
Cloning Cryptographic RFID Cards for 25$?

Timo Kasper, Ingo von Maurich, David Oswald, Christof Paar

Horst Görtz Institute for IT Security, Ruhr-University Bochum, Germany
{timo.kasper, ingo.vonmaurich, david.oswald, christof.paar}@rub.de

Abstract. We develop a new, custom-built hardware for emulating contactless smart-
cards compliant to ISO 14443. The device is based on a modern low-cost microcontroller
and can support basically all relevant (cryptographic) protocols used by contactless
smartcards today, e.g., those based on AES or Triple-DES. As a proof of concept, we
present a full emulation of Mifare Classic cards on the basis of our highly optimized im-
plementation of the stream cipher Crypto1. The implementation enables the creation
of exact clones of such cards, including the UID. We furthermore reverse-engineered
the protocol of DESFire EV1 and realize the first emulation of DESFire and DESFire
EV1 cards in the literature. We practically demonstrate the capabilities of our emu-
lator by spoofing several real-world systems, e.g., creating a contactless payment card
which allows an attacker to set the stored credit balance as desired and hence make an
infinite amount of payments.

Keywords: RFID, contactless smartcards, payment systems, access control, efficient imple-
mentation

1 Introduction

Radio Frequency Identification (RFID) devices are deployed in a wide range of transportation
and access control systems world-wide. If high privacy or security demands have to be met,
typically contactless smartcards according to the ISO 14443 standard [13] are employed, as
they offer sufficient computational power for cryptographic purposes. Moreover, a growing
number of payment systems incorporates secure RFID cards [16], as they offer additional
benefits in terms of flexibility and convenience over their contact-based counterpart. State-
of-the-art contactless cards, such as the electronic passport ePass [8], provide a high level of
security by means of various cryptographic primitives.

In general, RFID technology implies new threats compared to contact-based systems, for
instance, a card residing in a pocket or wallet could be read out or modified without the
owner taking note of it. Due to the cost sensitivity of such high-volume applications, card
manufacturers are tempted to use outdated but “cheap” cryptographic components, e.g., in
Mifare Classic products.

Since the reverse-engineering of the Crypto1 cipher used in Mifare Classic cards and the
subsequently published attacks (cf. Sect. 3.1), the cards have to be regarded as insecure, as
the secret keys can be extracted in seconds by means of card-only attacks. Once all keys of
the card are known to an attacker, cards can be modified or duplicated. As many systems in
the real world still rely on these weak cards, severe security threats may arise.

Accordingly, recently installed contactless systems, especially those with high security
demands, are based on the DESFire variant of the Mifare family, and system integrators
upgrade the old Mifare Classic technology to these newer cards wherever possible. While the
3DES cipher employed in these cards is secure from the mathematical point of view, the

? The work described in this paper has been supported in part by the European Commission through
the ICT programme under contract ICT-2007-216676 ECRYPT II.

implementation on the card is vulnerable to side-channel analysis, so that it is again possible
to extract the secret keys of a card1, as detailed in Sect. 3.2. Hence, emulating these modern
cards is also practical and renders various attacks in real-world scenarios possible.

The resulting security weaknesses can become very costly – one example is a widespread
contactless payment system based on Mifare Classic cards as analyzed in [16], where the credit
value on the cards can be modified by an adversary with minimal efforts. For many of these
systems, the read-only Unique Identifier (UID) of each card constitutes the only means to
detect fraud in the backend, as there are no cards available on the market where the UID can
be altered. In this paper, we exhibit the possibility of emulating and cloning RFID-enabled
smartcards compliant to ISO 14443, including their UID.

1.1 Background and Related Work

Several research groups have proposed custom devices to emulate and counterfeit RFID de-
vices. However, virtually all emulators presented so far suffer from certain drawbacks, e.g.,
insufficient computational resources, high cost, or impractical dimensions, limiting the threat
they pose in the context of attacking real-world systems.

A custom RFID emulation hardware called Ghost is presented in [24]. The Ghost is able to
emulate Mifare Ultralight cards which do not use any encryption. Emulating contactless cards
employing secure cryptography seems to be impossible using this device due to computational
limitations. The OpenPICC project [20] is mainly an RFID sniffing device. There was an
approach to offer support for ISO 14443A, but the project seems to be discontinued. The
Proxmark III [21] enables sniffing, reading and cloning of RFID tags. Since the device is
based on a Field Programmable Gate Array (FPGA), it is also capable of emulating Mifare
Classic cards, but at a comparably high cost of $399. The “HF Demo tag” [12] is based
on an Atmel ATMega128 microcontroller which is not computationally powerful enough to
perform encryptions with state-of-the-art ciphers in the time window given by the relevant
protocols. An embedded system for analyzing the security of contactless smartcards was
introduced in [14]. The attack hardware consists of a so-called Fake Tag and an RFID reader
and can be used for, e.g., practical relay attacks. The device is based on a Atmel ATMega32 [1]
processor with a constrained performance and is designed such that all important functionality
is provided by the RFID reader. Hence, in addition to the lack of computational power, the
Fake Tag cannot operate independently from the reader, which can be a major drawback for
practical attacks. The authors also implemented an emulation of Mifare Classic, but similar
to the HF Demo tag, the encryption runs too slow so that timing constraints of the protocol
cannot be met. We used this work as a starting point for the development of our new stand-
alone RFID emulator.

