∫

x∈A p(x, z)
εp(z)dz

=
∫

x∈A

p(x, z)
p(z)

dx

Letting ε go to zero, this calculation shows that we can use the conditional
density to compute the conditional probabilities of X when Z = z:

p(x|z) :=
p(x, z)
p(z)

.

Conditional expectation and the law of iterated expectation

Conditional expectation is short hand for computing expected values with
respect to conditional probabilities:

E[f (x, z)|Z = z] =
∫

f (x, z)p(x|z)dx

An important formula is the law of iterated expectation:

E[f (x, z)] = E[E[f (x, z)|Z = z]]

278

This formula follows because

E[f (x, z)] =
∫ ∫

f (x, z)p(x, z)dxdz

=
∫ ∫

f (x, z)p(x|z)p(z)dxdz

=
∫ (∫

f (x, z)p(x|z)dx
)

p(z)dz .

Estimation

This book devotes much of its attention to probabilistic decision making. A
different but related statistical problem is parameter estimation. Assuming
that data X is generated by a statistical model, we’d like to infer some
nonrandom property about its distribution. The most canonical examples
here would be estimating the mean or variance of the distribution. Note
that estimating these parameters has a different flavor than decision theory.
In particular, our framework of risk minimization no longer applies.

If we aim to minimize a functional

minimize f E[loss(ϑ, f (x))]

then the optimal choice is to set f (x) = ϑ. But we don’t know this parameter
in the first place. So we end up with an algorithm that’s not implementable.

Instead, what we do in estimation theory is pose a variety of plausible
estimators that might work for a particular parameter and consider the
efficacy of these parameters in different settings. In particular, we’d like
estimators that take a set of observations S = (x1, . . . , xn) and return a guess
for the parameter whose value improves as n increases:

lim
n→∞

E
S
[loss(ϑ, ϑ̂(S))] = 0

Even though estimators are constructed from data, their design and
implementation require a good deal of knowledge about the underlying
probability distribution. Because of this, estimation is typically considered
to be part of classical statistics and not machine learning. Estimation
theory has a variety of powerful tools that are aimed at producing high
quality estimators, and is certainly worth learning more about. We need
rudimentary elements of estimation to understand popular baselines and
algorithms in causal inference and reinforcement learning.

279

Plug-in Estimators

We will restrict our attention to plug-in estimators. Plug-in estimators are
functions of the moments of probability distributions. They are plug-in
because we replace the true distribution with the empirical distribution.
To be precise, suppose there exist vector valued functions g and ψ such
that ϑ = g(E[ψ(x)]). Then, given a dataset, S = (x1, . . . , xn), the associated
plug-in estimator of ϑ is

ϑ̂(S) = g

(
1
n

n

∑
i=1

ψ(xi)

)

that is, we replace the expectation with the sample average. There are
canonical examples of plugin estimators.

1. The sample mean. The sample mean is the plug-in estimator where g
and ψ are both the identity functions.

2. The sample covariance. The sample covariance is

Σ̂x =
n

∑
i=1

xixT
i −

(
1
n

n

∑
i=1

xi

)(
n

∑
i=1

xi

)T

.

From this formula, we can take

ψ(x) =
[

1
x

] [
1
x

]T

and g
([

A B
BT C

])
= C− BBT .

3. Least-squares estimator. Suppose we have three random vectors, y, x,
and v and we assume that v and x are zero-mean and uncorrelated
and that y = Ax + v for some matrix A. Let’s suppose we’d like to
estimate A from a set of pairs S = ((x1, y1), . . . , (xn, yn)). One can
check that

A = ΣyxΣ−1
x .

And hence the plug-in estimator would use the sample covariances:

Â =

(
n

∑
i=1

yixT
i

)(
n

∑
i=1

xixT
i

)−1

In this case, we have the formulation

ψ(x) =
[

x
y

] [
x
y

]T

and g
([

A B
BT C

])
= BA−1 .

280

Convergence rates

In our study of generalization, we reasoned that the empirical risk should be
close to the true risk because sample averages should be close to population
values. A similar reasoning holds true for plug-in estimators: smooth func-
tions of sample averages should be close to their population counterparts.

We covered the case of the sample mean in our discussion of general-
ization. To recall, suppose x is a Bernoulli random variable with mean p.
Let x1, . . . , xn be independent and identically distributed as x. Then Hoeffd-
ing’s inequality states that

P

[∣∣∣∣∣ 1n n

∑
i=1

xi − p

∣∣∣∣∣ > ε

]
≤ 2 exp(−2nε2) .

Or, in other words, with probability 1− δ,∣∣∣∣∣ 1n n

∑
i=1

xi − p

∣∣∣∣∣ ≤
√

log(2/δ)

2n
.

Let’s consider a simple least-squares estimator. Suppose we know that
y = wTx + v where w and x are a vectors, w is deterministic, and x and v are
uncorrelated. Consider the least-squares estimator ŵS from n data points..
The estimation error in w is the vector eS = ŵS −w. The expectation of eS is
zero and the expected norm of the error is given by

E

[
‖eS‖2

]
= Trace

(n

∑
i=1

xixT
i

)−1
 .

This error is small if the sample covariance has large eigenvalues. Indeed,
if λS denotes the minimum eigenvalue of the sample covariance of x, then

E

[
‖eS‖2

]
≤ d

n
λS .

This expression suggests that the distribution of x must have density that
covers all directions somewhat equally in order for the least-squares esti-
mator to have good performance. On top of this, we see that the squared
error decreases roughly as d/n. Hence, we need far more measurements
than dimensions to find a good estimate of w. This is in contrast to what we
studied in classification. Most of the generalization bounds for classification
we derived were dimension free and only depended on properties like the
margin of the data. In contrast, in parameter estimation, we tend to get
results that scale as number of parameters over number of data points.
This rough rule of thumb that the error scales as the ratio of number of
parameters to number of data points tends to be a good guiding principle
when attempting to understand convergence rates of estimators.

281

Bibliography

1 New navy device learns by doing; psychologist shows embryo of computer designed to
read and grow wiser. The New York Times, 1958.

2 David R. Bellhouse. A new look at Halley’s life table. Journal of the Royal Statistical
Society: Series A (Statistics in Society), 174(3):823–832, 2011.

3 James E. Ciecka. Edmond Halley’s life table and its uses. Journal of Legal Economics,
15:65–74, 2008.

4 Karl Pearson and Egon S. Pearson. The history of statistics in the 17th and 18th centuries
against the changing background of intellectual, scientific and religious thought. British
Journal for the Philosophy of Science, 32(2):177–183, 1981.

5 Ian Hacking. The emergence of probability: A philosophical study of early ideas about probability,
induction and statistical inference. Cambridge University Press, 2006.

6 David A. Mindell. Between human and machine: feedback, control, and computing before
cybernetics. JHU Press, 2002.

7 Ronald R. Kline. The cybernetics moment: Or why we call our age the information age. JHU
Press, 2015.

8 Steve J. Heims. The cybernetics group. MIT Press, 1991.
9 James Beniger. The control revolution: Technological and economic origins of the information

society. Harvard University Press, 1986.
10 Ryszard S. Michalski, Jamie G. Carbonell, and Tom M. Mitchell, editors. Machine

learning: An artificial intelligence approach. Springer, 1983.
11 Pat Langley. The changing science of machine learning, 2011.
12 Mark Liberman. Obituary: Fred Jelinek. Computational Linguistics, 36(4):595–599, 2010.
13 Kenneth Ward Church. Emerging trends: A tribute to Charles Wayne. Natural Language

Engineering, 24(1):155–160, 2018.
14 Mark Liberman and Charles Wayne. Human language technology. AI Magazine, 41(2):22–

35, 2020.
15 James L. McClelland, David E. Rumelhart, and PDP Research Group. Parallel distributed

processing. Explorations in the Microstructure of Cognition, 2:216–271, 1986.
16 Michael I. Jordan. Artificial intelligence—the revolution hasn’t happened yet. Harvard

Data Science Review, 1(1), 2019.
17 Ruha Benjamin. Race after Technology. Polity, 2019.
18 Ben Hutchinson and Margaret Mitchell. 50 years of test (un) fairness: Lessons for

machine learning. In Conference on Fairness, Accountability, and Transparency, pages 49–58,
2019.

19 Solon Barocas, Moritz Hardt, and Arvind Narayanan. Fairness and Machine Learning.
fairmlbook.org, 2019. http://www.fairmlbook.org.

20 Jon M. Kleinberg, Sendhil Mullainathan, and Manish Raghavan. Inherent trade-offs in
the fair determination of risk scores. In Innovations in Theoretical Computer Science, 2017.

282

21 Alexandra Chouldechova. Fair prediction with disparate impact: A study of bias in
recidivism prediction instruments. Big data, 5(2):153–163, 2017.

22 Julia Angwin, Jeff Larson, Surya Mattu, and Lauren Kirchner. Machine bias. ProPublica,
May 2016.

23 William Dieterich, Christina Mendoza, and Tim Brennan. COMPAS risk scales: Demon-
strating accuracy equity and predictive parity, 2016.

24 Jerzy Neyman and Egon S. Pearson. On the use and interpretation of certain test criteria
for purposes of statistical inference: Part I. Biometrika, pages 175–240, 1928.

25 Jerzy Neyman and Egon S. Pearson. On the problem of the most efficient tests of
statistical hypotheses. Philosophical Transactions of the Royal Society of London. Series A,
231(694-706):289–337, 1933.

26 Abraham Wald. Contributions to the theory of statistical estimation and testing hy-
potheses. The Annals of Mathematical Statistics, 10(4):299–326, 1939.

27 Dimitri P. Bertsekas and John N. Tsitsiklis. Introduction to Probability. Athena Scientific,
2nd edition, 2008.

28 W. Wesley Peterson, Theodore G. Birdsall, and William C. Fox. The theory of signal
detectability. Transactions of the IRE, 4(4):171–212, 1954.

29 Wilson P. Tanner Jr. and John A. Swets. A decision-making theory of visual detection.
Psychological Review, 61(6):401, 1954.