1.2 Contribution of this Paper

We built a freely programmable low-cost device that is capable of emulating various types of
contactless smartcards, including those employing secure cryptography. The device operates
autonomously without the need of a PC, can be powered from a battery, and possesses an
Electronically Erasable Programmable Read-only Memory (EEPROM) for storing received
bitstreams or other non-volatile information. An attacker using the presented hardware, which
can be built for less than $25, is in full control over all data stored on the emulated card,
including its UID and the secret keys.

In order to demonstrate the capabilities of our emulator in the context of real-world at-
tacks, we implemented optimized versions of the Crypto1 stream cipher, the Data Encryption

1 Note that the effort for extracting secret keys from Mifare DESfire cards by means of side-channel
analysis is much higher compared to the Mifare Classic attacks.

Standard (DES), Triple-DES (3DES) and the Advanced Encryption Standard (AES), as re-
quired for emulating the widespread Mifare Classic, Mifare DESFire and Mifare DESFire EV1
cards. With the developed software, it is possible to simulate the presence of one of these cards
with an arbitrarily chosen content and identifier, and hence spoof real-world systems in vari-
ous manners. For example, the emulator can behave as a card that automatically restores its
credit value after a payment, or that possesses a new UID and card number on each payment,
which impedes the detection of fraud. Besides the simulation of cards, our hardware allows
for sniffing, e.g., reverse-engineering of protocols, relay attacks, and testing the vulnerability
of RFID readers towards a behavior of the card that does not conform to the specifications,
for instance, with respect to timing, intentionally wrong calculation of parity bits, or buffer
overflows.

The remainder of this paper is structured as follows: in Sect. 2, we present our custom
RFID hardware that serves as a basis for card emulations and attacks. After giving a brief
summary of the relevant characteristics and protocols of Mifare Classic, Mifare DESFire and
Mifare DESFire EV1 cards in Sect. 3, we detail on our implementations of the respective
emulations in Sect. 4. Finally, practical real-world analyses performed with our hardware are
described in Sect. 5.

2 Hardware Setup

In the following, we give a brief introduction to the physical characteristics of the RFID
technology employed in contactless smartcards. Then, our freely programmable emulator for
contactless smartcards is presented.

2.1 RFID Technology

In a typical setup for contactless smartcards, a reading device generates a strong Electro-
Magnetic (EM) field at a frequency of 13.56 MHz for supplying the card with energy for its
operation. The reader acts as master, while the card serves as slave, thus only the reader
can start a communication and issue commands to the card. The ISO 14443 standard speci-
fies the physical characteristics, the data modulation and other characteristics of contactless
smartcards. For data transmission, the reader encodes the bits using a pulsed Miller code and
transmits it by switching off the EM field for short periods of time. The data to be sent by
the card is encoded using a Manchester-code and is afterwards transmitted via the EM field
using load-modulation with a 847.5 kHz sub-carrier.

2.2 Our Emulator

For the security analyses in this paper, we developed a custom, freely programmable device
termed “Chameleon”, which can emulate contactless smartcards compliant to the ISO 14443
standard in a stand-alone manner. Our emulation device consists of off-the-shelf hardware
and can be built for less than $25. It is based on an Atmel ATxmega192A3 microcontroller [2,
3] which provides 192 kB of program memory, 16 kB SRAM and 4 kB EEPROM memory.
Using an FTDI FT245RL chip [9], the ATxmega is able to communicate with a PC via the
Universal Serial Bus (USB). This communication link can be used for debugging purposes
and data manipulation at runtime. Figure 1 shows the first version of our RFID emulation
device.

We chose the ATxmega because it features a hardware acceleration of both DES and AES-
128. After loading the key and the data to the corresponding registers, the ATxmega is able
to perform a DES en- or decryption in 16 clock cycles, i.e., one DES round per clock cycle,
whereas the AES engine runs concurrently to the CPU and requires 375 clock cycles until

Fig. 1. Our stand-alone RFID emulation device.

an en- or decryption of one block is finished. The microcontroller is clocked by an external
13.56 MHz crystal, which is internally doubled using a high frequency Phase Locked Loop
(PLL).

The coupling to the reader is established by a rectangular coil on the Printed Circuit Board
(PCB). Variable capacitors are placed in parallel to form a parallel resonant circuit that is
tuned to the carrier frequency. Analog circuitry assists the microcontroller in extracting the
encoded data from the EM field and transmitting bitstreams. The design is similar to [14]
and mainly shapes the signals according to the ISO 14443 standard and converts them to
the appropriate voltage levels. Our emulation device can either be powered via the USB
interface or run on battery. As all functionality is directly provided by the microcontroller,
the Chameleon operates autonomously without the support of a PC. The full schematics of
the developed hardware are given in the Appendix B.