30 Chao Kong Chow. An optimum character recognition system using decision functions.
IRE Transactions on Electronic Computers, (4):247–254, 1957.

31 Wilbur H. Highleyman. Linear decision functions, with application to pattern recogni-
tion. Proceedings of the IRE, 50(6):1501–1514, 1962.

32 Meredith Broussard. Artificial unintelligence: How computers misunderstand the world. MIT
Press, 2018.

33 Virginia Eubanks. Automating inequality: How high-tech tools profile, police, and punish the
poor. St. Martin’s Press, 2018.

34 Safiya Umoja Noble. Algorithms of oppression: How search engines reinforce racism. NYU
Press, 2018.

35 Cathy O’Neil. Weapons of math destruction: How big data increases inequality and threatens
democracy. Broadway Books, 2016.

36 Frank Rosenblatt. The perceptron: A probabilistic model for information storage and
organization in the brain. Psychological Review, pages 65–386, 1958.

37 Michael J. Kearns, Robert E. Schapire, and Linda M. Sellie. Toward efficient agnostic
learning. Machine Learning, 17(2-3):115–141, 1994.

38 Albert B. J. Novikoff. On convergence proofs on perceptrons. In Symposium on the
Mathematical Theory of Automata, pages 615–622, 1962.

39 Vladimir Vapnik and Alexey Chervonenkis. Theory of Pattern Recognition: Statistical
Learning Problems. Nauka, 1974. In Russian.

40 Frank Rosenblatt. Two theorems of statistical separability in the perceptron. United States
Department of Commerce, 1958.

41 Frank Rosenblatt. Principles of neurodynamics: Perceptions and the theory of brain mechanisms.
Spartan, 1962.

42 Hans-Dieter Block. The perceptron: A model for brain functioning. Reviews of Modern
Physics, 34(1):123, 1962.

43 Seymour A. Papert. Some mathematical models of learning. In London Symposium on
Information Theory. Academic Press, New York, 1961.

44 Marvin Minsky and Seymour A. Papert. Perceptrons: An introduction to computational
geometry. MIT Press, 2017.

45 Olvi L. Mangasarian. Linear and nonlinear separation of patterns by linear program-
ming. Operations Research, 13(3):444–452, 1965.

283

46 M. A. Aizerman, E. M. Braverman, and L. I. Rozonoer. The Robbins-Monro process and
the method of potential functions. Automation and Remote Control, 26:1882–1885, 1965.

47 David J. Hand. Measurement Theory and Practice: The World Through Quantification. Wiley,
2010.

48 David J. Hand. Measurement: A very short introduction. Oxford University Press, 2016.
49 Deborah L. Bandalos. Measurement theory and applications for the social sciences. Guilford

Publications, 2018.
50 Lisa Gitelman. Raw data is an oxymoron. MIT Press, 2013.
51 Elaine Angelino, Nicholas Larus-Stone, Daniel Alabi, Margo Seltzer, and Cynthia Rudin.

Learning certifiably optimal rule lists for categorical data. Journal of Machine Learning
Research, 18(234):1–78, 2018.

52 George Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics
of Control, Signals and Systems, 2(4):303–314, 1989.

53 Andrew R. Barron. Universal approximation bounds for superpositions of a sigmoidal
function. Transactions on Information Theory, 39(3):930–945, 1993.

54 Gilles Pisier. Remarques sur un résultat non publié de B. Maurey. In Séminaire d’analyse
fonctionnelle. Ecole Polytechnique Centre de Mathematiques, 1980-1981.

55 Lee K. Jones. A simple lemma on greedy approximation in Hilbert space and conver-
gence rates for projection pursuit regression and neural network training. Annals of
Statistics, 20(1):608–613, 1992.

56 Leo Breiman. Hinging hyperplanes for regression, classification, and function approxi-
mation. Transactions on Information Theory, 39(3):999–1013, 1993.

57 Ali Rahimi and Benjamin Recht. Random features for large-scale kernel machines. In
Advances in Neural Information Processing Systems, 2007.

58 Ali Rahimi and Benjamin Recht. Weighted sums of random kitchen sinks: Replac-
ing minimization with randomization in learning. In Advances in Neural Information
Processing Systems, 2008.

59 Youngmin Cho and Lawrence K. Saul. Kernel methods for deep learning. In Advances
in Neural Information Processing Systems, 2009.

60 Alan V. Oppenheim, Alan S. Willsky, and S. Hamid Nawab. Signals and Systems.
Prentice-Hall International, 1997.

61 Emmanuel J. Candès and Michael B. Wakin. An introduction to compressive sampling.
IEEE Signal Processing Magazine, 25(2):21–30, 2008.

62 Kari Karhunen. Über lineare Methoden in der Wahrscheinlichkeitsrechnung. Annales
Academia Scientiarum Fennica Mathematica, Series A, (37):1–47, 1947.