3 Mifare Cards

This section covers the details of Mifare Classic, DESFire and DESFire EV1 cards. We present
important facts required for the emulation of the cards and detail on the different authentica-
tion protocols, as implemented in Sect. 4.1 and Sect. 4.2. For reference, the complete protocols
including the command codes and the low-level format are provided in Appendix A.

3.1 Mifare Classic

Since its introduction more than a decade ago, allegedly over 1 billion Mifare Classic ICs
and 7 million reader components have been sold [18]. The cards provide data encryption and
entity authentication based on the proprietary stream cipher Crypto1 for preventing from
attacks like eavesdropping, cloning, replay and unauthorized reading or modification of the
data stored on the card. Crypto1 is based on a Linear Feedback Shift Register (LFSR) with
a length of 48 bit.

Basically, a Mifare Classic card can be regarded as a secured EEPROM memory with an
RFID communication interface. In this work, we focus on the by far most widely employed
Mifare Classic 1K version with 1024 byte EEPROM. All Mifare Classic variants comply to
Parts 1-3 of ISO 14443A [13]. While the standard also allows for higher data rates, the cards
communicate at a fixed data rate of 106 kBit/s. In addition, they feature a proprietary high-
level protocol that diverges from Part 4 of ISO 14443A.

The memory of a Mifare Classic card is divided into sectors, whereas each sector consists of
four blocks, as illustrated in Fig. 2. Each sector can be secured by means of two cryptographic
keys A and B that are stored along with a set of access conditions in the last block of each
sector. Before a sector can be accessed, a proprietary mutual authentication protocol with the

SECTOR 0

BLOCK 0

BLOCK 1

BLOCK 2

BLOCK 3

16 BYTES

UID BCC MANUFACTURER DATA

KEY A KEY BACCESS CONDITIONS

SECTOR 15

KEY A KEY BACCESS CONDITIONS

BLOCK 60

BLOCK 61

BLOCK 62

BLOCK 63

READ-ONLY

SECTOR TRAILER

SECTOR TRAILER

Fig. 2. The memory structure of a Mifare Classic 1K card.

appropriate secret key has to be carried out, cf. Protocol 1. The access conditions determine
the commands that are allowed for each block of the sector (read, write, increment, decrement)
and define the role of the keys [19]. The other blocks of each sector can be used for data storage.
Note that the first block of the first sector differs from this scheme: it always contains a UID,
along with some other manufacturer-specific data. The first block is written to the chip at
manufacturing time, making it impossible to change the UID.

When a card is placed close to a reader, the anticollision and select procedure as defined
in ISO 14443A is carried out. Then, an authentication command is issued by the reader that
specifies for which sector the authentication is performed. The card replies with a 32-bit nonce
nC generated by its internal Pseudo-Random Number Generator (PRNG). The reader replies
with an encrypted nonce nR and an answer aR, which is generated by loading nC into the
PRNG and clocking it 64 times. For the encryption, the keystream generated by the Crypto1
cipher is used in groups ks1, ks2, . . . of 32 bit each. After the card has sent the encrypted
answer aC , both parties are mutually authenticated. From that point onwards, the reader can
read, write or modify blocks in the chosen sector. If another sector has to be accessed, the
authentication procedure must be repeated with a slightly modified protocol.

Reader Card

−−
AUTH || sector
−−−−−−−−−−−−−−→

nC ∈R {0, 1}
32

←−−
nC

−−−−−−−−−−−−−−
nR ∈R {0, 1}

32

aR = PRNG(nC , 64)

−
nR ⊕ ks1 || aR ⊕ ks2
−−−−−−−−−−−−−−−−→

aR
?
= PRNG(nC , 64)

←−−
aC ⊕ ks3

−−−−−−−−−−−−−−

aC
?
= PRNG(nC , 96)

Protocol 1. The Mifare Classic authentication protocol.

Security of Mifare Classic Since its invention, the internal structure of Crypto1 was
kept secret and no open review process was performed. The cipher and its PRNG were
later recovered by [17] using low-cost hardware reverse-engineering techniques. The authors
pointed out several design flaws, i.e., the short key length of 48 bit, mathematical weaknesses
in the feedback functions of the LFSR, the weak 16-bit PRNG and the fact that the nonce

generated by the PRNG depends on the time elapsed between power-up of the card and
the authentication command. Subsequently, strong attacks on Mifare Classic were published:
an attack described in [7] utilizes a fixed timing to generate the same nonces for repeated
authentications and obtain parts of the keystream. A method to recover a secret sector key
is proposed in [10], requiring two recorded genuine authentications to one sector. The most
powerful attacks are card-only attacks as presented in [11] and [5]. They exploit amongst
others the weakness that a card sends an encrypted NACK (0x5) each time the parity bits
of the message nR ⊕ ks1 || aR ⊕ ks2 are correct but the decrypted aR is not (cf. Protocol 1).
This reveals four bits of keystream with a probability of 1

256
. Finally, a secret key of a Mifare

Classic smartcard can be extracted within seconds using a combination of card-only attacks
as proposed in [16], hence the cards can be considered fully broken.