63 Michel Loève. Functions aleatoire de second ordre. Revue Science, 84:195–206, 1946.
64 N. Aronszajn. Theory of reproducing kernels. Transactions of the American Mathematical

Society, 68(3):337–404, 1950.
65 Emmanuel Parzen. An approach to time series analysis. The Annals of Mathematical

Statistics, 32(4):951–989, 1961.
66 Grace Wahba. Spline Models for Observational Data. SIAM, 1990.
67 Bernhard Schölkopf and Alexander J. Smola. Learning with Kernels: Support Vector

Machines, Regularization, Optimization, and Beyond. MIT Press, 2002.
68 John Shawe-Taylor and Nello Cristianini. Kernel methods for pattern analysis. Cambridge

University Press, 2004.
69 Allan Pinkus. N-widths in approximation theory. Springer, 1985.
70 Jef Akst. Machine, learning, 1951. The Scientist, May 2019.
71 Ali Rahimi and Benjamin Recht. Uniform approximation of functions with random

bases. In Allerton Conference on Communication, Control, and Computing, 2008.

284

72 Amit Daniely, Roy Frostig, and Yoram Singer. Toward deeper understanding of neural
networks: The power of initialization and a dual view on expressivity. In Advances in
Neural Information Processing Systems, 2016.

73 Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence
and generalization in neural networks. In Advances in Neural Information Processing
Systems, pages 8580–8589, 2018.

74 Dennis Decoste and Bernhard Schölkopf. Training invariant support vector machines.
Machine Learning, 46(1-3):161–190, 2002.

75 Vaishaal Shankar, Alex Fang, Wenshuo Guo, Sara Fridovich-Keil, Jonathan Ragan-Kelley,
Ludwig Schmidt, and Benjamin Recht. Neural kernels without tangents. In International
Conference on Machine Learning, 2020.

76 Herbert Robbins and Sutton Monro. A stochastic approximation method. The Annals of
Mathematical Statistics, pages 400–407, 1951.

77 Mert Gürbüzbalaban, Asu Ozdaglar, and Pablo A Parrilo. Why random reshuffling
beats stochastic gradient descent. Mathematical Programming, pages 1–36, 2019.

78 Arkadi Nemirovski, Antoli Juditsky, Guanghui Lan, and Alexander Shapiro. Robust
stochastic approximation approach to stochastic programming. SIAM Journal on Opti-
mization, 19(4):1574–1609, 2009.

79 Simon S. Du, Xiyu Zhai, Barnabas Poczos, and Aarti Singh. Gradient descent provably
optimizes over-parameterized neural networks. In International Conference on Learning
Representations, 2019.

80 Stephen J. Wright and Benjamin Recht. Optimization for Data Analysis. Cambridge
University Press, 2021.

81 Bernard Widrow and Marcian E. Hoff. Adaptive switching circuits. In Institute of Radio
Engineers, Western Electronic Show and Convention, Convention Record, pages 96–104, 1960.

82 A. Nemirovski and D. Yudin. Problem complexity and method efficiency in optimization.
Wiley, 1983.

83 Shai Shalev-Shwartz, Yoram Singer, and Nathan Srebro. Pegasos: Primal estimated
sub-GrAdient SOlver for SVM. In International Conference on Machine Learning, 2007.

84 Yurii Nesterov and Arkadi Nemirovskii. Interior-point polynomial methods in convex
programming. SIAM, 1994.

85 Tengyuan Liang, Alexander Rakhlin, and Xiyu Zhai. On the multiple descent of
minimum-norm interpolants and restricted lower isometry of kernels. In Conference on
Learning Theory, 2020.

86 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for
image recognition. In Computer Vision and Pattern Recognition, 2016.

87 Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan Firat, Dehao Chen, Mia Chen,
HyoukJoong Lee, Jiquan Ngiam, Quoc V Le, Yonghui Wu, and Zhifeng Chen. Gpipe:
Efficient training of giant neural networks using pipeline parallelism. Advances in Neural
Information Processing Systems, 32:103–112, 2019.

88 Vladimir Vapnik. Statistical Larning Theory. Wiley, 1998.
89 Christopher J. C. Burges. A tutorial on support vector machines for pattern recognition.

Data Mining and Knowledge Discovery, 2(2):121–167, 1998.
90 Shai Shalev-Shwartz, Ohad Shamir, Nathan Srebro, and Karthik Sridharan. Learnability,

stability and uniform convergence. Journal of Machine Learning Research, 11(Oct):2635–
2670, 2010.

91 Olivier Bousquet and André Elisseeff. Stability and generalization. Journal of Machine
Learning Research, 2(Mar):499–526, 2002.

92 Shai Shalev-Shwartz and Shai Ben-David. Understanding machine learning: From theory to
algorithms. Cambridge University Press, 2014.

285

93 Mikhail Belkin, Daniel Hsu, Siyuan Ma, and Soumik Mandal. Reconciling modern
machine-learning practice and the classical bias–variance trade-off. Proceedings of the
National Academy of Sciences, 2019.

94 Behnam Neyshabur, Ryota Tomioka, and Nathan Srebro. In search of the real inductive
bias: On the role of implicit regularization in deep learning. arXiv:1412.6614, 2014.

95 Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Un-
derstanding deep learning requires rethinking generalization. In International Conference
on Learning Representations, 2017.