3.2 Mifare DESFire and DESFire EV1

Mifare DESFire and Mifare DESFire EV1 cards are compliant to Parts 1-4 of ISO 14443A.
Their UID is seven bytes long, and they support high baud rates of up to 848 kBit/s. A
communication with the cards can be performed in plain, with an appended Message Au-
thentication Code (MAC), or with full data encryption. Mifare DESFire cards offer 4 kByte
of storage and data encryption by hardware DES and 3DES encryption. Mifare DESFire
EV1 cards additionally provide AES-128 data encryption and are sold in three variants with
2 kByte, 4 kByte and 8 kByte of non-volatile memory, respectively. Each card holds up to 28
different applications with up to 14 different keys per application. For DESFire, each appli-
cation may contain up to 16 files, while for DESFire EV1 the maximum number of files is 32.
As in Mifare Classic cards, the UID is unchangeably programmed into the card at production
time. Depending on the access rights for each application a mutual authentication protocol
(see Protocol 2 / Protocol 3), ensuring that the symmetric key of the card KC and of the
reader KR are identical, has to be completed before reading and manipulation of the data.

Reader Card

−
AUTH (02 0A 00)
−−−−−−−−−−−−−−−→ nC ∈R {0, 1}

64

nR ∈R {0, 1}
64

←−−
b0

−−−−−−−−−−−−−− b0 = EncKC (nC)
b1 = DecKR(nR)
r0 = DecKR(b0)
r1 = RotLeft8(r0)

b2 = DecKR(r1 ⊕ b1) −−
b1, b2

−−−−−−−−−−−−−−→ r2 = EncKC (b2)
n′
C

= RotRight8(r2 ⊕ b1)

←−
ERROR (02 AE)
−−−−−−−−−−−−−− if n′

C
6= nC

else if n′
C

= nC
r3 = EncKC (b1)
r4 = RotRight8(r3)

r5 = DecKR(b3) ←−−
b3

−−−−−−−−−−−−−− b3 = EncKC (r4)
n′
R

= RotLeft8(r5)

verify n′
R

?
= nR

Protocol 2. The Mifare DESFire authentication protocol [4].

Previous to the authentication, an application represented by its Application Identifier
(AID) is selected. The reader starts the authentication protocol [4] with an authenticate

command together with the key number that is to be used during the authentication. Note
that Mifare DESFire cards only perform (3)DES encryptions EncK(·) employing the secret
key K, hence, DESFire readers always have to use (3)DES decryption DecK(·).

As illustrated in Protocol 2, a DESFire card responds to the authentication command with
an encrypted 64-bit random nonce nC . The reader likewise chooses a 64-bit random nonce
nR, decrypts the received nC , rotates it eight bits to the left and decrypts nR as well as the
rotated nC . The card verifies if the rotated value equals nC after reverting the rotation. If so,
the card encrypts the first value to obtain nR, rotates it eight bits to the right and encrypts
the result which is then sent to the reader. The rotated and encrypted nonce is verified by
the reader and if this final step is successful, both parties are mutually authenticated.

We furthermore reverse-engineered the DESFire EV1 authentication protocol, as presented
in Protocol 3, by eavesdropping on genuine protocol runs. We found that the protocol of Mifare
DESFire EV1 cards using AES-128 diverges from Protocol 2 as follows. In Protocol 3, en- and
decryption are used in the common sense, i.e., data that is to be sent is encrypted and data
that was received has to be decrypted. The CBC mode is modified in a way that all en- or
decryptions are chained, even though they operate on different cryptograms. The Initialization
Vector (IV) is not reset when en- or decrypting a new message, but instead depends on the
previous en- or decryption. The nonces are extended to a length of 128 bit to match the
block size of AES-128 and the second rotation is executed in the opposite direction on both
sides. Again, AES-128 en- and decryption involving the key K are denoted by EncK(·) and
DecK(·), respectively. Apart from that, the protocol equals the authentication protocol of
Mifare DESFire cards and thus mutually authenticates both parties on successful execution.

Reader Card

−
AUTH (02 0A 00)
−−−−−−−−−−−−−−−→ nC ∈R {0, 1}

128

r0 = DecKR(b0) ←−−
b0

−−−−−−−−−−−−−− b0 = EncKC (nC)
r1 = RotLeft8(r0)
nR ∈R {0, 1}

128

b1 = EncKR(nR ⊕ b0)

b2 = EncKR(r1 ⊕ b1) −−
b1, b2

−−−−−−−−−−−−−−→ r2 = DecKC (b1)
r3 = DecKC (b2)

n′
C

= RotRight8(r3 ⊕ b1)

←−
ERROR (02 AE)
−−−−−−−−−−−−−− if n′

C
6= nC

else if n′
C

= nC
r4 = RotLeft8(r2 ⊕ b0)

r5 = DecKR(b3) ←−−
b3

−−−−−−−−−−−−−− b3 = EncKC (r4 ⊕ b2)
n′
R

= RotRight8(r5 ⊕ b2)

verify n′
R

?
= nR

Protocol 3. The Mifare DESFire EV1 authentication protocol.

Security of Mifare DESFire / EV1 The non-invasive side-channel attacks on RFID de-
vices presented in [15] allow to extract secret information from contactless cards by measuring
the electromagnetic emanations of a card while it carries out a cryptographic operation. The
focus is on devices that make use of DES or 3DES and the first successful key-recovery at-
tack on such devices is accomplished. In a discussion with the authors, we came to know
that the attacks have been improved since and are applicable to Mifare DESFire cards. With

about 1 000 000 measurements they are able to fully recover the 3DES key stored on a Mifare
DESFire card. Note that their side-channel attack is currently not applicable to DESFire
EV1, which has been certified according to Common Criteria EAL 4+. However, efficient
attacks might come up in the future or the secret key could obtained by other means, e.g.,
by exploiting weaknesses of the backend system.

4 Software Implementations

In this section we detail on our software implementations for emulating several cards with
Chameleon.

4.1 Mifare Classic Emulator

The attacks detailed in Sect. 3.1 imply that an adversary can easily read out the secret keys
and all content of a Mifare Classic card. To produce a duplicate, the adversary can write
all previously read data to a blank Mifare Classic card. This results in an almost perfect
clone, differing from the original only in the single block containing the read-only UID of
the blank card. If the UID is verified by a contactless system (compare with [16]), this type
of card-cloning becomes useless in practice. To allow for perfect clones, we implemented the
features of Mifare Classic on Chameleon. Thus, we have complete control of the content of
every memory block, including the previously unchangeable manufacturer block.

Optimized Crypto1 A first approach to emulate a Mifare Classic card on an AVR AT-
mega32 microcontroller [22] revealed difficulties in complying to the timing requirements given
in ISO 14443. After a command is issued by the reader, the card has to reply within 4.8 ms, or
the reader will reach a timeout and abort the connection. Compiling the open-source Crypto1
C-library [6] for an 8-bit microcontroller results in inefficient code regarding the underlying
platform. Hence, in [22] the time limit of 4.8 ms set in the protocol is exceeded with 11.7 ms
for an 18-byte encryption, neglecting all other necessary computations, such as encoding the
encrypted data. Since an 18-byte encryption is required every time when reading or writing
a block with appended CRC checksum, the existing implementation is not suitable.

It became obvious that a significant speedup of Crypto1 is essential for a successful Mifare
Classic emulation. Hence, we implemented the cipher from the scratch in AVR assembly. This
allows to optimize the code for an 8-bit platform and make use of special commands that may
not be considered by the C compiler. Using instructions to access bits of registers directly, the
amount of clock cycles required for an encryption was reduced, amongst others by replacing
inefficient shifting and masking operations to access single bits with instructions that allow
accessing a particular bit in one clock cycle (e.g., SBRC, BST, BLD). We further implemented
the non-linear filter functions fa, fb and fc of Crypto1

with lookup tables to avoid time consuming boolean AND, OR and XOR operations. In
the first stage, fa is used two and fb three times with a 4-bit input of the state LFSR. Their
output is used to generate a 5-bit input to fc, which in turn generates one bit of keystream.
For both fa and fb, we created a dedicated lookup table that includes the respective shifting
of the output. Thereby, the input of fc can be easily obtained by ORing the five outputs of
fa and fb. This speed advantage comes at the cost of storing one bit of information in one
byte of memory. Finally, the lookup table fc is a simple 5-bit input, 1-bit output table. The
overall size of the lookup tables is 112 byte, formed by two 16-byte tables for fa, three 16-byte
tables for fb and one 32-byte table for fc. With respect to the 192 kByte size of the program
memory, the tables are negligibly small.

Furthermore, we applied the idea of precomputation. When the nonce nC is fixed before
the authentication protocol is executed, the card is able to precompute the corresponding

answers aR and aC which saves time during the authentication process. Precomputation of
keystream bits is not possible because of two reasons. Firstly, since the sector to be accessed
by the reader cannot be predicted, it is not clear which key has to be loaded into the LFSR.
Secondly, the random reader nonce nR that only becomes known during the authentication
process is an input to the cipher.

4.2 Mifare DESFire (EV1) Emulator

Similarly to the Mifare Classic implementation, we additionally implemented the authentica-
tion protocols of both Mifare DESFire and Mifare DESFire EV1, as given in Sect. 3.2. For
encryption, Mifare DESFire cards use DES/3DES in CBC mode, whereas Mifare DESFire
EV1 cards can use either DES/3DES or AES-128 in CBC-mode.

4.3 Practical Results

Before carrying out security analyses in the real-world, we thoroughly tested our emulators in
our laboratory. The reliability and accurate timing behaviour of our emulator was successfully
verified with different RFID readers, including an ACG passport reader and a Touchatag [23]
reader. Further tests with real-world systems are described in Sect.5.

Mifare Classic With the optimized implementation of Crypto1 detailed in Sect. 4.1, we
successfully emulated Mifare Classic 1K cards with varying content. Table 4.3 summarizes
the execution times for the relevant operations which are now all well within the limits
specified in ISO 14443. All features, e.g., authentication, encrypted read and write of blocks,
or specifying an arbitrary UID, are fully functional with the used readers.