96 Robert E Schapire, Yoav Freund, Peter Bartlett, Wee Sun Lee, et al. Boosting the margin:
A new explanation for the effectiveness of voting methods. The Annals of Statistics,
26(5):1651–1686, 1998.

97 Tong Zhang and Bin Yu. Boosting with early stopping: Convergence and consistency.
The Annals of Statistics, 33:1538–1579, 2005.

98 Matus Telgarsky. Margins, shrinkage, and boosting. In International Conference on
Machine Learning, 2013.

99 Sham M. Kakade, Karthik Sridharan, and Ambuj Tewari. On the complexity of linear
prediction: Risk bounds, margin bounds, and regularization. In Advances in Neural
Information Processing Systems, pages 793–800, 2009.

100 Peter L. Bartlett and Shahar Mendelson. Rademacher and gaussian complexities: Risk
bounds and structural results. Journal of Machine Learning Research, 3(Nov):463–482,
2002.

101 Vladimir Koltchinskii and Dmitry Panchenko. Empirical margin distributions and
bounding the generalization error of combined classifiers. The Annals of Statistics,
30(1):1–50, 2002.

102 Peter L. Bartlett. The sample complexity of pattern classification with neural networks:
the size of the weights is more important than the size of the network. Transactions on
Information Theory, 44(2):525–536, 1998.

103 Moritz Hardt, Benjamin Recht, and Yoram Singer. Train faster, generalize better: Stability
of stochastic gradient descent. In International Conference on Machine Learning, 2016.

104 Tengyuan Liang and Benjamin Recht. Interpolating classifiers make few mistakes.
arXiv:2101.11815, 2021.

105 Behnam Neyshabur, Srinadh Bhojanapalli, David McAllester, and Nati Srebro. Exploring
generalization in deep learning. In Advances in Neural Information Processing Systems,
pages 5947–5956, 2017.

106 Gintare Karolina Dziugaite and Daniel M Roy. Computing nonvacuous generalization
bounds for deep (stochastic) neural networks with many more parameters than training
data. arXiv:1703.11008, 2017.

107 Sanjeev Arora, Rong Ge, Behnam Neyshabur, and Yi Zhang. Stronger generalization
bounds for deep nets via a compression approach. arXiv:1802.05296, 2018.

108 Chiyuan Zhang, Qianli Liao, Alexander Rakhlin, Karthik Sridharan, Brando Miranda,
Noah Golowich, and Tomaso Poggio. Theory of deep learning III: Generalization
properties of SGD. Technical report, Discussion paper, Center for Brains, Minds and
Machines (CBMM). Preprint, 2017.

109 Moritz Hardt. Generalization in overparameterized models. In Tim Roughgarden,
editor, Beyond the Worst-Case Analysis of Algorithms, page 486–505. Cambridge University
Press, 2021.

110 David G. Lowe. Distinctive image features from scale-invariant keypoints. International
Journal of Computer Vision, 60(2):91–110, 2004.

111 Navneet Dalal and Bill Triggs. Histograms of oriented gradients for human detection.
In Computer Vision and Pattern Recognition, 2005.

286

112 Pedro F. Felzenszwalb, Ross B. Girshick, David McAllester, and Deva Ramanan. Object
detection with discriminatively trained part-based models. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 32(9):1627–1645, 2009.

113 Peter Auer, Mark Herbster, and Manfred K. Warmuth. Exponentially many local minima
for single neurons. In Advances in Neural Information Processing Systems, 1996.

114 Van H. Vu. On the infeasibility of training neural networks with small mean-squared
error. Transactions on Information Theory, 44(7):2892–2900, 1998.

115 Surbhi Goel, Adam Klivans, Pasin Manurangsi, and Daniel Reichman. Tight hardness
results for training depth-2 ReLU networks. In Innovations in Theoretical Computer Science,
2021.

116 Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network
training by reducing internal covariate shift. In International Conference on Machine
Learning, pages 448–456. PMLR, 2015.

117 Yuxin Wu and Kaiming He. Group normalization. In European Conference on Computer
Vision, pages 3–19, 2018.

118 Eric B. Baum and David Haussler. What size net gives valid generalization? In Advances
in Neural Information Processing Systems, 1988.

119 Peter L. Bartlett. The sample complexity of pattern classification with neural networks:
the size of the weights is more important than the size of the network. IEEE Transactions
on Information Theory, 44(2):525–536, 1998.

120 Reinhard Heckel and Mahdi Soltanolkotabi. Compressive sensing with un-trained
neural networks: Gradient descent finds a smooth approximation. In International
Conference on Machine Learning, pages 4149–4158. PMLR, 2020.

121 David Page. https://myrtle.ai/learn/how-to-train-your-resnet/, 2020.
122 Andreas Griewank and Andrea Walther. Evaluating derivatives: principles and techniques

of algorithmic differentiation. SIAM, 2nd edition, 2008.
123 James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary,

Dougal Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-
Milne, and Qiao Zhang. JAX: composable transformations of Python+NumPy programs,
2018.