Command Execution time Explanation

setup_crypto1() 98µs Initializes the cipher
auth_crypto1() 542µs Keystream for the authentication
crypto1_1() 8.3µs Generates 1 bit of keystream
crypto1_8() 49µs Generates 8 bits of keystream
crypto1_32() 186µs Generates 32 bits of keystream

Table 1. Execution times of crucial Crypto1 functions.

Mifare DESFire (EV1) Likewise, we tested our DESFire (EV1) emulations from Sect. 4.2.
Table 4.3 shows the execution times for the needed cryptographic functions using the hardware
accelerators of the ATxmega. Note that the first call to an en-/decryption function involves
some overhead for the initial setup. After that, subsequent blocks can be processed faster. For
reference, we included the runtime both for a single block and for ten data blocks in Table 4.3.

According to [4], an original Mifare DESFire card answers 690µs (9356 clock cycles at
13.56 MHz) after b1,b2 was received when Protocol 2 is executed. During this time, two 3DES
encryptions are performed (one encryption of two blocks and one encryption of a single block).
Our implementation performs about three times faster than a genuine card, with 219µs (5932
clock cycles at 27.12 MHz) to produce a valid answer b3 after b1,b2 was received.

A genuine DESFire EV1 card replies with b3 approx. 2.2 ms after having received b1,b2.
In contrast, our implementation only consumes about 438µs and is thus faster by a factor of

Command Block count Execution time

TripleDES_CBC_Enc() 1 block 14.1 µs
TripleDES_CBC_Enc() 10 blocks 85.1 µs
AES128_CBC_Enc() 1 block 35.9 µs
AES128_CBC_Enc() 10 blocks 270.2 µs
AES128_CBC_Dec() 1 block 58.4 µs
AES128_CBC_Dec() 10 blocks 304.9 µs

Table 2. Execution times of 3DES and AES-128 en-/decryption functions.

five. As we are able to en-/decrypt faster than both DESFire cards, encrypting or MACing
data which is the most critical part for Mifare Classic does not pose a problem in the context
of emulating DESFire (EV1) cards. For both Mifare DESFire and Mifare DESFire EV1,
our implementation performed successfully with the readers in our laboratory. As with the
emulation of Mifare Classic cards, we are able to equip our emulator with a UID that is free
of choice.

We conclude that the ATxmega microcontroller on our current hardware revision is power-
ful enough to handle the amount of computation that is needed for the emulation of the simple
Mifare Classic cards and also for more sophisticated contactless smartcards using 3DES or
AES.

5 Real-World Attacks

We successfully employed the Chameleon to bypass the security mechanisms of several real-
world systems, for example, we utilized the Mifare Classic emulation to fake a card that is
accepted by a widespread payment system. In the following, we summarize the characteristics
of this system and then detail on the attacks carried out with our hardware.

5.1 A Vulnerable Contactless Payment System

For the identification of a customer of the payment system analyzed in [16], in addition to the
UID each card contains a card number chosen by the system integrator. The credit balance is
stored in plain in a value block on the card, without any extra security measures. The credit
can be increased by means of cash or a credit card at charging terminals, while the cash
registers are equipped with RFID readers to decrease the credit according to the balance due.
The contactless cards furthermore allow to open doors and grant access to restricted areas.

The system can be easily spoofed, because all cards issued have identical secret keys.
Hence, once the secret keys of one card have been recovered, the content of any card in the
system can be read out or modified. The authors were able to carry out payments by copying
the content of original payment cards to blank Mifare Classic cards. The so obtained cards
are not exact clones, since the UIDs of the blank cards are different from that of the genuine
ones, as detailed in Sect. 4.1. Consequently, the fraud could be easily detected in the back-end
by verifying the correctness of the UID of a card on each payment.

The authors of [16] mention that the existence of a device that can fully clone a card
including the UID would allow for devastating attacks, but suppose that these devices, if
available, will be very costly so buying and using them for micropayments would not be
profitable. With our developed hardware, the presence of an arbitrary valid card, e.g., an
exact clone including the UID, can be simulated with minimal effort and cost, as shown in
the following.

5.2 Electronically Spoofing a Contactless Payment System

A powerful type of attack that can be conducted with the Chameleon is called state-restoration.
Even if the credit value was stored encryptedly on the payment card, e.g., using AES with
an individual key per card, the content can be simply reset to the original credit value by
dumping the full content of the card before paying and reprogramming the card (respectively
our card emulation device) with the previous content after the payment.

As a first step to conduct this attack, we extracted the secret keys using the methods
described in Sect. 3.1. Then, we dumped the content of a genuine card, including the UID,
and copied it to our emulation device, thereby creating an exact clone. Hiding the device in
a wallet, we consequently were able to carry out contactless payments. The credit value was
stored in the EEPROM of our emulator and is decreased according to the balance due. As
a result, the remaining credit displayed to the cashier appears to be correct and our device
was accepted as genuine. The Chameleon allows to recharge the balance to its original value
by restoring the initial dump when the attacker presses a push button. Finally, unlimited
payments could be carried out with our device. Our practical tests furthermore showed that
the Chameleon allows to open doors when cloning a valid card of an employee. However, if
the fraud occuring due to the state restoration attack would be detected on the long term,
the card number and/or the UID could be blacklisted and blocked for future payments.