124 Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton. ImageNet classification with
deep convolutional neural networks. In Advances in Neural Information Processing Systems,
2012.

125 Moritz Hardt and Tengyu Ma. Identity matters in deep learning. In International
Conference on Learning Representations, 2017.

126 Peter L. Bartlett, Dylan J. Foster, and Matus J. Telgarsky. Spectrally-normalized margin
bounds for neural networks. In Advances in Neural Information Processing Systems, pages
6240–6249, 2017.

127 Noah Golowich, Alexander Rakhlin, and Ohad Shamir. Size-independent sample
complexity of neural networks. In Conference on Learning Theory, pages 297–299, 2018.

128 Richard O. Duda, Peter E. Hart, and David G. Stork. Pattern classification and scene
analysis, volume 3. Wiley New York, 1973.

129 Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of Statistical
Learning: Data Mining, Inference, and Prediction (Corrected 12th printing). Springer, 2017.

130 Xiaochang Li and Mara Mills. Vocal features: From voice identification to speech
recognition by machine. Technology and Culture, 60(2):S129–S160, 2019.

131 John S. Garofolo, Lori F. Lamel, William M. Fisher, Jonathan G. Fiscus, and David S.
Pallett. DARPA TIMIT acoustic-phonetic continous speech corpus CD-ROM. NIST
speech disc 1-1.1. STIN, 93:27403, 1993.

287

132 Allison Koenecke, Andrew Nam, Emily Lake, Joe Nudell, Minnie Quartey, Zion Menge-
sha, Connor Toups, John R Rickford, Dan Jurafsky, and Sharad Goel. Racial dispar-
ities in automated speech recognition. Proceedings of the National Academy of Sciences,
117(14):7684–7689, 2020.

133 David Aha. personal communication, 2020.
134 Frances Ding, Moritz Hardt, John Miller, and Ludwig Schmidt. Retiring adult: New

datasets for fair machine learning. In Advances in Neural Information Processing Systems,
2021.

135 Wilbur H. Highleyman and Louis A. Kamentsky. A generalized scanner for pattern-
and character-recognition studies. In Western Joint Computer Conference, page 291–294,
1959.

136 Wilbur H. Highleyman. Character recognition system, 1961. US Patent 2,978,675.
137 Wilbur H. Highleyman and Louis A. Kamentsky. Comments on a character recognition

method of bledsoe and browning. IRE Transactions on Electronic Computers, EC-9(2):263–
263, 1960.

138 Woodrow Wilson Bledsoe. Further results on the n-tuple pattern recognition method.
IRE Transactions on Electronic Computers, EC-10(1):96–96, 1961.

139 Chao Kong Chow. A recognition method using neighbor dependence. IRE Transactions
on Electronic Computers, EC-11(5):683–690, 1962.

140 Wilbur H. Highleyman. Data for character recognition studies. IEEE Transactions on
Electronic Computers, EC-12(2):135–136, 1963.

141 Wilbur H. Highleyman. The design and analysis of pattern recognition experiments.
The Bell System Technical Journal, 41(2):723–744, 1962.

142 John H. Munson, Richard O. Duda, and Peter E. Hart. Experiments with highleyman’s
data. IEEE Transactions on Computers, C-17(4):399–401, 1968.

143 Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

144 Yann LeCun. http://yann.lecun.com/exdb/mnist/. Accessed 10-31-2021.
145 Patrick J. Grother. NIST special database 19 handprinted forms and characters database.

National Institute of Standards and Technology, 1995.
146 Chhavi Yadav and Léon Bottou. Cold case: The lost MNIST digits. In Advances in Neural

Information Processing Systems, pages 13443–13452, 2019.
147 Jane Bromley and Eduard Sackinger. Neural-network and k-nearest-neighbor classifiers.

Rapport Technique, pages 11359–910819, 1991.
148 Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. ImageNet: A

large-scale hierarchical image database. In Computer Vision and Pattern Recognition, pages
248–255, 2009.

149 Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma,
Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C.
Berg, and Fei-Fei Li. ImageNet large scale visual recognition challenge. International
Journal of Computer Vision, 115(3):211–252, 2015.

150 Jitendra Malik. What led computer vision to deep learning? Communications of the ACM,
60(6):82–83, 2017.

151 Mary L. Gray and Siddharth Suri. Ghost work: how to stop Silicon Valley from building a
new global underclass. Eamon Dolan Books, 2019.

152 Horia Mania, John Miller, Ludwig Schmidt, Moritz Hardt, and Benjamin Recht. Model
similarity mitigates test set overuse. In Advances in Neural Information Processing Systems,
2019.

153 Horia Mania and Suvrit Sra. Why do classifier accuracies show linear trends under
distribution shift? arXiv:2012.15483, 2020.

288

154 Joy Buolamwini and Timnit Gebru. Gender shades: Intersectional accuracy dispari-
ties in commercial gender classification. In Conference on Fairness, Accountability and
Transparency, pages 77–91, 2018.

155 Tolga Bolukbasi, Kai-Wei Chang, James Y. Zou, Venkatesh Saligrama, and Adam T.
Kalai. Man is to computer programmer as woman is to homemaker? debiasing word
embeddings. Advances in Neural Information Processing Systems, 29:4349–4357, 2016.