For a more powerful attack, we programmed the Chameleon to generate a new random
UID and card number for each payment. In our practical tests with the payment system,
our emulator now appeared like a new card every time. Again, we were able to carry out
payments, but this time, the device cannot be blacklisted and blocked in the backend.

In a similar manner, we were able to spoof a copy-and-print service that relies on contact-
less smartcards. The printers and copy stations are equipped with RFID readers that decrease
the credit stored on the Mifare Classic card according to the amount of copies or printings
carried out. By repeatedly using the service and comparing the content of the card between
the payments, we found the block in which the amount of remaining credit was stored, again
without any encryption. We hence programmed our card emulator to simulate the original
card such that the credit appears to be lowered on each payment. However, the previous state
of the card, i.e., charged to a high credit value, can again be restored by pressing a button on
our hardware. As a consequence, we gain an unlimited amount of copies with our hardware.

Since cards of other customers can be read out from a distance2, the Chameleon can also
be used to clone their cards in a real-world scenario. Reading out the relevant sectors takes
less than 100 ms. Several cards of other customers can be stored in the Chameleon and hence
payments can be carried out with cloned cards that already exist in the payment system. Note
that the original card of the customer remains unmodified and thus still contains the original
credit value. Accordingly, a financial damage will only occur for the payment institution, while
the customer is not affected. Altogether, taking the above illustrated devastating attacks and
its low cost into account, the Chameleon can clearly be profitable for a criminal.

6 Conclusion

We present a microcontroller-based, freely programmable emulator for ISO 14443 compliant
RFIDs that allows to simulate various contactless smartcards at a very low cost. The device
works autonomously, operated from a battery, and its card-sized antenna fits into slots of
most readers for contactless smartcards. Due to its small dimensions, the emulator can be
used covertly, e.g., hidden in the purse, and is well-suited for real-world attacks. Our hardware
can be connected to a PC by means of a USB interface and the non-volatile memory of the

2 Modified RFID readers allow for reading distances up to 30 cm

microcontroller allows amongst others to monitor the communication with an RFID reader
and store the acquired data in order to reverse-engineer unknown protocols.

We exposed the protocol of Mifare DESFire EV1 cards, implemented the (3)DES and AES
block ciphers as required, and present the first successful emulation of Mifare DESFire and
DESFire EV1 cards in the literature. The current software further includes the emulation of
Mifare Classic cards, based on a highly optimized variant of the Crypto1 stream cipher. The
firmware of our device is not limited to Mifare cards but can be adapted to support other
contactless smartcards and their respective protocols, e.g., the electronic passport and cards
from other manufacturers.

We tested the emulations with different RFID readers and show that our implementations
of the ciphers and protocols meet the timing requirements of all protocols and that the
performance in most cases is even faster than that of original cards. In all our tests, the
emulator could not be distinguished from a genuine card. The device proved to be a valuable
tool for the security analysis of contactless technology and can be used to practically identify
security weaknesses of real-world RFID systems.

Since secret keys of Mifare Classic cards and Mifare DESFire cards can be extracted by
means of mathematical cryptanalysis and side-channel analysis, respectively, our emulator
poses a severe threat for many commercial applications, if it was used by a criminal. To
demonstrate the capabilities of our findings we perform several real-world attacks, amongst
others on a contactless payment system. We emulate exact clones (including the UID) of
Mifare cards, successfully spoofed an access control system and carried out payments. Fur-
thermore, we implemented a mode of operation in which our emulator appears as a new card
with a new UID and new content on every payment, which hinders detection of fraud in the
backend.

With contactless payment, ticketing and access control systems being omnipresent today,
it is crucial to realize that only strong cryptography, together with sound protocol design
and protection against implementation attacks can ensure long-term security. Bug-fixes for
broken systems based on false assumptions on certain device characteristics, e.g., UID-based
protection schemes for Mifare Classic, are a fatal design choice, as we demonstrate that exact
cloning of cards is feasible at a very low cost.

References

1. Atmel. ATmega32 Data Sheet. http://www.atmel.com/dyn/resources/prod_documents/

doc2503.pdf.

2. Atmel. ATxmega192A3 Data Sheet. http://www.atmel.com/dyn/resources/prod_documents/

doc8068.pdf.

3. Atmel. AVR XMEGA A Manual. http://www.atmel.com/dyn/resources/prod_documents/

doc8077.pdf.

4. D. Carluccio. Electromagnetic Side Channel Analysis for Embedded Crypto Devices. Diplomar-
beit, Ruhr-University Bochum, March 2005.

5. N. Courtois. The Dark Side of Security by Obscurity and Cloning Mifare Classic Rail and
Building Passes, Anywhere, Anytime. In SECRYPT 2009, pages 331–338. INSTICC Press.