156 Hila Gonen and Yoav Goldberg. Lipstick on a pig: Debiasing methods cover up
systematic gender biases in word embeddings but do not remove them. arXiv:1903.03862,
2019.

157 Arvind Narayanan and Vitaly Shmatikov. Robust de-anonymization of large sparse
datasets. In Symposium on Security and Privacy, pages 111–125. IEEE, 2008.

158 Cynthia Dwork, Adam Smith, Thomas Steinke, and Jonathan Ullman. Exposed! A
survey of attacks on private data. Annual Review of Statistics and Its Application, 4:61–84,
2017.

159 Cynthia Dwork and Aaron Roth. The algorithmic foundations of differential privacy.
Foundations and Trends in Theoretical Computer Science, 9(3-4):211–407, 2014.

160 Amanda Levendowski. How copyright law can fix artificial intelligence’s implicit bias
problem. Wash. L. Rev., 93:579, 2018.

161 Robyn M. Dawes, David Faust, and Paul E. Meehl. Clinical versus actuarial judgment.
Science, 243(4899):1668–1674, 1989.

162 Ibrahim Chaaban and Michael R. Scheessele. Human performance on the USPS database.
Report, Indiana University South Bend, 2007.

163 Peter Eckersley, Yomna Nasser, et al. EFF AI progress measurement project. https:
//eff.org/ai/metrics, 2017.

164 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into recti-
fiers: Surpassing human-level performance on ImageNet classification. In International
Conference on Computer Vision, pages 1026–1034, 2015.

165 Vaishaal Shankar, Rebecca Roelofs, Horia Mania, Alex Fang, Benjamin Recht, and
Ludwig Schmidt. Evaluating machine accuracy on ImageNet. In International Conference
on Machine Learning, 2020.

166 Benjamin Recht, Rebecca Roelofs, Ludwig Schmidt, and Vaishaal Shankar. Do ImageNet
classifiers generalize to ImageNet? In International Conference on Machine Learning, pages
5389–5400, 2019.

167 Timnit Gebru, Jamie Morgenstern, Briana Vecchione, Jennifer Wortman Vaughan, Hanna
Wallach, Hal Daumé III, and Kate Crawford. Datasheets for datasets. arXiv:1803.09010,
2018.

168 Eun Seo Jo and Timnit Gebru. Lessons from archives: Strategies for collecting sociocul-
tural data in machine learning. In Conference on Fairness, Accountability, and Transparency,
pages 306–316, 2020.

169 Board of Governors of the Federal Reserve System. Report to the congress on credit
scoring and its effects on the availability and affordability of credit. https://www.
federalreserve.gov/boarddocs/rptcongress/creditscore/, 2007.

170 Nancy E. Reichman, Julien O. Teitler, Irwin Garfinkel, and Sara S. McLanahan. Fragile
families: Sample and design. Children and Youth Services Review, 23(4-5):303–326, 2001.

171 Cynthia Dwork, Vitaly Feldman, Moritz Hardt, Toniann Pitassi, Omer Reingold, and
Aaron Roth. Preserving statistical validity in adaptive data analysis. In Symposium on
the Theory of Computing, pages 117–126, 2015.

172 Cynthia Dwork, Vitaly Feldman, Moritz Hardt, Toniann Pitassi, Omer Reingold, and
Aaron Roth. The reusable holdout: Preserving validity in adaptive data analysis. Science,
349(6248):636–638, 2015.

289

173 David A. Freedman. A note on screening regression equations. The American Statistician,
37(2):152–155, 1983.

174 Avrim Blum and Moritz Hardt. The Ladder: A reliable leaderboard for machine learning
competitions. In International Conference on Machine Learning, pages 1006–1014, 2015.

175 Danah Boyd and Kate Crawford. Critical questions for big data: Provocations for a
cultural, technological, and scholarly phenomenon. Information, Communication & Society,
15(5):662–679, 2012.

176 Zeynep Tufekci. Big questions for social media big data: Representativeness, validity
and other methodological pitfalls. In AAAI Conference on Weblogs and Social Media, 2014.

177 Zeynep Tufekci. Engineering the public: Big data, surveillance and computational
politics. First Monday, 2014.

178 Mimi Onuoha. The point of collection. Data & Society: Points, 2016.
179 Amandalynne Paullada, Inioluwa Deborah Raji, Emily M. Bender, Emily Denton, and

Alex Hanna. Data and its (dis)contents: A survey of dataset development and use in
machine learning research. arXiv:2012.05345, 2020.

180 Alexandra Olteanu, Carlos Castillo, Fernando Diaz, and Emre Kiciman. Social data:
Biases, methodological pitfalls, and ethical boundaries. Frontiers in Big Data, 2:13, 2019.

181 Nick Couldry and Ulises A. Mejias. Data colonialism: Rethinking big data’s relation to
the contemporary subject. Television & New Media, 20(4):336–349, 2019.