6. Crapto1. Open Implementation of Crypto1. http://code.google.com/p/crapto1, 2008.

7. G. de Koning Gans, J. Hoepman, and F. Garcia. A Practical Attack on the MIFARE Classic.
In Smart Card Research and Advanced Applications 2008, volume 5189 of LNCS, pages 267–282.
Springer.

8. Federal Office for Information Security, Germany. Advanced Security Mechanisms for Machine
Readable Travel Documents – Extended Access Control. http://www.bsi.de/fachthem/epass/

EACTR03110_v110.pdf.

9. Future Technology Devices International Ltd.. FT245R Datasheet. http://www.ftdichip.com/

Support/Documents/DataSheets/ICs/DS_FT245R.pdf.

10. F. Garcia, G. de Koning Gans, R. Muijrers, P. Van Rossum, R. Verdult, R. Schreur, and B. Jacobs.
Dismantling Mifare Classic. In ESORICS 2008, volume 5283 of LNCS, pages 97–114. Springer.

11. F. Garcia, P. van Rossum, R. Verdult, and R. Schreur. Wirelessly Pickpocketing a Mifare Classic
Card. In Symposium on Security and Privacy, pages 3–15. IEEE, 2009.

12. IAIK Graz. HF Demo Tag. http://www.iaik.tugraz.at/content/research/rfid/tag_

emulators.
13. ISO/IEC 14443-A. Identification Cards - Contactless Integrated Circuit(s) Cards - Proximity

Cards - Part 1-4. www.iso.ch, 2001.
14. T. Kasper, D. Carluccio, and C. Paar. An Embedded System for Practical Security Analysis of

Contactless Smartcards. In WISTP 2007, volume 4462 of LNCS, pages 150–160. Springer.
15. T. Kasper, D. Oswald, and C. Paar. EM Side-Channel Attacks on Commercial Contactless

Smartcards Using Low-Cost Equipment. In WISA 2009, volume 5932 of LNCS, pages 79–93.
Springer.

16. T. Kasper, M. Silbermann, and C. Paar. All You Can Eat or Breaking a Real-World Contact-
less Payment System. In Financial Cryptography 2010, volume 6052 of LNCS, pages 343–350.
Springer.

17. K. Nohl and D. Evans. Reverse-engineering a Cryptographic RFID Tag. In USENIX Security

Symposium, pages 185–193, 2008.
18. NXP. About MIFARE. http://mifare.net/about/, 2001.
19. NXP. Mifare Classic 1K MF1 IC S50 Functional Specification. www.nxp.com, 2008.
20. OpenPICC. Programmable RFID-tag. http://www.openpcd.org/openpicc.0.html.
21. Proxmark III. A Radio Frequency IDentification Tool. http://www.proxmark.org/.
22. M. Silbermann. Security Analysis of Contactless Payment Systems in Practice. Diplomarbeit,

Ruhr-University Bochum, November 2009.
23. Touchatag. Touchatag RFID Reader. http://www.touchatag.com/.
24. R. Verdult. Proof of Concept, Cloning the OV-Chip Card. http://www.sos.cs.ru.nl/

applications/rfid/2008-concept.pdf.

A Authentication Protocols

This appendix provides the commands and the exact binary format for the authentication
protocols used in this paper. Note that for DESFire (EV1), the message format according to
ISO 14443A part 4 (including the 16-bit CRC) is taken into account in the following.

A.1 Mifare Classic Authentication Protocol

Direction Protocol Message Explanation

1 R → C 60, sector (1 byte), CRC1 CRC2 (2 byte) Auth || sector || CRC
2 C → R 4 byte nC
3 R → C 4 byte, 4 byte nR ⊕ ks1 || aR ⊕ ks2

4 C → R 4 byte aC ⊕ ks3

Table 3. Authentication protocol between a reader R and a Mifare Classic card C.

A.2 Mifare DESFire Authentication Protocol

Direction Protocol Message Explanation

1 R → C 02 0A, key (1 byte), CRC1 CRC2 Auth || key number || CRC
2 C → R 02 AF, 8 byte, CRC1 CRC2 Card nonce || b0 || CRC
3 R → C 03 AF, 8 byte, 8 byte, CRC1 CRC2 Reader response || b1 || b2 || CRC
4 C → R 03 00, 8 byte, CRC1 CRC2 Success || b3 || CRC

Table 4. Authentication protocol between a reader R and a Mifare DESFire card C.

A.3 Mifare DESFire EV1 Authentication Protocol

Direction Protocol Message Explanation

1 R → C 02 AA, key (1 byte), CRC1 CRC2 Auth || key number || CRC
2 C → R 02 AF, 16 byte, CRC1 CRC2 Card nonce || b0 || CRC
3 R → C 03 AF, 16 byte, 16 byte, CRC1 CRC2 Reader response || b1 || b2 || CRC
4 C → R 03 00, 16 byte, CRC1 CRC2 Success || b3 || CRC

Table 5. Authentication protocol between a reader R and a Mifare DESFire EV1 card C.

B Schematics

Fig. 3. Schematics of the microcontroller and the USB interface.

Fig. 4. Schematics of the power supply and the (de)modulation circuitry.