182 Peter J. Bickel, Eugene A. Hammel, and J. William O’Connell. Sex bias in graduate
admissions: Data from Berkeley. Science, 187(4175):398–404, 1975.

183 Linda L. Humphrey, Benjamin K.S. Chan, and Harold C. Sox. Postmenopausal Hormone
Replacement Therapy and the Primary Prevention of Cardiovascular Disease. Annals of
Internal Medicine, 137(4):273–284, 08 2002.

184 Joseph Berkson. Limitations of the application of fourfold table analysis to hospital
data. International Journal of Epidemiology, 43(2):511–515, 2014. Reprint.

185 Judea Pearl. Causality. Cambridge University Press, 2009.
186 Jonas Peters, Dominik Janzing, and Bernhard Schölkopf. Elements of Causal Inference.

MIT Press, 2017.
187 Judea Pearl, Madelyn Glymour, and Nicholas P. Jewell. Causal Inference in Statistics: A

Primer. Wiley, 2016.
188 Judea Pearl and Dana Mackenzie. The Book of Why: The New Science of Cause and Effect.

Basic Books, 2018.
189 Edward H. Simpson. The interpretation of interaction in contingency tables. Journal of

the Royal Statistical Society: Series B (Methodological), 13(2):238–241, 1951.
190 Miguel A. Hernán, David Clayton, and Niels Keiding. The Simpson’s paradox unraveled.

International Journal of Epidemiology, 40(3):780–785, 03 2011.
191 Peter Spirtes, Clark N. Glymour, Richard Scheines, David Heckerman, Christopher

Meek, Gregory Cooper, and Thomas Richardson. Causation, Prediction, and Search. MIT
Press, 2000.

192 Bernhard Schölkopf. Causality for machine learning. arXiv:1911.10500, 2019.
193 Jerzy Neyman. Sur les applications de la théorie des probabilités aux experiences

agricoles: Essai des principes. Roczniki Nauk Rolniczych, 10:1–51, 1923.
194 Donald B. Rubin. Causal inference using potential outcomes: Design, modeling,

decisions. Journal of the American Statistical Association, 100(469):322–331, 2005.
195 Guido W. Imbens and Donald B. Rubin. Causal Inference for Statistics, Social, and Biomedical

Sciences. Cambridge University Press, 2015.
196 Joshua D. Angrist and Jörn-Steffen Pischke. Mostly harmless econometrics: An empiricist’s

companion. Princeton University Press, 2008.
197 Miguel A. Hernán and James Robins. Causal Inference: What If. Boca Raton: Chapman &

Hall/CRC, 2020.

290

	Introduction
	Ambitions of the 20th century
	Pattern classification
	Prediction and action
	Chapter notes

	Fundamentals of prediction
	Modeling knowledge
	Prediction via optimization
	Types of errors and successes
	The Neyman-Pearson Lemma
	Decisions that discriminate
	Chapter notes

	Supervised learning
	Sample versus population
	Supervised learning
	A first learning algorithm: The perceptron
	Connection to empirical risk minimization
	Formal guarantees for the perceptron
	Chapter notes

	Representations and features
	Measurement
	Quantization
	Template matching
	Summarization and histograms
	Nonlinear predictors
	Chapter notes

	Optimization
	Optimization basics
	Gradient descent
	Applications to empirical risk minimization
	Insights from quadratic functions
	Stochastic gradient descent
	Analysis of the stochastic gradient method
	Implicit convexity
	Regularization
	Squared loss methods and other optimization tools
	Chapter notes

	Generalization
	Generalization gap
	Overparameterization: empirical phenomena
	Theories of generalization
	Algorithmic stability
	Model complexity and uniform convergence
	Generalization from algorithms
	Looking ahead
	Chapter notes

	Deep learning
	Deep models and feature representation
	Optimization of deep nets
	Vanishing gradients
	Generalization in deep learning
	Chapter notes

	Datasets
	The scientific basis of machine learning benchmarks
	A tour of datasets in different domains
	Longevity of benchmarks
	Harms associated with data
	Toward better data practices
	Limits of data and prediction
	Chapter notes

	Causality
	The limitations of observation
	Causal models
	Causal graphs
	Interventions and causal effects
	Confounding
	Experimentation, randomization, potential outcomes
	Counterfactuals
	Chapter notes

	Causal inference in practice
	Design and inference
	The observational basics: adjustment and controls
	Reductions to model fitting
	Quasi-experiments
	Limitations of causal inference in practice
	Chapter notes

	Sequential decision making and dynamic programming
	From predictions to actions
	Dynamical systems
	Optimal sequential decision making
	Dynamic programming
	Computation
	Partial observation and the separation heuristic
	Chapter notes

	Reinforcement learning
	Exploration-exploitation tradeoffs: Regret and PAC learning
	When the model is unknown: Approximate dynamic programming
	Certainty equivalence is often optimal for reinforcement learning
	The limits of learning in feedback loops
	Chapter notes

	Epilogue
	Beyond pattern classification?

	Mathematical background
	Common notation
	Multivariable calculus and linear algebra
	Probability
	Conditional probability and Bayes' Rule
	Estimation

